Feedback with Carry Shift Registers and Bent
Sequences

MIDN 1/C Charles Celerier
May 7, 2012

Abstract

A stream cipher uses pseudorandom sequences to mimic the security
of a one-time pad. This paper will investigate how bent functions can
be used to generate f-filtered bent sequences with large 2-adic valuation.
Rearrangements of these sequences could be effective for filtering the states
of feedback with carry shift registers (FCSRs) in stream ciphers. The non-
linearity of f-filtered bent sequences could provide resistance for FCSR-
based stream ciphers in register synthesis attacks. In this paper, we show
that it is possible to compute the 2-adic valuation of a bent sequence
generated by a Maiorana-McFarland class Boolean function.

1 Introduction

Bytes of data, or short sequences of 1s and 0Os, are exchanged between computer
systems each day on public channels. Because gentlemen do read each other’s
mail, it is necessary to secure the communication of private data sent over public
channels. The solution to this problem is solved by cryptography, the designing
of systems to secure data exchanges over public channels.

The following example is the classical communication scenario presented in
many books on cryptography. Let there be two parties, Alice and Bob, who
wish to communicate with one another. A third party, Eve, is a potential
eavesdropper. Alice wants to send a message, known as the plaintext, to Bob.
To accomplish this without Eve knowing what the message is before it is received
by Bob, Alice must encrypt her message by some prearranged method, usually
involving an encryption key, to generate a related message called ciphertext.
The idea is that the sent ciphertext, even if it is intercepted by Eve, will be
too difficult to interpret and will conceal the plaintext message. Upon receipt
of the ciphertext, Bob will decrypt the message, usually involving a decryption
key, similar to the encryption of the message, and obtain the plaintext message.
A visual of this scenario is presented in Figure 1.

This scenario is the standard example found in many different introductory
cryptography references. Cryptographers have created numerous encryption
and decryption schemes, or cryptosystems, to secure the messages sent between

encryption decryption
key key

plaintext ciphertext plaintext

Eve

Figure 1: The basic communication scenario for cryptography

Alice and Bob. Many of these systems have been broken because of the amount
of work that goes into the study of breaking cryptosystems, called cryptanaly-
sis. A constant battle exists between the designers and breakers of cryptosys-
tems, strengthening designs and attacks every day. In fact, designing a strong
cryptosystem typically requires knowledge of cryptography and cryptanalysis.
When designing a cryptosystem, every cryptographer assumes Kerckhoffs’ prin-
ciple |22]: “In assessing the security of a cryptosystem, one should always assume
the enemy knows the method being used.” The security of a cryptosystem can-
not be based on the concealment of the encryption and decryption algorithms.
In practice, the enemy can obtain the algorithms in many ways, including the
defection or capture of people. The security must be based solely on the key.

This paper will explore bent sequences for their potential strength in stream
ciphers. According to Rueppel in [19], a stream cipher divides bit sequences
into individual bits and enciphers each bit with a time-varying function whose
time-dependency is governed by the internal state of the stream cipher. The
stream cipher can also be thought of in terms of a keystream which is a sequence
of 1s and 0Os the same length of the message that is added to the message using
addition in Fo (also known as XOR). If the keystream was perfectly random,
then the cryptosystem would be unbreakable, or perfectly secret, as discovered
by Claude Shannon in his famous paper “Communication Theory of Secrecy
Systems,” written secretly in 1945 and published in 1949. This cryptosystem
is known as the one-time pad. Though it is perfectly secret, it can be difficult
to implement because of the inability to produce perfectly random keystreams.
Constructing a method to produce perfectly random sequences is a contradiction
in itself.

Though it is difficult to create perfectly random sequences, it is feasible to
get close. A sequence which is close to being random is called a pseudorandom
sequence. In [6], Golomb lists three randomness postulates on periodic binary
sequences:

R-1. In every period, the number of 0Os is nearly equal to the number of 1s.

R-2. In every period, half the runs have length one, one-fourth have length
two, one-eighth have length three, etc., as long as the number of runs so

indicated exceeds 1. Moreover, for each of these lengths, there are equally
many runs of Os and of 1s.

R-3. The auto-correlation function C(7) is two-valued. Explicitly

& S\ Kifo<T<p.

K|

These postulates today have become a measure of how close a sequence is to
being considered pseudorandom. The claim is that binary sequences with ex-
tremely long periods would be nearly indistinguishable from perfectly random
binary sequences.

In the case of this paper, the f-filtered Boolean sequence defined in Section 5
is considered in the context of pseudorandom sequences and FCSRs. The main
result is the calculated 2-adic valuation of f-filtered bent sequences generated
by the Maiorana-McFarland class of Boolean functions.

In Section 2, Boolean functions are first introduced, and the section con-
cludes with the definition of the Walsh transform and bent functions. In Sec-
tion 3, the N-adic ring is defined and a few properties of 2-adic sequences are
discussed. The 2-adic valuation defined in this section is critical to understand-
ing the main result in Section 5. Section 4 defines the FCSR following a funda-
mental discussion on finite state machines and n-state shift registers. Two shift
register synthesis algorithms are given to demonstrate the necessity of adding
a non-linear component to an FCSR, before using it as a secure stream cipher.
Finally, Section 5 defines what this paper calls f-filtered Boolean sequences and
proves the main result on the 2-adic valuation of bent sequences generated by
the functions in the Maiorana-McFarland class.

Most of the examples in this paper are shown using Sage v4.8. Meth-
ods and functions for the examples are either from the class sage.crypto.
boolean_functions, which comes with the current version of Sage, or can be
found in the script afsr.sage which is available for download at

https://github.com/celerier/oslo.

To use the methods and functions, type the following in your Sage console:

Sage

sage: from sage.crypto.boolean_functions import *
sage: attach afsr.sage

Acknowledgments: 1 thank Professor David Joyner for his advice and expertise
which allowed me to write this paper. Without his help, this work would not
have been possible. I would also like to thank Professor Mark Goresky of the
Princeton Institute for Advanced Study for his kind encouragement and for
suggesting the problem addressed by the main result of this thesis. I also thank

https://github.com/celerier/oslo

the Math Department for travel funds to attend the National Conference for
Undergraduate Research at Weber State University in Ogden, Utah.

2 Boolean Functions

This section will establish the definition of a Boolean function and how to write
these functions as polynomials. The goal is to introduce the Walsh transform,
and important tools used in cryptography. The Walsh transform measures the
non-linearity of a Boolean function. This section concludes with the definition of
bent functions which in terms of the Walsh transform are “perfectly non-linear”
Boolean functions. The definitions and notations will follow those found in [4].

2.1 Review of Boolean Functions

The two element field (Fo, @, -) is the set {0, 1} with defined binary operations
@ and -, also commonly referred to as the logical XOR and AND operators
respectively.

XOR AND
020:=0]0-0:=0
0pl:=1|0-1:=0
1®0:=1]1-0:=0
1o1:=0]1-1:=1

Table 1: Binary Operations for Fo

It should be clear that (Fo,@®,-) is a commutative ring with an identity.
Additionally, the only non-zero element 1 is its own inverse. In fact, (Fa, &, ")
is a finite field, which will now be denoted by F. The n-dimensional vector
space over 'y will be denoted by 5y, with the usual inner product. Components
of vectors in Fy will be known as bits. For two vectors z,y € 3 where z =
(o, Zn-1) and ¥y = (Yo,-..,Yn—1), the inner product in FH will be defined
AS T Y=o Yo D - D Tp—1"Yn-1.

The elements of Fo will sometimes be regarded as integers and other times as
elements of Z/27Z. Generally, the only time that considering 0 and 1 as elements
of IF, is necessary is when adding vectors in F7.

Example 2.1.1.

Sage

sage: V=GF(2) "3

sage: a=V([1,0,1]1); b=V([0,1,1]);
sage: a+b

(1, 1, 0)

sage: a.dot_product (b)

1

Each vector in F5 can be uniquely represented by an integer between 0 and
2™ — 1. To do this, the components of each vector in F§ are trivially mapped
to the integers 0 and 1, and then used in the one-to-one binary representation
function B:

n—1
B:Fy — {0,...,n — 1} such that B(u) ::Zui-Qi. (1)
i=0

If we define the vectors v; € Fy by v; = B71(i) for 0 < i < 2771 then the
sequence (vg,v1,...,ven_1) is said to be in binary order. This ordering is the
standard ordering used by Sage to list vectors in 5.

Example 2.1.2.

Sage

sage: V=GF(2)"3

sage: V.list ()

(e, o, o), (¢, o, oo, (0, ¢, 00, (¢, t, 0), (0, 0, 1), (1, 0, 1),
(0, 1, 1), (1, 1, 1]

sage: [GFn_to_integer(v) for v in V]

o, ¢+, 2, 3, 4, 5, 6, 71

This definition of B has created the convention where the least significant
bit appears on the left and the most significant bit appears on the right. The
Hamming weight and Hamming distance functions are used to count the number
of 1s in a vector and count the number of differences between two vectors in F5.
These are fundmental functions in coding theory and are useful when talking
about Boolean functions.

Definition 2.1.3. Let x,y € F§. Then wt : F§ — {0,...,n} is defined by

n—1
wt(x) := Z X
i=0

and d: F} x Fy — {0,...,n} is defined by
d(e,y) = wh(z +).

Then wt(z) is the Hamming weight of x and d(x,y) is the Hamming distance
between x and y.

Definition 2.1.4. Let x € Fy. Then supp : F§ — 2{0.--m=1} ig defined by
supp(z) :=={i € {0,...,n — 1} : 2; = 1}

Example 2.1.5.

