
Feedbak with Carry Shift Registers and BentSequenesMIDN 1/C Charles CelerierMay 7, 2012AbstratA stream ipher uses pseudorandom sequenes to mimi the seurityof a one-time pad. This paper will investigate how bent funtions anbe used to generate f-�ltered bent sequenes with large 2-adi valuation.Rearrangements of these sequenes ould be e�etive for �ltering the statesof feedbak with arry shift registers (FCSRs) in stream iphers. The non-linearity of f-�ltered bent sequenes ould provide resistane for FCSR-based stream iphers in register synthesis attaks. In this paper, we showthat it is possible to ompute the 2-adi valuation of a bent sequenegenerated by a Maiorana-MFarland lass Boolean funtion.1 IntrodutionBytes of data, or short sequenes of 1s and 0s, are exhanged between omputersystems eah day on publi hannels. Beause gentlemen do read eah other'smail, it is neessary to seure the ommuniation of private data sent over publihannels. The solution to this problem is solved by ryptography, the designingof systems to seure data exhanges over publi hannels.The following example is the lassial ommuniation senario presented inmany books on ryptography. Let there be two parties, Alie and Bob, whowish to ommuniate with one another. A third party, Eve, is a potentialeavesdropper. Alie wants to send a message, known as the plaintext, to Bob.To aomplish this without Eve knowing what the message is before it is reeivedby Bob, Alie must enrypt her message by some prearranged method, usuallyinvolving an enryption key, to generate a related message alled iphertext.The idea is that the sent iphertext, even if it is interepted by Eve, will betoo di�ult to interpret and will oneal the plaintext message. Upon reeiptof the iphertext, Bob will derypt the message, usually involving a deryptionkey, similar to the enryption of the message, and obtain the plaintext message.A visual of this senario is presented in Figure 1.This senario is the standard example found in many di�erent introdutoryryptography referenes. Cryptographers have reated numerous enryptionand deryption shemes, or ryptosystems, to seure the messages sent between1



Alie u- Enryptplaintext ?

enryptionkey iphertext-
?Eve6 Derypt -plaintext Bob?

deryptionkey
Figure 1: The basi ommuniation senario for ryptographyAlie and Bob. Many of these systems have been broken beause of the amountof work that goes into the study of breaking ryptosystems, alled ryptanaly-sis. A onstant battle exists between the designers and breakers of ryptosys-tems, strengthening designs and attaks every day. In fat, designing a strongryptosystem typially requires knowledge of ryptography and ryptanalysis.When designing a ryptosystem, every ryptographer assumes Kerkho�s' prin-iple [22℄: �In assessing the seurity of a ryptosystem, one should always assumethe enemy knows the method being used.� The seurity of a ryptosystem an-not be based on the onealment of the enryption and deryption algorithms.In pratie, the enemy an obtain the algorithms in many ways, inluding thedefetion or apture of people. The seurity must be based solely on the key.This paper will explore bent sequenes for their potential strength in streamiphers. Aording to Rueppel in [19℄, a stream ipher divides bit sequenesinto individual bits and eniphers eah bit with a time-varying funtion whosetime-dependeny is governed by the internal state of the stream ipher. Thestream ipher an also be thought of in terms of a keystream whih is a sequeneof 1s and 0s the same length of the message that is added to the message usingaddition in F2 (also known as XOR). If the keystream was perfetly random,then the ryptosystem would be unbreakable, or perfetly seret, as disoveredby Claude Shannon in his famous paper �Communiation Theory of SereySystems,� written seretly in 1945 and published in 1949. This ryptosystemis known as the one-time pad. Though it is perfetly seret, it an be di�ultto implement beause of the inability to produe perfetly random keystreams.Construting a method to produe perfetly random sequenes is a ontraditionin itself.Though it is di�ult to reate perfetly random sequenes, it is feasible toget lose. A sequene whih is lose to being random is alled a pseudorandomsequene. In [6℄, Golomb lists three randomness postulates on periodi binarysequenes:R-1. In every period, the number of 0s is nearly equal to the number of 1s.R-2. In every period, half the runs have length one, one-fourth have lengthtwo, one-eighth have length three, et., as long as the number of runs so2



indiated exeeds 1. Moreover, for eah of these lengths, there are equallymany runs of 0s and of 1s.R-3. The auto-orrelation funtion C(τ) is two-valued. Expliitly
C(τ) =

