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Topic

This talk will survey some of the properties of the zeta function
of a linear code and give examples using the software package
SAGE ,

http://www.sagemath.org

The analog of the Riemann hypothesis will be discussed.
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Notation and Definitions

linear code = subspace of F
n , F = GF (q).

C = linear code of length n / F.

q = 2 =⇒ binary .

q = 3 =⇒ ternary .

q = 4 =⇒ quaternary .

standard basis: e1 = (1, 0, ..., 0) ∈ F
n,

e2 = (0, 1, 0, ..., 0) ∈ F
n, ..., en = (0, 0, ..., 0, 1) ∈ F

n.

dimension (C) = k , so |C| = qk .

dual code = C⊥ = {v ∈ F
n | v · c = 0, ∀c ∈ C}.

C is self-dual if C = C⊥.

Sarah Catalano On Duursma Zeta Functions of Type IV Virtual Codes



Introduction
Definition of Zeta Polynomial

Analog with Riemann’s Zeta Function

The Basic Problem
Example

Hamming metric = d(x, y) = number of coordinates where
these two vectors differ:

d(x, y) = |{0 ≤ i ≤ n | xi 6= yi}|. (1)

weight wt(v) = number of non-zero entries of v.

The smallest distance between distinct codewords in a linear
code C is the minimum distance of C:

d = d(C) = minc∈C, c6=0d(0, c). (2)
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The Basic Problem

C is an [n, k , d ]q code

C⊥ is an [n, k⊥, d⊥]q code

Iwan Duursma introduced the zeta function Z = ZC
associated to C:

Z (T ) =
P(T )

(1 − T )(1 − qT )
, (3)

where P(T ) is a polynomial of degree n + 2 − d − d⊥,
called the zeta polynomial.
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Examples

Basis vectors of C arranged as rows in a matrix = generator
matrix G.

Example

G =









1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0









is the gen mat of a self dual code parameters [8, 4, 4] over
GF (2).
|C| = 24 = 16 and Duursma Zeta Fcn

Z (T ) =
2T 2 + 2T + 1

5(1 − 2T )(1 − T )
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(Hamming) weight enumerator polynomial :

AC(x , y) =
n

∑

i=0

Aix
n−iy i = xn + Adxn−dyd + · · · + Anyn,

where
Ai = |{c ∈ C | wt(c) = i}|

MacWilliams identity:

AC⊥(x , y) = |C|−1AC(x + (q − 1)y , x − y).

If AC(x , y) = AC⊥(x , y) then C is called a formally self-dual
code .
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virtual weight enumerator polynomial :

F (x , y) =
n

∑

i=0

fix
n−iy i = xn + fdxn−dyd + · · · + fnyn,

for some integer d , 1 < d < n. We call this polynomial virtually
self-dual if it satisfies

F (x , y) = F (
x + (q − 1)y√

q
,
x − y√

q
),

If F = AC and C is a self-dual code then the above identity is a
special case of the MacWilliams identity.
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A polynomial P(T ) for which

(xT + (1 − T )y)n

(1 − T )(1 − qT )
P(T ) = · · · + AC(x , y) − xn

q − 1
T n−d + . . . .

is called a Duursma zeta polynomial of C.

The functional equation holds:

P⊥(T ) = P(
1

qT
)qgT g+g⊥

, (4)

where g = n/2 + 1 − d and g⊥ = n/2 + 1 − d⊥.

The Riemann hypothesis is the statement that all zeros of P(T )
lie on the circle |T | = 1/

√
q (in the self-dual case).
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A polynomial P(T ) for which

(xT + (1 − T )y)n

(1 − T )(1 − qT )
P(T ) = · · · + F (x , y) − xn

q − 1
T n−d + . . . .

is called a Duursma zeta polynomial of F , where F is a virtual
weight enumerator.

If F is a virtually self-dual weight enumerator, then the Riemann
hypothesis is the statement that all zeros of P(T ) lie on the
circle |T | = 1/

√
q.
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Honors Project Work

There exists extremal Type I, II, III, IV virtual self-dual weight
enumerators. The definition will be skipped.

It’s conjectured that the Duursma zeta function of all such
weight enumerators satisfies the Riemann hypothesis.

My honors project varifies this for all extremal Type IV virtual
self-dual weight enumerators with length divisible by 3.

For details, see Section 3 of my honors paper.
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Riemann Hypothesis Example

SAGE has some functionality for linear codes. Here are a few
examples to show the syntax.