Sage

sage: V=GF(2) "5
sage: a=V([0,1,1,0,1]); b=vV([0,0,1,1,0])
sage: Hamming_weight(a)

3

sage: Hamming_weight(b)

2

sage: a.support ()

[1, 2, 4]

sage: b.support ()

[2, 3]

sage: Hamming_weight (a+b)
3

There is an interesting orthogonality property in the vector space F5 known
as the orthogonality principle that every non-zero vector in F3 is orthogonal to
exactly half of the vectors in the vector space.

Proposition 2.1.6. Let x € Fy. Then
Z (_1)zy _ 2™ for x : O,
0 otherwise.
yeFry
Proof. Let x = 0 € F}. Then Vy € F4, 2 -y = 0, so (=1)*¥ = 1. Therefore,
Doyerp (1)7Y = [Fg| = 2™

Let z € F} where « # 0. Assume the ith bit of is non-zero and define
e; € Fy as a vector with all zero bits except for the ith bit which is 1. Then

POIC ST D DICE Vi

yeFy yely

= > (T

yery

Yy

yeFy

Therefore, Zyewg(—l)”y =— ZyeJFg (—=1)®¥, which implies

Example 2.1.7.

Sage

sage: V=GF(2) "6
sage: [sum([(-1)~(x.dot_product(y)) for y in V]) for x in V]

When introduced to a new vector space, it is natural to begin looking at
functions in that field. The particular functions of interest here will be what
are known as Boolean functions.

Definition 2.1.8. Any function f defined such that
f : Fg — Fy

is a Boolean function. The set of all Boolean functions on n variables will be
denoted by BF,,.

The number of Boolean functions increases extremely rapidly as the number
of variables increases.

BF,| =2 (2)

The Boolean function f is presented in a truth table in Table 2. The Ham-
ming weight of f is the number of 1s that f has when evaluated at every point
in the F3:

wi(f) = Hu € F3 : f(u) = 1}].

2.2 Boolean Polynomials

A truth table is not a very compact method to define a Boolean function. It is
much more efficient and easier to implement a Boolean function when written
as a formula. This can be done by writing a Boolean function algebraically. As
a first step toward defining f algebraically a one-to-one and onto function will
be defined which maps every f in BF,, to a vector in F%n This will be the
function V : BF,, — F3" such that

V(f) == (f(vo),..., f(van_1)) where v; = B~ (4). (3)

It is trivial to show that addition is homomorphic under V,

V(fi® f2) =V (fi) ®V(fa)

IWith today’s fastest supercomputer operating at 10.51 petaflops (the K computer in
Japan), if one floating point operation was expended visiting every Boolean function of 7
variables, it would take over a thousand trillion years to complete the process. This length of
time is roughly 70,000 times the age of the universe. Though every symmetric cryptosystem
in use can be broken down into several Boolean functions of several variables, it would be
infeasible to brute force search through all of the possibilities of Boolean functions which
reconstruct the cryptosystem.

o | 21 | x| 23 || flwo, 21,2, 23)
ojlolo]o 0
1001 oO 1
0 1 0 0 1
1 1 0 0 0
0 0 1 0 1
1{o0]1]o0 0
ol 1]1]o0 1
1|1]1]o0 0
0 0 0 1 0
1 0 0 1 0
01|01 1
11011 0
0]lo0|1]1 0
1011 0
01|11 1
1] 1]1]1 1

Table 2: Truth Table of f

Then the standard basis of F%n can be used to pull back to an equivalent basis
of BF,. Let ¢; € F%n be defined so that

60:(1,0,...)
61:(0,1,...)

€on_1 = (0, “ee ,O7 1).

The atomic Boolean functions will be defined as the f; € BF,, where there
exists an e; € F3" such that V(f;) = e;. Every vector of F2 can be written
as a linear combination of the standard basis vectors, and equivalently, every
Boolean function is a linear combination of atomic Boolean functions. This
means for every u € F%n there exists a set of ¢; € Fy such that

U= coeg D -+ DcCagn_1€an_1
S f=cfo®@ - Dcan_1fon_1.

where V(f) = u.

The function f defined in Table 2 can be written as a linear combination
of the atomic Boolean functions in BF,. Since the coefficients in the linear
combinations are either 0 or 1, it is true that every Boolean function can be
written as the sum of wt(f) atomic Boolean functions.

The equation f = f1 + fo + fa + fo + fio + fia + fi5 should be clear from
Table 3. Knowing how to write the atomic Boolean functions as polynomials

o | w1 | w3 || f | S| o] fa] fe| Jro]| fra| fi5
0 0 0 0 010 0 0 0 0 0 0
1 0 0 0 1|1 0 0 0 0 0 0
0 1 0 0 110 1 0 0 0 0 0
1 1 0 0 0] 0 0 0 0 0 0 0
0 0 1 0 110 0 1 0 0 0 0
1 0 1 0 010 0 0 0 0 0 0
0 1 1 0 1] 0 0 0 1 0 0 0
1 1 1 0 0] 0 0 0 0 0 0 0
0 0 0 1 0] 0 0 0 0 0 0 0
1 0 0 1 0] 0 0 0 0 0 0 0
0 1 0 1 1] 0 0 0 0 1 0 0
1 1 0 1 010 0 0 0 0 0 0
0 0 1 1 010 0 0 0 0 0 0
1 0 1 1 0] 0 0 0 0 0 0 0
0 1 1 1 110 0 0 0 0 1 0
1 1 1 1 110 0 0 0 0 0 1

Table 3: f broken into atomic Boolean function in BF,

would lead to knowing how to write any Boolean function as a polynomial. The
polynomials representing the Boolean functions will belong to the the polyno-
mial ring Falxo,...,2n-1]/(23 ® x0,...,22_, ® x,—1). To properly represent
an atomic Boolean function, a polynomial must equal 1 at only one vector
(xo,...,2Zn-1). Recall the support function from Definition 2.1.4. Then the
polynomial respresenting each Boolean function is as follows:

(T =) IO aew) (@)
jesupp(B~1(i)) j¢supp(B~1(i))

Proof. Let x = B~(i) where 2 = (20,...,7n_1). Then {z; : z; = 1} = {2, :
i € supp(x)}. Therefore,

mmz(1T $J(I u@%Q:L

Jjesupp(B~1(i)) J¢supp(B~1(4))

.I'j) =0
je€supp(B~1(3))

fZ(I) = 0.

Let # # B~1(i). Then,

Now the function f from Table 2 can be written as the sum of the following
atomic polynomials:

fi=0@x3)(1@a)(1®ar)xo
= To D T120 D T2To D T2x120 D T3To D T3T1T0 D T3T2To D T3T2T1T0
fo=0®)1 D a2)z1(1 D xp)
fi= (1@ x3)r2(1©21)(1 D 20)
fo = (1® x3)x221(1 ® 20)
fro =23(1 ® x2)x1 (1 B x0)
J1a = 232271 (1 © 70)
fi5 = 3227120
After summing the atomic polynomials upon multiplying them out,
[=xox1x003 ® T9T1T3 B ToT3 B X9 P T1T2T3 B T1x2 B 1 P T2T3 B T2.

This result is easily verified in Sage:

Sage

sage: f=BooleanFunction([0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1])

sage: f.algebraic_normal_form()

x0*x1*x2%x3 + x0*x1*x3 + x0*%x3 + x0 + x1*xx2%x3 + x1*x2 + x1 + x2%
x3 + x2

Now the uniqueness of the polynomial representation for each Boolean func-
tion is considered. This is easily seen by considering the uniqueness of each
Boolean function and the size of the polynomial ring.

Theorem 2.2.1. Each n-variable Boolean function is uniquely represeneted as
a polynomial in the polynomial ring Fo[xo, ..., 20 1]/ (2@ x0, ..., 2% 1 D1H_1).
Let f € BF,,. Then there exists a unique set of ay € Fo, I € 2{0""’"’1}, such

that
fly=" > az(Haa) (5)
1210, n—1} el
Proof.
|BF,| = [F3'|
={(ag,...,ar,...) ar € Fa}|
= |Fs[xo,. .., xn,l]/(xg @ zo, . .. ,xi_l D Tp—1)|

Because every Boolean function is determined by at least one polynomial and the
size of the polynomial ring equals the size of the set of all Boolean functions,
each Boolean function must be uniquely determined by a polynomial in the
polynomial ring. O

10

2.3 The Walsh Transform

The Walsh transform measures the non-linearity of a Boolean function by deter-
mining the distance between a given Boolean function f(x) and a linear function
A - x. The Walsh transform is similar to the discrete Fourier transform and is
in fact used to obtain the Fourier coefficients for a Boolean function. For this
paper, the Walsh transform is considered over the discrete Fourier transform
because this is the transformation used by Rothaus in his original definition of
bent functions published in the Journal of Combinatorial Theory in 1976 [20].
The definitions in this section follow [18].

Definition 2.3.1. A character X of a finite abelian group G is a group homo-
morphism from G into the multiplicative group of complex numbers.

For the purposes of this paper, it should be clear that X, (z) := (—1)** where
A,z € FY is a group character of Fy. Define the dual group F§ to be the group
of all characters of F3. The group operation in F4 is pointwise multiplication

of functions:
(X ¥)(@) = X(@)p(a), « € Fy.
This operation is closed under multiplication.