1

p

p
∑

n=1

(−1)anan+τ =

{

1 if τ = 0,

K if 0 < τ < p.These postulates today have beome a measure of how lose a sequene is tobeing onsidered pseudorandom. The laim is that binary sequenes with ex-tremely long periods would be nearly indistinguishable from perfetly randombinary sequenes.In the ase of this paper, the f -�ltered Boolean sequene de�ned in Setion 5is onsidered in the ontext of pseudorandom sequenes and FCSRs. The mainresult is the alulated 2-adi valuation of f -�ltered bent sequenes generatedby the Maiorana-MFarland lass of Boolean funtions.In Setion 2, Boolean funtions are �rst introdued, and the setion on-ludes with the de�nition of the Walsh transform and bent funtions. In Se-tion 3, the N -adi ring is de�ned and a few properties of 2-adi sequenes aredisussed. The 2-adi valuation de�ned in this setion is ritial to understand-ing the main result in Setion 5. Setion 4 de�nes the FCSR following a funda-mental disussion on �nite state mahines and n-state shift registers. Two shiftregister synthesis algorithms are given to demonstrate the neessity of addinga non-linear omponent to an FCSR before using it as a seure stream ipher.Finally, Setion 5 de�nes what this paper alls f -�ltered Boolean sequenes andproves the main result on the 2-adi valuation of bent sequenes generated bythe funtions in the Maiorana-MFarland lass.Most of the examples in this paper are shown using Sage v4.8. Meth-ods and funtions for the examples are either from the lass sage.rypto.boolean_funtions, whih omes with the urrent version of Sage, or an befound in the sript afsr.sage whih is available for download athttps://github.om/elerier/oslo .To use the methods and funtions, type the following in your Sage onsole:Sagesage: from sage.rypto .boolean_funtions import *sage: attah afsr.sageAknowledgments: I thank Professor David Joyner for his advie and expertisewhih allowed me to write this paper. Without his help, this work would nothave been possible. I would also like to thank Professor Mark Goresky of thePrineton Institute for Advaned Study for his kind enouragement and forsuggesting the problem addressed by the main result of this thesis. I also thank3
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the Math Department for travel funds to attend the National Conferene forUndergraduate Researh at Weber State University in Ogden, Utah.2 Boolean FuntionsThis setion will establish the de�nition of a Boolean funtion and how to writethese funtions as polynomials. The goal is to introdue the Walsh transform,and important tools used in ryptography. The Walsh transform measures thenon-linearity of a Boolean funtion. This setion onludes with the de�nition ofbent funtions whih in terms of the Walsh transform are �perfetly non-linear�Boolean funtions. The de�nitions and notations will follow those found in [4℄.2.1 Review of Boolean FuntionsThe two element �eld (F2,⊕, ·) is the set {0, 1} with de�ned binary operations
⊕ and ·, also ommonly referred to as the logial XOR and AND operatorsrespetively. XOR AND

0⊕ 0 := 0 0 · 0 := 0
0⊕ 1 := 1 0 · 1 := 0
1⊕ 0 := 1 1 · 0 := 0
1⊕ 1 := 0 1 · 1 := 1Table 1: Binary Operations for F2It should be lear that (F2,⊕, ·) is a ommutative ring with an identity.Additionally, the only non-zero element 1 is its own inverse. In fat, (F2,⊕, ·)is a �nite �eld, whih will now be denoted by F2. The n-dimensional vetorspae over F2 will be denoted by F

n
2 , with the usual inner produt. Componentsof vetors in F

n
2 will be known as bits. For two vetors x, y ∈ F

n
2 where x =

(x0, . . . , xn−1) and y = (y0, . . . , yn−1), the inner produt in F
n
2 will be de�nedas x · y := x0 · y0 ⊕ · · · ⊕ xn−1 · yn−1.The elements of F2 will sometimes be regarded as integers and other times aselements of Z/2Z. Generally, the only time that onsidering 0 and 1 as elementsof F2 is neessary is when adding vetors in F

n
2 .Example 2.1.1. Sagesage: V=GF (2) ^3sage: a=V([1 ,0 ,1℄) ; b=V([0 ,1 ,1℄) ;sage: a+b(1, 1, 0)sage: a.dot_produt (b)1 4



Eah vetor in F
n
2 an be uniquely represented by an integer between 0 and

2n − 1. To do this, the omponents of eah vetor in F
n
2 are trivially mappedto the integers 0 and 1, and then used in the one-to-one binary representationfuntion B:

B : Fn
2 → {0, . . . , n− 1} such that B(u) :=

n−1
∑

i=0

ui · 2
i. (1)If we de�ne the vetors vi ∈ F

n
2 by vi = B−1(i) for 0 ≤ i ≤ 2n−1, then thesequene (v0, v1, . . . , v2n−1) is said to be in binary order. This ordering is thestandard ordering used by Sage to list vetors in F

n
2 .Example 2.1.2. Sagesage: V=GF (2) ^3sage: V.list ()[(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1),(0, 1, 1), (1, 1, 1)℄sage: [GFn_to_integer(v) for v in V℄[0, 1, 2, 3, 4, 5, 6, 7℄This de�nition of B has reated the onvention where the least signi�antbit appears on the left and the most signi�ant bit appears on the right. TheHamming weight and Hamming distane funtions are used to ount the numberof 1s in a vetor and ount the number of di�erenes between two vetors in F

n
2 .These are fundmental funtions in oding theory and are useful when talkingabout Boolean funtions.De�nition 2.1.3. Let x, y ∈ F

n
2 . Then wt : Fn

2 → {0, . . . , n} is de�ned by
wt(x) :=

n−1
∑

i=0

xiand d : Fn
2 × F

n
2 → {0, . . . , n} is de�ned by

d(x, y) := wt(x+ y).Then wt(x) is the Hamming weight of x and d(x, y) is the Hamming distanebetween x and y.De�nition 2.1.4. Let x ∈ F
n
2 . Then supp : Fn

2 → 2{0,...,n−1} is de�ned by
supp(x) := {i ∈ {0, . . . , n− 1} : xi = 1}Example 2.1.5. 5



Sagesage: V=GF (2) ^5sage: a=V([0,1,1,0,1℄) ; b=V([0,0,1,1,0℄)sage: Hamming_weight(a)3sage: Hamming_weight(b)2sage: a.support ()[1, 2, 4℄sage: b.support ()[2, 3℄sage: Hamming_weight(a+b)3 There is an interesting orthogonality property in the vetor spae Fn
2 knownas the orthogonality priniple that every non-zero vetor in F

n
2 is orthogonal toexatly half of the vetors in the vetor spae.Proposition 2.1.6. Let x ∈ F

n
2 . Then

∑

y∈F
n
2

(−1)x·y =

{

2n for x = 0,

0 otherwise.Proof. Let x = 0 ∈ F
n
2 . Then ∀y ∈ F

n
2 , x · y = 0, so (−1)x·y = 1. Therefore,

∑

y∈F
n
2
(−1)x·y = |Fn

2 | = 2n.Let x ∈ F
n
2 where x 6= 0. Assume the ith bit of x is non-zero and de�ne

ei ∈ F
n
2 as a vetor with all zero bits exept for the ith bit whih is 1. Then

∑

y∈F
n
2

(−1)x·y =
∑

y∈F
n
2

(−1)x·(y+ei)

=
∑

y∈F
n
2

(−1)x·y(−1)x·ei

= −
∑

y∈F
n
2

(−1)x·y.Therefore,∑y∈F
n
2
(−1)x·y = −

∑

y∈F
n
2
(−1)x·y, whih implies

∑

y∈F
n
2

(−1)x·y = 0.Example 2.1.7. Sagesage: V=GF (2) ^6sage: [sum ([( -1) ^(x.dot_produt (y)) for y in V℄) for x in V℄6



[64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0℄When introdued to a new vetor spae, it is natural to begin looking atfuntions in that �eld. The partiular funtions of interest here will be whatare known as Boolean funtions.De�nition 2.1.8. Any funtion f de�ned suh that
f : Fn

2 → F2is a Boolean funtion. The set of all Boolean funtions on n variables will bedenoted by BFn.The number of Boolean funtions inreases extremely rapidly as the numberof variables inreases.1
|BFn| = 22

n (2)The Boolean funtion f is presented in a truth table in Table 2. The Ham-ming weight of f is the number of 1s that f has when evaluated at every pointin the F
n
2 :

wt(f) = |{u ∈ F
n
2 : f(u) = 1}|.2.2 Boolean PolynomialsA truth table is not a very ompat method to de�ne a Boolean funtion. It ismuh more e�ient and easier to implement a Boolean funtion when writtenas a formula. This an be done by writing a Boolean funtion algebraially. Asa �rst step toward de�ning f algebraially a one-to-one and onto funtion willbe de�ned whih maps every f in BFn to a vetor in F

2n

2 . This will be thefuntion V : BFn → F
2n

2 suh that
V (f) := (f(v0), . . . , f(v2n−1)) where vi = B−1(i). (3)It is trivial to show that addition is homomorphi under V ,