SAGE can compute with the self-dual [8, 4, 4] extended
Hamming code:

Example

sage: C=self_dual_codes_binary(8)["8"]["1"]["code"]
sage: R.<T> = PolynomialRing(CC,"T")
sage: f = R(C.zeta_polynomial())
sage: print [z[0] for z in f.roots()]
[-0.500000000000000 + 0.500000000000000*I,
-0.500000000000000 - 0.500000000000000*I]

This code satisfies the Riemann Hypothesis
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Example Define the finite field of four elements as follows. Let
z denote a root of the quadratic polynomial
x2 + x + 1 ∈ GF (2)[x ], where GF (2)[x ] denotes the polynomial
ring in the indeterminate x . Let GF (4) = {0, 1, z, z + 1}. This
set is a field of characteristic 2. Let

G =





1 0 0 1 z z
0 1 0 z 1 z
0 0 1 z z 1





be the generator matrix of a code C. This is a quaternary
self-dual [6, 3, 4] code and is referred to as the hexacode. In
fact, this is an extremal Type IV code. Note that this code is
MDS.
In general, it is true that the Duursma zeta function of any MDS
code is P(T ) = 1.
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Here is a more interesting example. Let z denote the same
element as was defined on the previous slide. Let G =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 1 z2 1 1 z 1 1 z2 z
0 1 0 0 0 0 0 0 0 z2 z2 0 z 0 1 z z2 z2

0 0 1 0 0 0 0 0 0 z2 1 0 z2 z2 z2 z 0 z
0 0 0 1 0 0 0 0 0 0 z2 1 0 z2 z2 z2 z z
0 0 0 0 1 0 0 0 0 z 1 1 z2 z2 1 1 z 1
0 0 0 0 0 1 0 0 0 z z2 z2 z2 0 1 z2 0 z
0 0 0 0 0 0 1 0 0 0 z z2 z2 z2 0 1 z2 z
0 0 0 0 0 0 0 1 0 z2 z 1 0 z 0 z2 z2 z2

0 0 0 0 0 0 0 0 1 z2 1 1 z 1 1 z2 1 z

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

be a generator matrix of a code C. This is an extremal Type IV
code over a field with four elements.
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According to SAGE , the zeta polynomial for this code is
P(T ) = 48

143T 4 + 48
143T 3 + 32

143T 2 + 12
143T + 3

143 . It can be
checked directly, using SAGE , that this satisfies the RH:
Example

SAGE
sage: F.<z> = GF(4,"z")
sage: MS = MatrixSpace(F, 9, 18)
sage: G = MS([[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, z^2, 1, 1, z, 1, 1, z^2, z],\
....: [0, 1, 0, 0, 0, 0, 0, 0, 0, z^2, z^2, 0, z, 0, 1, z, z^2, z^2],\
....: [0, 0, 1, 0, 0, 0, 0, 0, 0, z^2, 1, 0, z^2, z^2, z^2, z, 0, z],\
....: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, z^2, 1, 0, z^2, z^2, z^2, z, z],\
....: [0, 0, 0, 0, 1, 0, 0, 0, 0, z, 1, 1, z^2, z^2, 1, 1, z, 1],\
....: [0, 0, 0, 0, 0, 1, 0, 0, 0, z, z^2, z^2, z^2, 0, 1, z^2, 0, z],\
....: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, z, z^2, z^2, z^2, 0, 1, z^2, z],\
....: [0, 0, 0, 0, 0, 0, 0, 1, 0, z^2, z, 1, 0, z, 0, z^2, z^2, z^2],\
....: [0, 0, 0, 0, 0, 0, 0, 0, 1, z^2, 1, 1, z, 1, 1, z^2, 1, z]])
sage: C = LinearCode(G)
sage: print C.spectrum()
[1, 0, 0, 0, 0, 0, 0, 0, 2754, 0, 18360, 0, 77112, 0, 110160, 0, 50949, 0, 2808]
sage: R.<T> = PolynomialRing(CC,"T")
sage: P = C.sd_zeta_polynomial(4)
sage: P
48/143*T^4 + 48/143*T^3 + 32/143*T^2 + 12/143*T + 3/143
sage: rts = R(P).roots()
sage: [abs(r[0]) for r in rts]
[0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000]
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The Functional Equation for Z (T ):

Z⊥(T )T 1−g = Z (
1

qT
)(

1
qT

)1−g .

Define ζ(s) = Z (q−s), so the functional equation becomes
ζ⊥(s) = ∗ · ζ(1 − s), where * is a simple exponential
expression.
In the self-dual case, ζ = ζ⊥:

The RH for ζ(s) is the statement that all zeros have
Re(s) = 1/2
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The Riemann zeta-function ζ(s) is

ζ(s) =
∞

∑

n=1

1
ns

for Re(s) > 1

The zeta-function satisfies the following functional
equation:

ζ(s) = ∗ · ζ(1 − s)

where ∗ = 2sπs−1 sin
(

πs
2

)

Γ(1 − s).

The RH for ζ(s) is the statement that all zeros have
Re(s) = 1/2
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For Further Reading I

W. C. Huffman and V. Pless, Fundamentals of
error-correcting codes, Cambridge Univ. Press, 2003.

Duursma, Extremal weight enumerators and ultraspherical
polynomials, Discrete Mathematics, vol. 268, no. 1-3, pp.
103-127, July 2003.

[△] The SAGE Group, SAGE : Mathematical software, version
2.11 http://www.sagemath.org/

[◦] http://en.wikipedia.org/wiki/Riemann_zeta_function
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