Lemma 2.3.2. [y = Fg

Proof. Let T : FZ — F? where T()\) := X,. Every character in F} corresponds
to an element of F3. Thus, [F%| = |F%|. Therefore if T is one-to-one, then it

must be an isomorphism.
Let T(A1) = T(A2). Then for all x

(_1))\1-1 — (_1))\ng
(_1)()\1+>\1+)\2)'I

(_1))\1'I(_1)()\1+>\2)';E-

Finally, (A1 + A\2) - @ = 0 for all € F%, which implies A\; + Ay = 0. Therefore,
A1 = Aa. O

Addition in FJ corresponds to multiplication in Fg By definition

(X>\1 'X)\z)(w) = Xx, ("E)sz (‘T) = (_1))\1»m(_1))\2»m = (_1)(>\1+>\2)'1 = Xai 42 (JJ)

It is clear from the proof of Lemma 2.3.2 that all the characters of F4 cor-
respond to all of the linear functions in BF,,.

Definition 2.3.3. Let f € BF,. Then f : F} — R such that f(z) = (=1)/®
is a pseudo-Boolean function. The set of all pseudo Boolean functions is denoted
BF,={f:f¢€BF,}.

Lemma 2.3.4. Every character X belongs to Bj-"n.

11

Proof. This is trivially true. O
Lemma 2.3.5. If
W = spanR(BA]-"n) = {Zaiﬁ- : fz € BF,, a; € R, and 7| < oo},
icl
then the FQ forms an orthonormal basis of W.

Proof. The atomic Boolean functions correspond to a basis of W. Thus, the
dimension of BF,, is at most 2". The 2" characters of 5 are elements of BF,,,
by Lemma 2.3.4.

Z Xy, () - Xy, (x) = Z (1) XA

z€FY z€FY
fo ifi#j
M if i = j.

Therefore, the characters of Fy are orthonormal in W. Since the dimension of

W is at most 27, and there are 2" characters, Fg forms an orthonormal basis of
wW. O

Definition 2.3.6. Let f € BF,, and A € F5. Then the Walsh transform of f is
defined by:
W) = D f@)Xa(a). (6)
z€Fy
Let
W(f) = (Wf(AO)v ERE Wf(AQn,l)),
where \; = B~1(i), be the Walsh spectrum of f.

Example 2.3.7. Here are some examples of the Walsh spectrums of different
Boolean functions:

Sage

sage: f0=BooleanFunction((fO0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1])

sage: fO.walsh_hadamard_transform()

(-2, 6, -6, -6, -2, -2, 2, -6, 2, 2, 6, -2, 2, -6, -2, -2)

sage: fO.algebraic_normal_form()

x0*x1*x2%x3 + x0*x1*x3 + x0*%x3 + x0 + x1*xx2%x3 + x1*x2 + x1 + x2%
x3 + x2

sage:

sage: fl=BooleanFunction([(1$,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0])

sage: fl.walsh_hadamard_transform()

(o, 16, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, 0)

sage: fl.algebraic_normal_form()

x0 + 1

sage:

sage: f2=BooleanFunction([1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1])

12

sage: f2.walsh_hadamard_transform()

(o, o, o, t6, 0, 0, 0, 0, O, O, O, O, O, O, O, O)

sage: f2.algebraic_normal_form()

x0 + x1 + 1

sage:

sage: f3=BooleanFunction([1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,1])
sage: f3.walsh_hadamard_transform()

(2, 2, -2, 14, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2)
sage: f3.algebraic_normal_form()

x0*x1*x2%x3 + x0 + x1*x2%x3 + x1 + 1

Every pseudo-Boolean function can be written as a linear combination of the
characters of ;. The coefficients in these linear combinations reveal important
properties of the functions. Rothaus rewrote the pseudo-Boolean function as a
linear combination of characters as follows [20].

Lemma 2.3.8. For f € BiFn,

f@) = 5o 3 () (")

AEFy

where c(X\) are given by
1

= on/2

Each ¢(\) is called a Fourier coefficient of f. As observed by Rothaus
in [20], 2"/2¢()) is the number of zeros minus the number of ones of the function
f(z)+A-z. The Hamming weight of f is easily determined using the zero Fourier
coefficient ¢(0):

c(N) Wi\ (8)

o(0) = g 3 (-1

z€FY

= g (2" = wil) ~ wi()
= wt(f) =277 —2"/271¢(0). (9)
Example 2.3.9. There are two cases that should be clear to the reader.
1. Let f(x) = X-2. Then W;(X) = 2™,
2. Let f(z) #X-x Va. Then f(z) =X-x+1 Vz. So, Wy(\) = —2"
In both cases, f is an affine function.

For large Wy ()|, the Hamming distance between f and an affine function
in BF,, is small.

13

2.4 Bent Functions

These functions are useful in cryptographic applications because they add re-
sistance to differential attacks as a result of being “perfectly non-linear”. As
mentioned before, these were defined by Rothaus in 1976. The main result in
Section 5 is given on bent functions because of their important cryptographic
property of being as far away as possible from every affine function in BF,.

Definition 2.4.1. If all of the Fourier coefficients of f are +1 then f is a bent
function.

Proposition 2.4.2. [20] If f is a bent function on FY, then n is even, n = 2k.
Moreover, the degree of f is at most k, except in the case k = 1.

Proof. ¢(\) = +1. This implies 2"/?¢()\) is an integer. Therefore n must be
even.

Let n = 2k with & > 1, and let » > k. Consider the polynomial f(z,
0,0,...,0) = g(x) where © = (z1,22,...,2,) (up to this point all indexing has
started at 0; it is more convenient in this proof to begin numbering at 1). Then
by Equation (7),

Q(I) = 2T/2 Z b(>\15 ceey AT)X()\l,...)\T)(I)

and

P 1
f(iZ?,O) = on/2 Z C()\l,...,/\n)X()\hm))\n)(I,O).

Because f(z,0) = g(z) and the uniqueness of the Fourier expansion, b and ¢ are
related such that

1
b(Ai, ... M) = =72 > My A Arg s An).
)\r+17~~~7)\n:071
Then,
wt(f(z,0)) = wt(g(x))
— 27‘—1 _ 27‘/2—1b(0)
=91 _gr—n/2-1 > (0,0 0, Arg 1y s An).

Art 1y An=0,1
There are 2"~" summands in Y, ¢(0,...,0, A\rq1,...,An). Since f is bent,
¢(A) = £1. By rewriting 1 = —1 + 2,
D e(0, 0, g1 An) = =27 4 2wt (c(0, ., 0, A, An))
=2(wt(c(0,...,0, Apy1,...,A)) — 277771

Thus, wt(g(x)) is even. This implies that g(x) is the sum of an even num-
ber of atomic Boolean functions. Therefore the coefficient of x125 - -2, in the
polynomial representing g(x) must be 0. This is true for every r > k, so the
degree of f must not be greater than k. O

14

The set of all bent functions is not known. There however are a few ba-
sic constructions which are known. The Rothaus construction and Maiorana-
McFarland class of Boolean functions are presented here as two of the known
constructions for bent functions.

2.4.1 Rothaus Construction of Bent Functions

In one of the first papers written about bent functions, Rothaus identified two
large general classes of bent function on BF,,, n = 2k. The simpler of the two
is presented here:

Proposition 2.4.3. Let n be even, x1,y1,...,Tk, Yr be independent variables,
and P(x) € BF, /2 (so P(x) is a function n/2 variables). Then the polynomial
Q(z,y) € BF,, given by

Qz,y) = x1y1 + z2y2 + -+ - + Tpyx + P(x) (10)
1s bent.
The proof that this function is bent can be found in Rothaus’ paper [20].
Example 2.4.4. Both f and g in this example are bent according to Rothaus.

Sage

sage: B=BooleanPolynomialRing(6,’x”)
sage: B.inject_variables(verbose=false)
sage: f=BooleanFunction(xO*x1+x2*x3+x4*x5)
sage: f.truth_table (format=’int’)
(o, o, 0, ¢, 0, 0, 0, t, 0, 0, O, ¢, ¢, ¢, ¢, O, O, O, O, 1, O, O,
o, &, o0, 0, 0, 12, 1, 1, 1, 0, 0, O, 0, &, O, O, O, 1, O, O,
o, ¢+, 1,11, 11,90,1, 1, 1,90,1, 1,1, 0, 1, 1, 1, O, O, O, O,
1)
sage: f.is_bent ()
True
sage: g=f+BooleanFunction(x0*x2+x0)
sage: g.truth_table (format=’int’)
(0, 1, 0, 0, 0, 0, 0, &, 0, 1, O, O, 1, 1, 1
o, ¢, 0, ¢, 0, 0,1 ¢, 1, 0, 0, 1, O,
o, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, O, 1, 1, O, O, O,
1)
sage: g.is_bent ()
True

2.4.2 Maiorana-McFarland Class Construction of Bent Functions

The Maiorana-McFarland class (or M-M class) of Boolean functions is a gener-
alized Rothaus construction of bent functions. It uses a permutation function
7 on half of the input variables to each function.

Definition 2.4.5. Let 7 : F§ — F% be the linear transformation on F% rep-
resented by the matrix 7 € My, (F2) such that the matrix 7 has exactly k
non-zero entries arranged so that every row and column has exactly one non-
zero entry. Then 7 is a permutation matriz.

15

Example 2.4.6.

Sage
sage: piO=matrix(GF(2),[[0,0,1],[1,0,0],[0,1,01])
sage: pi0
[0 0 1]
[1 0 0]
[0 1 0]

sage: V=GF(2) "3

sage: x=V([0,1,1]); y=V([1,0,0])
sage: (matrix(x)).transpose ()

(ol

[1]

[1]

sage: piO*(matrix(x)).transpose ()
[1]

(ol

[1]

sage: (matrix(y)).transpose(

[1]

(ol

[o]

sage: piO*(matrix(y)).transpose()
(ol

[1]

(ol

For every permutation function 7 on F5 the component permutation function
7 can defined such that for 0 <i <k —1,

7(i) = j where 7(e;) = e; for basis vectors e;, e; € Fk.