V (f1 ⊕ f2) = V (f1)⊕ V (f2).1With today's fastest superomputer operating at 10.51 peta�ops (the K omputer inJapan), if one �oating point operation was expended visiting every Boolean funtion of 7variables, it would take over a thousand trillion years to omplete the proess. This length oftime is roughly 70,000 times the age of the universe. Though every symmetri ryptosystemin use an be broken down into several Boolean funtions of several variables, it would beinfeasible to brute fore searh through all of the possibilities of Boolean funtions whihreonstrut the ryptosystem. 7



x0 x1 x2 x3 f(x0, x1, x2, x3)0 0 0 0 01 0 0 0 10 1 0 0 11 1 0 0 00 0 1 0 11 0 1 0 00 1 1 0 11 1 1 0 00 0 0 1 01 0 0 1 00 1 0 1 11 1 0 1 00 0 1 1 01 0 1 1 00 1 1 1 11 1 1 1 1Table 2: Truth Table of fThen the standard basis of F2n

2 an be used to pull bak to an equivalent basisof BFn. Let ei ∈ F
2n

2 be de�ned so that
e0 = (1, 0, . . . )

e1 = (0, 1, . . . )...
e2n−1 = (0, . . . , 0, 1).The atomi Boolean funtions will be de�ned as the fi ∈ BFn where thereexists an ei ∈ F

2n

2 suh that V (fi) = ei. Every vetor of F2n

2 an be writtenas a linear ombination of the standard basis vetors, and equivalently, everyBoolean funtion is a linear ombination of atomi Boolean funtions. Thismeans for every u ∈ F
2n

2 there exists a set of ci ∈ F2 suh that
u = c0e0 ⊕ · · · ⊕ c2n−1e2n−1

⇔ f = c0f0 ⊕ · · · ⊕ c2n−1f2n−1.where V (f) = u.The funtion f de�ned in Table 2 an be written as a linear ombinationof the atomi Boolean funtions in BF4. Sine the oe�ients in the linearombinations are either 0 or 1, it is true that every Boolean funtion an bewritten as the sum of wt(f) atomi Boolean funtions.The equation f = f1 + f2 + f4 + f6 + f10 + f14 + f15 should be lear fromTable 3. Knowing how to write the atomi Boolean funtions as polynomials8



x0 x1 x2 x3 f f1 f2 f4 f6 f10 f14 f150 0 0 0 0 0 0 0 0 0 0 01 0 0 0 1 1 0 0 0 0 0 00 1 0 0 1 0 1 0 0 0 0 01 1 0 0 0 0 0 0 0 0 0 00 0 1 0 1 0 0 1 0 0 0 01 0 1 0 0 0 0 0 0 0 0 00 1 1 0 1 0 0 0 1 0 0 01 1 1 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 01 0 0 1 0 0 0 0 0 0 0 00 1 0 1 1 0 0 0 0 1 0 01 1 0 1 0 0 0 0 0 0 0 00 0 1 1 0 0 0 0 0 0 0 01 0 1 1 0 0 0 0 0 0 0 00 1 1 1 1 0 0 0 0 0 1 01 1 1 1 1 0 0 0 0 0 0 1Table 3: f broken into atomi Boolean funtion in BF4would lead to knowing how to write any Boolean funtion as a polynomial. Thepolynomials representing the Boolean funtions will belong to the the polyno-mial ring F2[x0, . . . , xn−1]/(x
2
0 ⊕ x0, . . . , x

2
n−1 ⊕ xn−1). To properly representan atomi Boolean funtion, a polynomial must equal 1 at only one vetor

(x0, . . . , xn−1). Reall the support funtion from De�nition 2.1.4. Then thepolynomial respresenting eah Boolean funtion is as follows:
fi =

(

∏

j∈supp(B−1(i))

xj

)(

∏

j 6∈supp(B−1(i))

(1 ⊕ xj)

)

. (4)Proof. Let x = B−1(i) where x = (x0, . . . , xn−1). Then {xi : xi = 1} = {xi :
i ∈ supp(x)}. Therefore,

fi(x) =

(

∏

j∈supp(B−1(i))

xj

)(

∏

j 6∈supp(B−1(i))

(1 ⊕ xj)

)

= 1.Let x 6= B−1(i). Then,
(

∏

j∈supp(B−1(i))

xj

)

= 0

∴ fi(x) = 0.