0 0 1 01 0

Example 2.4.7. If 7p = (1 0 0| and m; = |1 0 0], then 7 is the
0 1 0 0 0 1

permutation cycle (012) and 7 is the permutation cycle (01)(2).

A simple bent function construction is accomplished by using permutations
like the ones defined here. These Boolean functions belong to the Maiorana-

McFarland original class. This is the set M which contains all Boolean functions
on FY = {(z,y) = (%0, -+, Zn-1,Y0s -+, Yn—1) : T,y € Fgﬂ}, of the form

f(@,y) =2 7(y) ®g(y)

where 7 is any permutation on Fg/ % and g is any Boolean function on]Fg/ 2.

Proposition 2.4.8. [3]
All functions in the Maiorana-McFarland class of Boolean functions are bent.

The proof of these functions being bent can be found in [3].

Example 2.4.9. Both f and ¢ in this example are in the Maiorana-McFarland
class of Boolean functions.

16

Sage

sage: f=BooleanFunction(xO*x4+x1*x3+x2%x5)

sage: f.truth_table (format=’int’)

(o, o, o0, 0, 0, 0, 0, 0, 0, 0, 1, &, 0, O, 1, 1, O, 1, O, 1, O, 1,
o, ¢, 0, &, 1, 0, 0, 1, 1, 0, 0, O, 0, O, 1, 1, 1, 1, O, O,
t, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, O,

1)

sage: f.is_bent ()

True

sage: g=f+BooleanFunction(x0*x2+x0)

sage: g.is_bent ()

True

3 N-adic Integers

This section introduces the N-adic integer ring and defines the 2-adic valuation
which is critical to the main result of the paper. The 2-adic integers are very
closely connected with the binary sequences generated by FCSRs which are
discussed in Section 4.

3.1 N-adic Integer Ring

The notation used in the definition of the N-adic numbers will follow the same
notation used by Borevich and Shafarevich in Chapter 1 of Number Theory [1].
In this section, the set of N-adic integers is shown to be a commutative ring
with an identity.

Definition 3.1.1. Let N be an integer. Then the infinite integer sequence (zy,)
determines an N-adic integer «, or (z,) — «, if

Tiv1 =x; (mod N Vi >0. (11)
Two sequences (z,,) and (2/,) determine the same N-adic integer if
z; =z, (mod N**') Vi>o. (12)
The set of all N-adic integers will be denoted by Zy .

Each integer z is associated with a N-adic integer, determined by the se-
quence (x, @, ..., x, ...). These integers will be called rational integers in the
N-adic integers.

Example 3.1.2. Let (x,) — o € Zs. Then the first 5 terms of (z,,) may look
something like:

(xn)=(1,1+2-3,1+2-3+1-3%,
14+2-3+1-3%2,142-34+1-32+1-3*,..))
=(1,7,16,16,97,...)

17

Then equivalent sequences to (z,,) could begin differently for the first few terms:

(yn) = (4,25,16,178,583,...)
(2) = (—2, —47,232, 308,97, ...)
The sequences for (y,) and (z,) satisfy equation (11) for the first 5 terms, so
they could be N-adic integers up to this point. Also, both are equivalent to
(x,,) according to the equivalence defined in equation (12).
1=4=2 (mod 3)
7=25=—47 (mod 3?)
16 =16 =232 (mod 3%)
16 =178 = —308 (mod 3%)
97 =583 =97 (mod 3°)

Therefore (x,,), (Yn), (2n) = a.

Because there are infinitely many sequence representations for any N-adic
integer, it is useful to define a canonical sequence to be used when writing N-adic
integers as sequences.

Definition 3.1.3. For a given N-adic integer «, a given sequence (a,) with the
properties:

i (an) = «
ii. (an):(ao, apg+ay-N, ..., ao—i—---—i—ai-Ni,)Ogal <N Vi>0
will be called canonical.
The sequence (ag,a1,as,...,a;,...) is the digit representation of . When
N < 10, the digits are usually written adjacent to one another. Another equiva-

lent representation of « is the power series representation where o = E?io a;IN*
where the a;’s are from the digit representation of «.

Example 3.1.4. In Example 3.1.2, the sequence (z,,) was a canonical sequence
that determined the N-adic integer a. A few more examples of canonical se-
quences determining 7-adic integers are given here:

B =23164---=3+1-7T+6-7>+4-7+ ..., then the canonical sequence
(b)) — B is
(bn)=(3,341-7,3+1-7T+6-7, 3+1-7T+6-7"+4-7°, ...)
— (3,10,304, 1676, .. .)

y=0164---=0+1-7T+6-7>+4-7>+-- - then the canonical sequence (c,,) — 7
is

(n)=(0, 1-7, 1-T+6-7%, 1-7T+6-T°+4-7°, ...)
= (0,7,301,1673,...)

18

§=5031---=5+0-7+3-72+1-7>+- - then the canonical sequence (d,,) — &
is
(dn) = (5, 5,5+3-7%, 5+3-7+1-7°, ...)
= (5,5,152,495, . ..).

Definition 3.1.5. Addition and multiplication in Zx are done term by term.
Let o, 8 € Zy and (xy,) — «, (yn) — 8. Then,

(n) + (Yn) == (xo + Yo, 21 + 41,...) 2 a+f
() - (Yn) == (z0 - Yo, 21 - Y1,...) > - B

Define (0,0,0,...) 20 € Zy and (1,1,1,...) = 1 € Zx
Lemma 3.1.6. Fora€Zy,a+0=0+a=aandl - a=a-1=a.
Proof. Let (z,) — a € Zn.

(zn) + (0,0,...) = (zg + 0, 3:1—|—0,...,a:1-—|—0,...)

(.I(),)
(0,0,...) () (0+,’E0,0+J]1,...,0+J]i,...)
(LL'Q,)
(2n) = (25)+(0,0,...) = (0,0,...)+(x,) implies « = a+0 = 0+«. Therefore,
the additive 1dent1ty in Zy is 0
(.In)(l,l,):(‘IO 17$1'15' y L 17)
= (x07 y Ly o)
(L,1,...) (xn) =1 20,1 29,...,1-24,...)
= (‘I()v y L)

(xn) = (xn) - (1,1,...) = (1,1,...) - (x,) implies « = a- 1 = 1 - . Therefore,
the multiplicative identity in Zy is 1. O

Finally, this section defines a ring and proves that Zy is a commutative ring
with an identity.

Definition 3.1.7. A ring is a set R with two binary operations defined on it.
These are usually called addition denoted by +, and multiplication denoted by
- or juxtaposition, satisfying the following six axioms:

1. Addition is commutative: a +b=b+a Va,b € R.
2. Addition is associative: a + (b+c¢) = (a +b) + ¢ Va,b,c € R.

3. There exists an additive identity, denoted by 0, such that a4+0 = a Va € R.

19

4. Ya € R there exists an additive inverse, denoted by —a, such that a +
(—a) =0.

5. Multiplication is associative: a(bc) = (ab)c Va,b,c € R

6. Multiplication is left and right distributive over addition:
a(b+c¢) = ab+ ac
(b+c)a=ba+ca
If it is also true that

7. Multiplication is commutative: ab = ba Va,b € R, then R is a commuta-
tive ring.

Further if

8. There exists a multiplicative identity denoted by 1 such that a-1 = a and
l-a=a Va € R, then R is a ring with an identity.

If R satisfies all eight properties, then R is a commutative ring with an identity.
Theorem 3.1.8. Zy is a commutative ring with an identity.
Proof. Let (z,,), (yn), (#n) determine a, 8,7 € Zn respectively. Then
1. Commutativity of Addition
(zn) + (Yn) = (o + Yo, - - -+ Ti + Yis)

:(90+$07---;yi+$ia---)
= (yn) + (zn).

() + (yn) = a+ B and () + (yn) = (yn) + (xn) = B+ a. Therefore,
by Definition 3.1.1, a + 5 = 8+ a.

2. Associativity of Addition

(20) + () + (2) = (@n) + (o + 00 sy + 2.
xo+ (Yo + 20), -+ T + (Yi + 2i),...)

(
=(
((x0+y0)+207---7($i+yi)+2i,...)
=(
(

2o+ Yo, Ti + Yi,- ..) + (2n)

(#n) + (yn)) + (2n)-
Therefore, a4+ (B +7) = (o +) +

3. Existence of the Additive Identity

By Lemma 3.1.6, 0 is the additive identity.

20

4. Ezistence of Additive Inverses
Define —(z,,) = (N — 29, N> —x1,..., Nt — 2, ...) = —a. Then

(zn) + (—(20)) = (X0 + N — 0,21 + N> —xq,..., 2 + Nt —)
= (N,N? ... N1)
= (0,0,...)
= 0.

Therefore, a + (—a) = 0.

5. Associativity of Multiplication

(xn)((Yn)(2n)) = (Tn) (Y020, - - - YiZis - -)
20(Y020); - -+ Ti(YiZi), - - -)

(
= (
((xoyo)z0s - - - (Tiyi)ziy .- .)
= (
(

TOYOs - - s Tilis - - -)(2n)

(1) (yn)) (zn)-

Therefore, a(fv) = (af)y.

7. Commutativity of Multiplication

(#0)(yn) = (ZoYos - - -, Tiliy - -)
= (yozvo,...,yixi,...)

Therefore, a8 = Sa.

6. Left and right distributivity of multiplication over addition

(@n)((yn) + (20)) = (xn) (Yo + 20, -+, Yi + iy)
= (zo(¥o + 20), - -, xi(yi + 2i),--.)
(xoyo—l—xozo,...,ziyi—l—xizi,...)