9



Now the funtion f from Table 2 an be written as the sum of the followingatomi polynomials:
f1 = (1⊕ x3)(1⊕ x2)(1⊕ x1)x0

= x0 ⊕ x1x0 ⊕ x2x0 ⊕ x2x1x0 ⊕ x3x0 ⊕ x3x1x0 ⊕ x3x2x0 ⊕ x3x2x1x0

f2 = (1⊕ x3)(1⊕ x2)x1(1⊕ x0)

f4 = (1⊕ x3)x2(1⊕ x1)(1⊕ x0)

f6 = (1⊕ x3)x2x1(1 ⊕ x0)

f10 = x3(1 ⊕ x2)x1(1 ⊕ x0)

f14 = x3x2x1(1⊕ x0)

f15 = x3x2x1x0After summing the atomi polynomials upon multiplying them out,
f = x0x1x2x3 ⊕ x0x1x3 ⊕ x0x3 ⊕ x0 ⊕ x1x2x3 ⊕ x1x2 ⊕ x1 ⊕ x2x3 ⊕ x2.This result is easily veri�ed in Sage: Sagesage: f=BooleanFuntion ([0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1℄)sage: f.algebrai_normal_form ()x0*x1*x2*x3 + x0*x1*x3 + x0*x3 + x0 + x1*x2*x3 + x1*x2 + x1 + x2*x3 + x2Now the uniqueness of the polynomial representation for eah Boolean fun-tion is onsidered. This is easily seen by onsidering the uniqueness of eahBoolean funtion and the size of the polynomial ring.Theorem 2.2.1. Eah n-variable Boolean funtion is uniquely represeneted asa polynomial in the polynomial ring F2[x0, . . . , xn−1]/(x

2
0⊕x0, . . . , x

2
n−1⊕xn−1).Let f ∈ BFn. Then there exists a unique set of aI ∈ F2, I ∈ 2{0,...,n−1}, suhthat

f(x) =
∑

I∈2{0,...,n−1}

aI

(

∏

i∈I

xi

) (5)Proof.
|BFn| = |F2n

2 |

= |{(a∅, . . . , aI , . . .) : aI ∈ F2}|

= |F2[x0, . . . , xn−1]/(x
2
0 ⊕ x0, . . . , x

2
n−1 ⊕ xn−1)|Beause every Boolean funtion is determined by at least one polynomial and thesize of the polynomial ring equals the size of the set of all Boolean funtions,eah Boolean funtion must be uniquely determined by a polynomial in thepolynomial ring. 10



2.3 The Walsh TransformThe Walsh transform measures the non-linearity of a Boolean funtion by deter-mining the distane between a given Boolean funtion f(x) and a linear funtion
λ · x. The Walsh transform is similar to the disrete Fourier transform and isin fat used to obtain the Fourier oe�ients for a Boolean funtion. For thispaper, the Walsh transform is onsidered over the disrete Fourier transformbeause this is the transformation used by Rothaus in his original de�nition ofbent funtions published in the Journal of Combinatorial Theory in 1976 [20℄.The de�nitions in this setion follow [18℄.De�nition 2.3.1. A harater χ of a �nite abelian group G is a group homo-morphism from G into the multipliative group of omplex numbers.For the purposes of this paper, it should be lear that χλ(x) := (−1)λ·x where
λ, x ∈ F

n
2 is a group harater of Fn

2 . De�ne the dual group F̂n
2 to be the groupof all haraters of Fn

2 . The group operation in F̂n
2 is pointwise multipliationof funtions:

(χ · ψ)(x) = χ(x)ψ(x), x ∈ F
n
2 .This operation is losed under multipliation.Lemma 2.3.2. F

n
2
∼= F̂n

2Proof. Let Υ : Fn
2 → F̂n

2 where Υ(λ) := χλ. Every harater in F̂n
2 orrespondsto an element of Fn

2 . Thus, |Fn
2 | = |F̂n

2 |. Therefore if Υ is one-to-one, then itmust be an isomorphism.Let Υ(λ1) = Υ(λ2). Then for all x
(−1)λ1·x = (−1)λ2·x

= (−1)(λ1+λ1+λ2)·x

= (−1)λ1·x(−1)(λ1+λ2)·x.Finally, (λ1 + λ2) · x = 0 for all x ∈ F
n
2 , whih implies λ1 + λ2 = 0. Therefore,

λ1 = λ2.Addition in F
n
2 orresponds to multipliation in F̂n

2 . By de�nition
(χλ1

·χλ2
)(x) = χλ1

(x)χλ2
(x) = (−1)λ1·x(−1)λ2·x = (−1)(λ1+λ2)·x = χλ1+λ2

(x).It is lear from the proof of Lemma 2.3.2 that all the haraters of Fn
2 or-respond to all of the linear funtions in BFn.De�nition 2.3.3. Let f ∈ BFn. Then f̂ : Fn

2 → R suh that f̂(x) = (−1)f(x)is a pseudo-Boolean funtion. The set of all pseudo Boolean funtions is denoted
B̂Fn = {f̂ : f ∈ BFn}.Lemma 2.3.4. Every harater χλ belongs to ˆBFn.11



Proof. This is trivially true.Lemma 2.3.5. If
W = span

R
(B̂Fn) =

{

∑

i∈I

aif̂i : f̂i ∈ B̂Fn, ai ∈ R, and |I| <∞

}

,then the F̂n
2 forms an orthonormal basis of W .Proof. The atomi Boolean funtions orrespond to a basis of W . Thus, thedimension of ˆBFn is at most 2n. The 2n haraters of Fn

2 are elements of B̂Fn,by Lemma 2.3.4.
∑

x∈F
n
2

χλi
(x) · χλj

(x) =
∑

x∈F
n
2

(−1)(λi+λj)·x

=

{

0 if i 6= j

2n if i = j.Therefore, the haraters of Fn
2 are orthonormal in W . Sine the dimension of

W is at most 2n, and there are 2n haraters, F̂n
2 forms an orthonormal basis of

W .De�nition 2.3.6. Let f ∈ BFn and λ ∈ F
n
2 . Then the Walsh transform of f isde�ned by:

Wf (λ) =
∑

x∈F
n
2

f̂(x)χλ(x). (6)Let
W(f) = (Wf (λ0), . . . ,Wf (λ2n−1)),where λi = B−1(i), be the Walsh spetrum of f .Example 2.3.7. Here are some examples of the Walsh spetrums of di�erentBoolean funtions: Sagesage: f0= BooleanFuntion([0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1℄)sage: f0. walsh_hadamard_transform ()(-2, 6, -6, -6, -2, -2, 2, -6, 2, 2, 6, -2, 2, -6, -2, -2)sage: f0. algebrai_normal_form ( )x0*x1*x2*x3 + x0*x1*x3 + x0*x3 + x0 + x1*x2*x3 + x1*x2 + x1 + x2*x3 + x2sage:sage: f1= BooleanFuntion([1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0℄)sage: f1. walsh_hadamard_transform ()(0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)sage: f1. algebrai_normal_form ()x0 + 1sage:sage: f2= BooleanFuntion([1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1℄)12



sage: f2. walsh_hadamard_transform ()(0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)sage: f2. algebrai_normal_form ()x0 + x1 + 1sage:sage: f3= BooleanFuntion([1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,1℄)sage: f3. walsh_hadamard_transform ()(2, 2, -2, 14, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2)sage: f3. algebrai_normal_form ( )x0*x1*x2*x3 + x0 + x1*x2*x3 + x1 + 1Every pseudo-Boolean funtion an be written as a linear ombination of theharaters of Fn
2 . The oe�ients in these linear ombinations reveal importantproperties of the funtions. Rothaus rewrote the pseudo-Boolean funtion as alinear ombination of haraters as follows [20℄.Lemma 2.3.8. For f̂ ∈ B̂Fn,

f̂(x) =
1

2n/2

∑

λ∈F
n
2

c(λ)χλ(x) (7)where c(λ) are given by
c(λ) =

1

2n/2
Wf (λ) (8)Eah c(λ) is alled a Fourier oe�ient of f . As observed by Rothausin [20℄, 2n/2c(λ) is the number of zeros minus the number of ones of the funtion

f(x)+λ·x. The Hamming weight of f is easily determined using the zero Fourieroe�ient c(0):
c(0) =

1

2n/2

∑

x∈F
n
2

(−1)f(x)

=
1

2n/2
(

(2n − wt(f))− wt(f)
)

⇒ wt(f) = 2n−1 − 2n/2−1c(0). (9)Example 2.3.9. There are two ases that should be lear to the reader.1. Let f(x) = λ · x. Then Wf (λ) = 2n.2. Let f(x) 6= λ · x ∀x. Then f(x) = λ · x+ 1 ∀x. So, Wf (λ) = −2nIn both ases, f is an a�ne funtion.For large |Wf (λ)|, the Hamming distane between f and an a�ne funtionin BFn is small. 13