By commutativity of multiplication,

((yn) + (z0))(@) (xn)(() (2n))
(yn)() (2n)(zn)-

Therefore, a(f8 +v) = af + avy and (8 + 7)o = Ba + ya.

21

8. Existence of a multiplicative identity
By Lemma 3.1.6, 1 is the multiplicative identity.

Properties 1 through 8 from Definition 3.1.7 are satisfied, so Zy is a
commutative ring with an identity.

O

So that the power series representations of N-adic numbers make sense in
the discussion of FCSRs in Section 4, equivalence is shown between the defined
N-adic addition and multiplication and the usual addition and multiplication
of power series representations of N-adic integers.

Lemma 3.1.9. Addition and multiplication of canonical sequences of o and
B are equivalent to the usual addition and multiplication of the power series
representations for o and (3.

Proof. Let a = (ag,a0+a1N,...,a9+a;N+---+arNF,...) and b = (bg, by +
biN,...,bp +biN +---+b,N¥ ...). And o and § be represented by power

series so that
o0 o0
o= Zai]\” and = Zbi]\]l.
i=0 i=0

Rewrite a = (E?:o a;2',.. ., Zf:o a;2,...)and b = (Z?:o b2t ..., Zf:o b2t ...).

By the defined N-adic addition,

k

0
a+b=(> (a;i+b)2",...,> (a;i+b:)2',...)
=0

i =0

o0

— Z(al + 171)2Z
=0

= iaiNi + ibiNi
i=0 i=0

=a+p.

22

Clearly addition is equivalent. By the defined N-adic multiplication,

0 ko k
a-b=0> abi....» Y (ab;)2™, ..
i=0 1=0 j=0
— (ao bo, N Z (aZbJ)T“,)
i+j<k
S35
k=0 \i+j=Fk
1=0 7=0
—o -8
Therfore, multiplication is equivalent as well. O

Theorem 3.1.10. An N-adic integer «, which is determined by a sequence
(), is a unit if and only if xo is relatively prime to N.

Proof. Let a be a unit. Then there is an N-adic integer 5 such that af = 1. If
B is determined by the sequence (y,), then

ziy; =1 (mod N*TY) Vi >o0. (13)

In particular, zpyo = 1 (mod N), hence x¢ is relatively prime to N.
Conversely, let 29 be relatively prime to N. Then a2y Z 0 (mod N). From
Equation (11)

21 =x9 (mod N)

Tit+1 = T4 (HlOd NZ)

Working backward, z;11 = x; = --- = x1 = 2p (mod N). Thus, x; is relatively
prime to N Vi > 0, which implies x; is relatively prime to N**!. Consequently,
Vi > 0 Jy; such that x;9; = 1 (mod N“*1). Since x;11 = z; (mod N)* and
Tit1Yir1 = 23y (mod N?). Then, y; 11 = y; (mod N?). Therefore the sequence
(yn) determines some N-adic integer 3. Because z;y; = 1 (mod N**1) Vi >0,
aff = 1. This means « is a unit. O

From this theorem it follows that a rational integer a € Zy is a unit if and
only if a is relatively prime to N. If a is invertible in Zy, then for any rational
integer b € Zy, b/a =a"'b € Zy.

For any rational number b/a, a relatively prime to IV, there exists a sequence
(xn) — b/a € Zy. At this point, it is worth using the digit representation for
integers in Zy. So (x,) = {xo, zo + 1N, ..., o + -+ ;N%, ...} and

23

b/a = xoxy...7;.... Rather than finding a=' (mod N**!) to determine each
z;, it is not too difficult for every i to find Y, _, 2, N* such that

b= aZkak (mod N*F1). (14)
k=0

Then,

_ Do @ N = Yy N
= joa)

Nearly all of the digits for any rational number in Zy can also be found using
powers of N~!, which is much simpler to analyze than the brute force search
for the digits mentioned above. The following theorem is a slightly modified
version of Theorem 10 in a draft of [7] written by Andrew Klapper and Mark
Goresky.

(15)

Zq

Theorem 3.1.11. Let ug,q, N € Z, where q is relatively prime to N, |ug| < ¢,
and ¢ = —qo + >.;_ @;N* for 0 < ¢; < N. Define a = ug/q € Zy such
that o = Zio a;N' for 0 < a; < N. Also, define up € Z such that ug/q =
S aiNTF € Zy andy = N1 (mod q). Then, there exist uy, for every k >0
such that

ar =q¢ 'w;, (mod N). (16)
If —q < up < 0, then up € {—q,...,—1} for k > 0. Otherwise, for k >
llogn ()| =7, up € {—q,...,—1}.
Let w € {—q,...,—1} such that w = v*ug (mod q). Then for k > |logx(q)] =

r, orif —q <wug <0, then k>0,

ar=q 'w (mod N). (17)

Proof. Write ug/q in terms of uy.

E:ao+Nﬂ:ao+a1N+N2%=...
q q q

k—1
=S N + N* 22 v > 1, (18)
1=0 q
Rewrite (18) to be
k—1 .
NFup =ug — g (Z aiz\ﬂ) VE > 1 (19)
1=0

24

Then |ug| < ¢ and 0 < a; < p from the assumptions and equation (19). These
imply for all k& > 1, |ug| = |g Ei:ol a;N* + N¥uy| < ¢q. Then,

1 LN 1=y N
_q< +Zz:0a ><uk<q< Zz:Oa’ .

NF NF
-kt a Nt .
uy may only be greater than zero when —=:=¢——— is greater than zero. This
only occurs when the sequence (ag,...,a;) = (0,...,0) for j > 0. Such a

sequence occurs if and only if ug > 0 and ug =0 (mod N*?) for 0 <i < j, j > 0.
This is clear from the construction of N-adic sequences for rational numbers.
Therefore u; may only be greater than zero if ug > 0 and ug = 0 (mod N°?) for
0 <i<yj,j>0. The lower bound for uy is greater than —¢g. This is clear

k—1 _ ari
because Hzﬁiﬁlw < 1. Therefore,
—q<ur <0 for —qg<ug<O.
If 0 < wup < g, then the upper bound remains unchanged.
k—1 ;
1—> " a;N*
—q<uk<q<%> for 0 < g < ¢

There is still work to be done on the upper bound.
k—1 _
0<> a;N' < N* for k>1
i=0

k—1
é—q(ZaiNl) <0
i=0
k—1
éuo—q<2ai]\ﬂ> <q

i=0

= Nkuk <q

= up < %
For k > [logn(q)] = 7, |¢g/N*| < 1. Therefore, —q < ux < 0 for 0 < ug <
q and k > r. Further lowering the upperbound, if u, = 0, then ug/q =
Ei:ol a;N* + 0. This implies ug/q is a rational integer, which is not true.
Noting finally that uj must be an integer. If |ug| < ¢ and ug < 0, or |ug| < g,
ug > 0, and k > |logn(g)| = r, then

ug € {—q,...,—1}.

It has now been shown, for certain restrictions, uj belongs to a specific set
of representatives for the residue classes of Z/(q). Define v = N~ (mod q).
Reducing Equation (19) modulo ¢ shows that

e =yur_1 (mod). (20)

25

Since this is true for all k greater than or equal to 1, it is clear that
e =*uo (mod g). (21)
Reducing (19) modulo p shows that
ar =q tup, (mod N). (22)

Define w = v*ug (mod ¢), and p = ¢~ (mod N). Finally, if |ug| < ¢ and
up < 0, or |ug| < ¢, up > 0, and k > |logn(q)] = r, then

ar = pw (mod N). (23)
O

Corollary 3.1.12. Let 0 < up <gq. Define j to be the greatest integer such that
ug =0 (mod N7). Then the following are true:

1. (ao,...,aj,l):(O,...,O)
i. up >0 fork=j
iii. up Z0 (mod N)

Theorem 3.1.11 shows that for —q < ug < 0, there is a sequence of numer-
ators {uy} directly related to the sequence of digits {ay} for ug/q € Zy. The
sequence of numerators for a given FCSR with connection integer ¢ reveals all
of the possible strictly periodic states of the register, each identified by u/q.
This provides an interesting tool for the analysis of different FCSRs.

3.2 2-adic Integers

Now the transition is made to discussing the 2-adic integers whose digit se-
quences are infinite sequences of Os and 1s. This brings the discussion closer the
previous sections which dealt with vectors and functions defined on Fy. The
2-adic integers will act as a bridge between the results on Boolean functions and
the FCSRs which are defined in the next section.

Proposition 3.2.1. [9] There is a one-to-one correspondence between ratio-
nal numbers o = p/q € Zs (where q is odd) and eventually periodic binary
sequences a = (ag, ai,...), which associates to each such rational number « its
digit representation a. The sequence a is strictly periodic if and only if a <0
and o] < 1.

Proof. Consider the strictly periodic case first. Let a = (ag, a1, ...) be a strictly
periodic sequence of period T'. Set o = a. Computing in Zs,

oo oo 00 T—-1
2Ta = E a; 2T = g ai+T2l+T = g a;2' = a — g a;2".
i=0 i=0 i=T i—0

26

Hence _—
Zz 0 a121

=== 24
a 5T — 1 (24)
is a negative rational number. Write « = p/q as a fraction reduced to lowest

terms with ¢ positive. Then ¢ is odd, p <0, and |p| < ¢.
On the other hand, suppose that & = p/q is given in lowest terms with ¢ an
odd positive integer, p < 0, and |p| < ¢. Let T be the smallest integer such that
2T =1 (mod ¢). Such a T exists because ¢ is odd. Then 27 — 1 is divisble by

q, so set s = (27 — 1)/q. Because p = ¢ 0, a;2°

00 00 T—-1
—p) = s(anl 1—2T Zaﬂl ZaiT—ZaiT:ZaiZi
i=0 i=T i=0

Thus a = s-p/(2T — 1) = —(Z;‘F 01 a;29)/(2T — 1). It directly follows that
a=2Ta + ZiT::)l a;2', implying that the digits sequence a of « is strictly
periodic.