2.4 Bent FuntionsThese funtions are useful in ryptographi appliations beause they add re-sistane to di�erential attaks as a result of being �perfetly non-linear�. Asmentioned before, these were de�ned by Rothaus in 1976. The main result inSetion 5 is given on bent funtions beause of their important ryptographiproperty of being as far away as possible from every a�ne funtion in BFn.De�nition 2.4.1. If all of the Fourier oe�ients of f̂ are ±1 then f is a bentfuntion.Proposition 2.4.2. [20℄ If f is a bent funtion on F
n
2 , then n is even, n = 2k.Moreover, the degree of f is at most k, exept in the ase k = 1.Proof. c(λ) = ±1. This implies 2n/2c(λ) is an integer. Therefore n must beeven.Let n = 2k with k > 1, and let r > k. Consider the polynomial f(x,

0, 0, . . . , 0) = g(x) where x = (x1, x2, . . . , xr) (up to this point all indexing hasstarted at 0; it is more onvenient in this proof to begin numbering at 1). Thenby Equation (7),
ĝ(x) =

1

2r/2

∑

λ1,λ2,...,λr=0,1

b(λ1, . . . , λr)χ(λ1,...,λr)(x)and
f̂(x, 0) =

1

2n/2

∑

λ1,λ2,...,λn=0,1

c(λ1, . . . , λn)χ(λ1,...,λn)(x, 0).Beause f(x, 0) = g(x) and the uniqueness of the Fourier expansion, b and c arerelated suh that
b(λ1, . . . , λr) =

1

2(n−r)/2

∑

λr+1,...,λn=0,1

c(λ1, . . . , λr , λr+1, . . . , λn).Then,
wt(f(x, 0)) = wt(g(x))

= 2r−1 − 2r/2−1b(0)

= 2r−1 − 2r−n/2−1
∑

λr+1,...,λn=0,1

c(0, . . . , 0, λr+1, . . . , λn).There are 2n−r summands in ∑ c(0, . . . , 0, λr+1, . . . , λn). Sine f is bent,
c(λ) = ±1. By rewriting 1 = −1 + 2,

∑

c(0, . . . , 0, λr+1, . . . , λn) = −2n−r + 2wt(c(0, . . . , 0, λr+1, . . . , λn))

= 2
(

wt(c(0, . . . , 0, λr+1, . . . , λn))− 2n−r−1
)Thus, wt(g(x)) is even. This implies that g(x) is the sum of an even num-ber of atomi Boolean funtions. Therefore the oe�ient of x1x2 · · ·xr in thepolynomial representing g(x) must be 0. This is true for every r > k, so thedegree of f must not be greater than k.14



The set of all bent funtions is not known. There however are a few ba-si onstrutions whih are known. The Rothaus onstrution and Maiorana-MFarland lass of Boolean funtions are presented here as two of the knownonstrutions for bent funtions.2.4.1 Rothaus Constrution of Bent FuntionsIn one of the �rst papers written about bent funtions, Rothaus identi�ed twolarge general lasses of bent funtion on BFn, n = 2k. The simpler of the twois presented here:Proposition 2.4.3. Let n be even, x1, y1, . . . , xk, yk be independent variables,and P (x) ∈ BFn/2 (so P (x) is a funtion n/2 variables). Then the polynomial
Q(x, y) ∈ BFn given by

Q(x, y) = x1y1 + x2y2 + · · ·+ xkyk + P (x) (10)is bent.The proof that this funtion is bent an be found in Rothaus' paper [20℄.Example 2.4.4. Both f and g in this example are bent aording to Rothaus.Sagesage: B=BooleanPolynomialRing (6,'x')sage: B.injet_variables(verbose =false)sage: f=BooleanFuntion(x0*x1+x2*x3+x4*x5)sage: f.truth_table (format ='int ')(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0,0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,1)sage: f.is_bent ()Truesage: g=f+BooleanFuntion(x0*x2+x0)sage: g.truth_table (format ='int ')(0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0,0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0,1)sage: g.is_bent ()True2.4.2 Maiorana-MFarland Class Constrution of Bent FuntionsThe Maiorana-MFarland lass (or M-M lass) of Boolean funtions is a gener-alized Rothaus onstrution of bent funtions. It uses a permutation funtion
π on half of the input variables to eah funtion.De�nition 2.4.5. Let π : Fk

2 → F
k
2 be the linear transformation on F

n
2 rep-resented by the matrix π ∈ Mk×k(F2) suh that the matrix π has exatly knon-zero entries arranged so that every row and olumn has exatly one non-zero entry. Then π is a permutation matrix.15