Now suppose that o = p/q is an arbitrary rational number. Let M = [«
be the next largest integer. If M > 0, then its digit sequence ends in an infinite
string of 0s. If M < 0, then its digit sequence ends in an infinite string of 1s.
However, a = M + p’/q where p’ < 0 and |p’| < ¢, so the digit sequence of p'/q
is strictly periodic. It follows that the digit sequence a of & = M + p’/q must
be eventually periodic.

On the other hand, an eventually periodic sequence a = (ag,a,...) cor-
responds to a rational number a = a because it is given by a finite tran-
sient term Zl 70 a;2¢ (for some nonnegative integer k) plus a periodic term,
Sy a2t =283 a;1,27, both of which are rational numbers. O

The 2-adic valuation is needed for the main result. It is defined here.

Definition 3.2.2. Let a = (a,,) € Z2\(0). If m is the smallest number in N such
that a,, # 0 (mod 2™*1), then the 2-adic valuation of « is m, or log,(a) = m.
If & =0, then log,(«) = 0.

Definition 3.2.3. If a € Z,, then the 2-adic norm of « is ||a|l2 = 27 where
m = logy ().

This paper will be careful not to confuse log, in Zx with log, in R.

Example 3.2.4. Let o = 00001011011 - - - € Zy. Then log,(a) = 4.

4 Shift Registers

The feedback with carry shift register (or FCSR) is a type of shift register used in
stream ciphers. Though there exist attacks against this type of shift register by
itself, it is possible to combine FCSRs together in ways that no known attacks
are useful. This however does not guarantee security because the combining of

27

the FCSRs greatly increases the complexity of the cryptanalysis on the stream
cipher. Despite the security challenges, the speed of an FCSR implementation
is very attractive for engineers of hardware based cryptosystems.

This section will be used as an introduction to finite state machines and
feedback with carry shift registers. The FCSR will be considered in the binary
case and analyzed using Zy. This analysis is then extended to the case when
bent sequences which could be generated by FCSRs, which leads to the main
result in Section 5.

4.1 Finite State Machines

It is appropriate to preface the discussion about FCSRs with general finite state
machines. Solomon W. Golomb’s book Shift Register Sequences [6], written in
1967 and revised in 1982, established a definition of finite state machines and
shift registers used in much of the literature today.

Definition 4.1.1. A finite state machine consists of a finite collection of states
K, which sequentially accepts a sequence of inputs from a finite set A, and
produces a sequence of outputs from a finite set B. Moreover, there is an
output function p which computes the present output as a fixed function of
present input and present state, and a next state function 6 which computes the
next states as a fixed function of present input and present state. In a more
mathematical manner, 4 and § are defined such that

p:KxA—B w(kn,an) = by (25)
J:KxA—K 0(knyan) = kni1 (26)

The most fundamental observation by Golomb is the following proposition.
Its result guarantees the periodicity of any finite state machine with eventually
periodic input.

Proposition 4.1.2. If the input sequence to a finite state machine is eventually
periodic, then the output sequence is eventually periodic.

Proof. Let p be the period of the inputs once the machine becomes periodic at
time t. Then, for h > 0 and ¢ > t, a. = acqnp. Since K is finite, there must be
r > s > t such that, for some h > 0 such that,

kr—i—l = 6(k7‘7 ar) = 5(k87 ar-l—hp) = ks—i—l-
It should also be clear that a,4; = a,4i+np for A > 0. So by induction, Vi > 0
kr+i+1 = 5(/€r+i, ar—i—i) = 6(ks+i7 ar+i+hp) = ks—i—i—i—l

Finally, this proves b, ;11 = bsti+1. Thus, the eventual period of this machine
isr—s. O

28

The next object defined is called an N-ary n-stage machine. It can be
used to represent any finite state machine. It is also a natural generalization
of shift registers, so thinking of finite state machines in the context of N-ary
n-state machines will make the transition to talking about shift registers much
smoother.

Definition 4.1.3. Choose n, m,r € N. Then define a finite state machine with
the following sets:

1. D={0,...,N —1}. This set contains the N-ary digits of the machine.

2. K = {E;:ol x;N* : x; € D}. This set contains the N-ary states of the
machine.

3. A = {Z:;BlyiNi :y; € D}. This set contains the N-ary inputs of the
machine.

4. B = {Z:;& zN' : z; € D}. This set contains the N-ary outputs of the
machine.

5. A = {0;(x0, .y Tn-1,Y0,---,Ym—1) : 0 < i < n} where §; : K x A = D.
This set contains the N-ary next state functions of the machine.

6. M ={pi(zo,. , Tn-1,Y05-+,Ym—1) : 0 <i <r}. u;: K x A— D. This set
contains the N-ary output functions of the machine.

The next state and output are determined from the current state and input by
the following equations:

z; =0;,(x0y .y Tn—1,Y0,- -, Ym—1) 0<i<n (27)
Zi:/in(x07"'7xn—17y07"'7ym—1) 0<i<r (28)

This finite state machine is called an N -ary n-stage machine and will be denoted
by M(N,n,m,r).

By making the state the input to the machine as well, this machine becomes
autonomous in the sense that it no longer needs outside input. Then each new
state and output is based on the previous state of the machine. For N = 2, f;
and g; are Boolean functions on n + m variables. A binary n-stage machine can
be defined by n 4+ r Boolean functions each on n + m variables.

4.2 Feedback with Carry Shift Registers

In the set of autonomous finite state machines is a type of machine called a shift
register. The variables making up the state of a shift register pass their values
directly to the next variable in the state until the value is pushed out of the
register as the output. Here, what was referred as an n-stage machine will now
be called an r-stage machine as n will be used to index the output sequences of
FCSRs.

29

Definition 4.2.1. Let M(2,7,—1,0) be an binary r-stage machine with no
input and exactly 1 output value. Also, let g, f; € BF, where the states
(xo,...,2r—1) are the domain of ¢g and f;, fi(x) = x;41 for 0 < i < n — 2,
and g(x) = xo. This type of machine will be denoted by SR(2, 7).

When the function f._1 € BF, is linear, then SR(2,7) is called a linear
feedback shift register. An LFSR is drawn in Figure 2. This is the case where
fro1= 22:1 qiTr_; where each z;, ¢; € Fo. The ¢;’s are called taps. In computer
science terms, to move forward in the sequence of states, each bit in the state
of the register shifts to the right one spot and then the newest bit enters on the
left end of the register and is the value given when each bit from the previous
state is AND’ed with its corresponding tap and then XOR’ed with all the other
AND’ed bit and taps.

mod 2

LTpn—1|Tp—2| --- T o ——

2.

Figure 2: Linear Feedback Shift Register

Linear feedback shift registers are well-studied in [6]. By using the Berlekamp-
Massey algorithm it is possible to recover the state of a given LFSR based on
the output sequence. In fact given an LFSR output sequence with period 2" —1,
the Berlekamp-Massey algorithm will find a unique minimal-length LFSR which
generates this output after the first 2n digits have been processed [14]. This al-
gorithm is studied in more detail in [2].

In Figure 3, there is a memory cell attached to the linear feedback shift reg-
ister which adds some complexity to the register. In the modified shift register
shown in Figure 3, in each cycle, the whole number quotient of Y ._, ¢x,—;
is kept in the memory cell z. The memory cell from the previous state of the
modified shift register is used to determined the sum modulo 2 for the newest
bit in the state of the register. A shift register modified in this way is known as
a binary feedback with carry shift register, or FCSR. For this paper, FCSRs will
only be considered in the binary case. Many of the theorems do generalize the
N-ary case, though sometimes it is necessary that N be prime.

Definition 4.2.2. Let ¢q1,...,q, € 0,1 C Z and g9 = —1. A binary feedback
with carry shift register of length n with taps q1,. . ., ¢, is a modified shift register
whose states are collections

(xo,%1,...,2r—1;2) where x; € Fy and z € Z

30

div 2 mod 2 P PR - -

Figure 3: Binary Feedback with Carry Shift Register

where z is called the memory cell. The state changes according to the following
rules:

1. Compute .
On = Z%ﬂnﬂ' + Zn—1.
i=1
2. The output is zg.
3. Then the new state (xg, z1,...,2n-1;2) = (1, ..., Tn-1,0, (mod 2);0,(div 2)).
Lemma 4.2.3. If the sequence a = (ag, a1, ...) where a; € {0,1} and a; = z;

(mod 2), and ¢ = (2n—1, Zn, Zn+1, - - -) where each z; is the value of the memory
cell for the corresponding x;, then these two sequences are related by the following
linear recurrence

ag + 22y = qrag—1 + -+ q@rag—r + 2—1 for k> (29)

Recall from Proposition 4.1.2 that an FCSR must be eventually periodic.
By Proposition 3.2.1, the sequence generated by every FCSR, can then be repre-
sented by a rational number in Zs. This rational number, or sequence generated,
is entirely determined by the initial state and the taps of the register.

Proposition 4.2.4. [9] Let q1, ..., g, be the taps, z._1 be the initial memory,
and a,_1,...,a1,a9 be the initial state of an FCSR. Define ¢ = 1+ >_._, ¢;2"

and
r—1 1
p = Zquai,jT —ZT,12T.

i=0 j=0

Then the output sequence a of this FCSR is the digit representation of the 2-adic
integer

o= Zaﬂi =p/q. (30)
i=0

31

Proof. Consider the transition from one state of the FCSR, to the next. Suppose
that, for some given state, the value of the memory is z,,_; and that the contents
of the register is given by the r bits a,,—1, ..., a,—,. The next state of the register
is determined by calculating

T
On = Zn—1+ E qiGn—i,
i=1

writing the new memory contents as z,, = o, (div 2), and writing the new con-
tents of the state a,, = o, (mod 2). As stated in Lemma 4.2.3, these equations
may be combined into the expression

On = 22n + Q.
It follows that

an = Gitn—i+ (zn-1 — 220), (31)
i=1
for n > r. Now, by substituting Equation (31) into Equation (30),

a=ap+a;2+ - +a_12""" +Z“"2n

_gc—i—Z(Zqzan) 2”+Z (2n_1 — 22,)2". (32)
n=r \i=1

where z = 37~ 4,2 is the integer represented by the initial state of the register.
The second summation in Equation (32) cancels except for the first term, z._1,
leaving

o0 T
a=x+z_12" + Z Z ¢i2ta,_;2" ¢

n=r 1=1
=x+ 212"+ i qi2i (i an_i2”i>
i=1 n=r

=2+ 212" + ZCHT(O(— (a020 + a121 4+t ar_i_l2r—i—1))
i=1

r—1r—i—1

=x+ 212" —i—anlT Z Z q;2' aJ2J

=1 75=0

(where the inner sum is empty, hence zero, when ¢ = r in the third line). These
equations give

T+ 20127 — Z ZT il ¢i2'a;27

o =

1- Ei:l qi2'
E ZT 1 qi2iaj2j — ZT_12T
a q

32

since go = —1. The double summation is over all pairs of integers 0 < i,j <r—1
with ¢ + 7 <7 — 1. Setting k = i 4 j gives

(22;(1) f:o Qzﬂkfﬂk) — zp_12" D
“= == (33)
q q

as claimed. O

Corollary 4.2.5. Changing the memory by b changes the value of « by —b2" /q.
If « =p/q < 0, then the initial memory z._1 > 0.

Proof. The first statement follows trivially from Equation (33).
The second statemtent is not as obvious. If ¢ < 0, then the numerator must
be positive for p/q to be negative. Since

r—1 k

212" 2 Y0 qiar-i2® 20, (34)

k=0 i=0

this implies z,_1 = 0. If ¢ > 0, then the numerator must negative. By Equa-
tion (34), z,—1 > 0. Therefore, z,_1 > 0. O

If we define Wt : Z — Z such that Wt(a) = wt(B~1(a)), then it can also
be shown that the memory cell of every FCSR is bounded and eventually lies
between 0 and Wt(q + 1), for ¢ > 0.

Proposition 4.2.6. [9]

Let w =Wt(g+1). If an FCSR is in a periodic state, then the memory is in
the range 0 < z < w. If the initial memory z,—1 > w, then it will monotonically
decrease and will arrive in the range 0 < z < w within |logy(zp—1 —w)| +r
steps. If the initial memory z,—1 < 0, then it will monotonically increase and
will arrive in the range 0 < z < w within [logy(|zn—1|)]+7 steps. (The logarithm
functions in this proposition will be real-valued.)

Proof. First, observe that if the initial memory value z,_; lies in the range
0 < z,-1 < w, then the same will be true for all later values of the memory. This
follows from Definition 4.2.2 because o, = Y, ¢in—i+2n—1 < w+2,_1 < 2w.
So 2z, = |on/2] < w.

By the same argument, if the initial memory value is 2,1 = w, then the
later values of memory will be no greater than w; but in this case, within r steps,
the memory will drop below w (and will remain so thereafter) for the following
reason. If the memory does not decrease (i.e. z, = w), then this means that a 1
appeared at all the tapped cells, that o,, = 2w, and that x,, = o, (mod 2) =0
was fed into the register. The value of o will fall below 2w when this 0 reaches
the first tapped cell (if not before), at which time we will have z = |0/2] < w.

Moreover, if we initialize an FCSR, with a larger memory value, z,_1 > w,
then with each step, the excess e,,—1 = 2,1 —w will become reduced by a factor

33

of 1/2, that is e, < [en—1/2]. So after [logy(z,—1 —w)]| + 1 steps, the memory

will be no more than w. This follows from Definition 4.2.2 which gives

On W+ W+ ep—1 €n—1
en:zn—wzng—wgliJ—w:{ J

2 2

Now consider the case of negative initial memory, z,,—1 < 0. By Definition 4.2.2,
it is possible that o, > 0, in which case the next memory value will be z, > 0
(where it will remain thereafter). So suppose that o, < 0. Then, again by
Definition 4.2.2,
lonl +1 _ |zl + L

2 - 2
Iterating this formula, it is easy to see that after K = [logy(|z,,—1|)] steps, either
the memory z has become nonnegative, or else

|zn| <

Zn—1 1 1 1
|Z|§ oK +2—K+F+"'+§<2
, in which case the memory must be m = —1. There is a single situation in

which the memory can remain at —1 forever: if there are no feedback taps on
the shift register (so ¢ = —1). In this case, the memory will feed 1s into the shift
register forever. However, we assumed that ¢ > 0 to rule out this possibility.
If ¢ > 0, then as soon as a nonzero feedback occurs, the memory will become
nonnegative, where it will remain thereafter. O

Prosition 4.2.6 shows that eventually every FCSR reaches a point where there
are a finite number of inputs from the memory cells and of states. This means
that every FCSR eventually satisfies the definition of a finite state machine.
As a result, the output of every FCSR is eventually periodic. In Section 3, it
was shown than every eventually periodic sequence of Os and 1s corresponds
to an « = p/q € Zo. This fact makes FCSRs extremely vulnerable to rational
approximation algorithms.

4.3 FCSR Synthesis

The problem of synthesis lies in the following question: Given an eventually
periodic sequence of Os and 1s generated by an FCSR, can you find a and b
such that sequence generated is equivalent to digit representation of 7 € Zs.
If there are no constraints on a and b, then at least a period of the sequence
must be known to solve the problem. However, every FCSR is limited to a
certain number of p/q € Zs that it can generate become of memory restrictions.
The rational approximation algorithm shown in this paper uses the fact that
only so many possibilities exist for a given FCSR to show that it will eventually
reach the correct approximation in a finite number of steps. As a quick example
of this, consider the FCSR in Figure 4.3. By Proposition 4.2.4, it should be
clear that the initial states, taps, and memory completely determine the 2-adic
integer represented by the sequence generated. Both the initial states and taps
are finite, and the memory is bounded at the initial stage of the register.

34

0 div 2 mod 2 1 1

| 600

Figure 4: FCSR which generate the sequence %4 =00110011001100110011 - - -

The FCSR in Figure 4.3 is meant as a simple visualization how after fooling
with all of the possible initial states and tap arrangements, the size of the
memory becomes the only means to create new possibilities in the sequence
generated.

4.4 Xu’s Rational Approximation Algorithm

It turns out that given a sequence generated by an FCSR it is easy to reproduce
to FCSR from which it came from. This is why using FCSRs by themselves
do not generate secure stream ciphers. If used as a stream cipher, the key for
the FCSR would be the taps and the initial state. All an attacker would need
is a relatively short piece of the output sequence to reveal every part of the
key. This ciphertext only attack is a complete break of the stream cipher. In
fact, any arrangement of taps and initial state of an FCSR can be revealed very
quickly.

In Goresky and Klapper’s book [7], they describe in pseudocode Xu’s rational
approximation algorithm for 7-adic sequences in any ring R. A demonstration
of Xu’s algorithm is presented here in the context of the ring Z,. The algorithm
takes as input the first n terms of an N-adic sequence a = (ag, a1, . ..) associated
to a rational number o« = p/q € Zs and outputs a rational number «,, = p’/¢’
whose first n terms match a. Running Xu’s algorithm for small n can sometimes
result in «,, which are far from «, but in the examples below, it is easy to see
that as n grows large, Xu’s algorithm eventually reaches the correct a. In fact,
for large enough n, Xu’s algorithm will reach the correct a.

Example 4.4.1. This example uses the function rational_synthesis_xufrom
the Sage script afsr.sage. The source code for this function can be download
from https://github.com/celerier/oslo/blob/master/sage/afsr.sage.

Sage

sage: adic_seq(-4,5,2,20)

(-4, 5, [0, 0, ¢, ¢, 0, 0, ¢, ¢, 0, 0, ¢, ¢, 0, 0, 1, 1, 0, O, 1,
11)

sage: a=adic_seq(-4,5,2,20) [2]

35

https://github.com/celerier/oslo/blob/master/sage/afsr.sage

sage: for i in range (3,20):
print i,rational_synthesis_xu(a[0:1i],2)

©, 1

3 (0,

4 (-4, 53)
5 (-4, 53)
6 (-4, 53)
7 (-4, 5)
8 (-4, 5)
sage

sage: adic_seq (-17,77,2,40)
(-17, 77, [t, &, O, 1, O, 1, O, O, 1, 1, 1, 1, 1, 1, O, O, 1, O,
o, 0, 0, &1, 0, 0, 0, ¢, 1, 1, 0, 0, 1, 1, O, &, O, 1, O, O, 1,
11)
sage: b=adic_seq(-17,77,2,40) [2]
sage: for i in range(3,20):
print i,rational_synthesis_xu(b[0:1i],2)

9 (-13, 89)
10 (-167, 1419)
11 (-67, 183)

12 (-89,
13 (-89,
14 (-89,
15 (359,
16 (359,
17 (359,
18 (359,
19 (359,
20 (-17,
21 (-17,
22 (-17,
23 (-17,

885)
885)
885)
2229)
2229)
2229)
2229)
2229)
77)
77)
77)
77)

The N-adic sequences for o =

%4 and § = _7—177 have small periods, so Xu’s

algorithm quickly converges to the correct av and f.

Example 4.4.2. In this next example, the period of the approximated rational
number v = 509 equals 1000.

Sage

sage:adic_seq(-98,271000-1,2,20)

(-98, 107150860718626732094842504906000..., [0, 1, O, O, O, 1, 1,
o, o, o, 0, 0, 0, 0, 0, O, O, O, 0, 01)

sage: d=adic_seq(-98,2~1000-1,2,10000) [2]

sage: for i in range (3,2000):
: print i,rational_synthesis_xu(d[0:1i],2)

3 (-2, 9)

4 (2, 1)

36

(2, 1)

(2, 1)

(-22, 69)

(-22, 69)

9 (-302, 1209)

10 (-302, 1209)

11 (-302, 1209)

12 (-302, 1209)

13 (-302, 1209)

14 (-134, 333)

15 (-134, 333)

16 (-134, 333)

17 (-134, 333)

18 (-134, 333)

19 (-2818, 10671)
20 (-2818, 10671)
21 (-2818, 10671)
22 (-2818, 10671)
23 (-2818, 10671)
24 (-26954, 85323)
25 (-26954, 85323)
26 (-26954, 85323)
27 (-26954, 85323)
28 (-26954, 85323)

29 (98, 1)
30 (98, 1)
31 (98, 1)
32 (98, 1)
2501 (-32524788108326247..., 180020230874340668557...)

2502 (-98, 107150860718626732094842504906000...)

The algorithm does not converge nearly as fast as it did from approximating
«, but it eventually reaches the correct v, at n = 2502. It took approximately
1.25s for my computer to arrive at the correct approximation.

5 Boolean Sequences

The interest of this paper is stream ciphers, and there are a few different ways
to use bent functions in the implementation of a stream cipher. Sequences
generated using bent functions have nice cryptographic properties because of
their perfect nonlinearity. These sequences can be generated multiple ways.
Two easy examples are a filtering function on a shift register producing an m-
sequence or a shift register which uses n different shift registers as input into a
bent function. These two techniques are discussed by Carlet [3]. Both of these
constructions use input vectors from F5 in a pseudorandom order to generate
the sequence. Before scrambling the input in this way, the sequences generated
by binary ordering of input vectors is considered.

Definition 5.0.3. Let (a,) be a sequence. If T' is the smallest positive integer
such that a; = a; 7, then the minimal period of (a,) is T.

37

Definition 5.0.4. Let f € BF,, and v; € F} such that v; = B~1(4) for 0 <i <
2", Then,

seq(f) = (f(vo), f(v1),..., f(van_1), f(vo),...) (35)

is a f-filtered Boolean sequence.

Defined in this way, all f-filtered Boolean sequences have a minimal period
at most 2". Using the binary ordering, the Boolean sequence generated will be
repeated columns of the outputs for the Boolean function read from the truth
table of the Boolean function. For example, the f-filtered Boolean sequence in
Table 2 is

(0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1,...).

Theorem 5.0.5. The f-filtered Boolean sequence of a bent function has a period
ezactly 2™.

Proof. For x;,\; € Fo and 0 < i < n — 2, define (z,1) = (xo,...,Tpn_2,1),

(x,0) = (zo,...,%n—2,0), and (A, 1) = (Ao, ..., An—2,1). Suppose f € BF, and
seq(f) has a period T'= 27 < 2", Then, f(z,0) = f(z,1).

c(A\ 1) = 1/2 Z (—1)f @O+@0-(O1) 4 (_1)f@D+HE1- (D)
) 2"
zeFy !
- 1/2 > (pfeo ((—1)(””’0’“*” + (—1)(””’1)“’1))
2 zcFy—t
1 . . .
= /3 Z (_1)f(,0) ((_1)0 1 (_1)1 1)
ze]F;"l
= ! 1 f(=,0) 0
ze]F;"l

=0.

One of the Fourier coefficients of f must equal zero. Thus, f cannot be a
bent function. Clearly, every f-filtered Boolean sequence has a minimal period
at most 2". Therefore, if g is a bent function, then seq(g) has period exactly
2", O

Boolean sequences will be considered as 2-adic exansions of rational numbers.

Definition 5.0.6. Let f € BF,, and v; € F} such that v; = B~1(4) for 0 < i <
9" Then,

ap = (f(vo), f(vo) + f(v1) - 2,.... flvo) + -+ flvi) - 2',...) (36)

where oy € Zo is called the 2-adic expansion of f.

38

Lemma 5.0.7. The digit representation of oy is seq(f).

Recall the Maiorana-McFarland class of Boolean functions from Subsection
2.4.2, and consider the subset of these functions where g(y) = 0. Then the
following theorem is true.

Theorem 5.0.8. log,(ay) = 2"/2 + 27O where f =2 - 7(y).

Proof. Let f(x,y) = - 7(y) and (x,y) = (Xoy---, Tn-1,Y0s---+Yn—1) € FY
where z,y € F;/2. Define v; = (z,y); = B~1(i) for 0 <i < 2" — 1. Then y =0
for 0 <i <272 —1 and x = 0 for i = 2"/2. Thus, f(v;) = 0 for 0 < i < 2"/2,

Now, logy(ay) = min{i : f(v;) = 1}. The claim is that min{i : f(v;) =1} =
on/2 4 97 (0),

Let A= {(x,y); : 2"/% < <2"/2*1 _1}. Then A is the set of vectors in F}
where
[1ifk=0
7otk >0
If u= (z,y) € A, then

Then f(u) = 1 for exactly 2"/2~! distinct elements u € A.
Define (2/,y’) such that

. [1ifk=#(0) . [1ifk=0
Ty = . _ Yr = .
0if k # 7(0) 0if k#0

Then B(z',y') < B(u) for all w € A. Thus, i = B(2/,y’) is the smallest i such
that f(v;) =1 and v; € A. f(v;) = 0 for 0 < i < 27/2,
Therefore log,(ay) = 27/2 4 27(0), O

References

[1] Z. 1. Borevich and I. R. Shafarevich, Number theory, Academic Press, 1966.

[2] T. B. Brock, Linear feedback shift registers and cyclic codes in Sage, Honors
paper (U.S.N.A. Department of Mathematics) (2006).

[3] C. Carlet, Boolean functions for cryptography and error correcting codes,
Boolean Methods and Models (Y. Crama and P. L. Hammer, eds.), Cam-
bridge University Press, 2006.

[4] T. W. Cusik and P. Stanica, Cryptographic Boolean functions and applica-
tions, Elsevier, 2009.

39

[5] J. B. Goli¢, Recent advances in stream cipher cryptanalysis, Publications
De L’Institut Mathématique 64 (1998), 183-204.

[6] S. W. Golomb, Shift register sequences, Aegean Park Press, 1982.

[7] M. Goresky and A. Klapper, Algebraic shift register sequences, Cambridge
University Press, 2012.

[8] A. Klapper and M. Goresky, Cryptoanalysis based on 2-adic rational ap-
prozimation, CRYPTO, 1995, pp. 262-273.

19]

, Feedback shift registers, 2-adic span, and combiners with memory,
Journal of Cryptology 10 (1997), 111-147.

[10] , Arithmetic correlations and Walsh transforms, IEEE Transactions

on Information Theory 58 (2012), no. 1, 479-492.

[11] A. Klapper and J. Xu, Algebraic feedback shift registers, Theor. Comput.
Sci. 226 (1999), no. 1-2, 61-92.

, Register synthesis for algebraic feedback shift registers based on
non-primes, Des. Codes Cryptography 31 (2004), no. 3, 227-250.

[12]

[13] N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Springer-
Verlag, 1977.

[14] J. L. Massey, Shift register synthesis and BCH decoding, IEEE Transactions
on Information Theory 15 (1969), 122-127.

[15] J. R. Munkres, Topology: A first course, Prentice Hall, 1975.

[16] T. Neumann, Bent functions, Ph.D. thesis, University of Kaiserslautern,
May 2006.

[17] N. Nisan and M. Szegedy, On the degree of Boolean functions as real poly-
nomials, Computational Complexity 4 (1994), 301-313.

[18] A. A. Salnikov O. A. Logachev and V. V. Yashchenko, Boolean functions
in coding theory and cryptography, American Mathematical Society, 2011.

[19] R. A. Reuppel, Analysis and design of stream ciphers, Springer-Verlag,
1986.

[20] O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory 20
(1976), no. 3, 300-305.

[21] W. J. Townsend and M. A. Thornton, Walsh spectrum computations using
Cayley graphs, IEEE Midwest Symposium on Circuits and Systems, August
2001, pp. 110-113.

[22] W. Trappe and L. C. Washington, Introduction to cryptography with coding
theory, 2nd ed., Pearson Education, 2006.

40

	Introduction
	Boolean Functions
	Review of Boolean Functions
	Boolean Polynomials
	The Walsh Transform
	Bent Functions
	Rothaus Construction of Bent Functions
	Maiorana-McFarland Class Construction of Bent Functions

	N-adic Integers
	N-adic Integer Ring
	2-adic Integers

	Shift Registers
	Finite State Machines
	Feedback with Carry Shift Registers
	FCSR Synthesis
	Xu's Rational Approximation Algorithm

	Boolean Sequences