Example 2.4.6. Sagesage: pi0 =matrix (GF (2) ,[[0,0,1℄,[1,0,0℄ ,[0,1,0℄℄)sage: pi0[0 0 1℄[1 0 0℄[0 1 0℄sage: V=GF (2) ^3sage: x=V([0 ,1 ,1℄) ; y=V([1 ,0 ,0℄)sage: (matrix (x)).transpose ()[0℄[1℄[1℄sage: pi0 *( matrix (x)).transpose ()[1℄[0℄[1℄sage: (matrix (y)).transpose ([1℄[0℄[0℄sage: pi0 *( matrix (y)).transpose ( )[0℄[1℄[0℄For every permutation funtion π on F
k
2 the omponent permutation funtion

π̄ an de�ned suh that for 0 ≤ i ≤ k − 1,
π̄(i) = j where π(ei) = ej for basis vetors ei, ej ∈ F

k
2 .Example 2.4.7. If π0 =





0 0 1
1 0 0
0 1 0



 and π1 =





0 1 0
1 0 0
0 0 1



, then π̄0 is thepermutation yle (0 1 2) and π̄1 is the permutation yle (0 1)(2).A simple bent funtion onstrution is aomplished by using permutationslike the ones de�ned here. These Boolean funtions belong to the Maiorana-MFarland original lass. This is the setM whih ontains all Boolean funtionson F
n
2 = {(x, y) = (x0, . . . , xn−1, y0, . . . , yn−1) : x, y ∈ F

n/2
2 }, of the form

f(x, y) = x · π(y)⊕ g(y)where π is any permutation on F
n/2
2 and g is any Boolean funtion on F

n/2
2 .Proposition 2.4.8. [3℄All funtions in the Maiorana-MFarland lass of Boolean funtions are bent.The proof of these funtions being bent an be found in [3℄.Example 2.4.9. Both f and g in this example are in the Maiorana-MFarlandlass of Boolean funtions. 16



Sagesage: f=BooleanFuntion(x0*x4+x1*x3+x2*x5)sage: f.truth_table (format ='int ')(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,1)sage: f.is_bent ()Truesage: g=f+BooleanFuntion(x0*x2+x0)sage: g.is_bent ()True3 N-adi IntegersThis setion introdues the N -adi integer ring and de�nes the 2-adi valuationwhih is ritial to the main result of the paper. The 2-adi integers are verylosely onneted with the binary sequenes generated by FCSRs whih aredisussed in Setion 4.3.1 N-adi Integer RingThe notation used in the de�nition of the N -adi numbers will follow the samenotation used by Borevih and Shafarevih in Chapter 1 of Number Theory [1℄.In this setion, the set of N -adi integers is shown to be a ommutative ringwith an identity.De�nition 3.1.1. Let N be an integer. Then the in�nite integer sequene (xn)determines an N -adi integer α, or (xn) → α, if
xi+1 ≡ xi (mod N i+1) ∀i ≥ 0. (11)Two sequenes (xn) and (x′n) determine the same N -adi integer if
xi ≡ x′i (mod N i+1) ∀i ≥ 0. (12)The set of all N -adi integers will be denoted by ZN .Eah integer x is assoiated with a N -adi integer, determined by the se-quene (x, x, . . . , x, . . . ). These integers will be alled rational integers in the

N -adi integers.Example 3.1.2. Let (xn) → α ∈ Z3. Then the �rst 5 terms of (xn) may looksomething like:
(xn) = ( 1 , 1 + 2 · 3 , 1 + 2 · 3 + 1 · 32 ,

1 + 2 · 3 + 1 · 32 , 1 + 2 · 3 + 1 · 32 + 1 · 34 , . . . )

= (1, 7, 16, 16, 97, . . .) 17



Then equivalent sequenes to (xn) ould begin di�erently for the �rst few terms:
(yn) = (4, 25, 16, 178, 583, . . .)

(zn) = (−2,−47, 232,−308, 97, . . .)The sequenes for (yn) and (zn) satisfy equation (11) for the �rst 5 terms, sothey ould be N -adi integers up to this point. Also, both are equivalent to
(xn) aording to the equivalene de�ned in equation (12).

1 ≡ 4 ≡ 2 (mod 3)

7 ≡ 25 ≡ −47 (mod 32)

16 ≡ 16 ≡ 232 (mod 33)

16 ≡ 178 ≡ −308 (mod 34)

97 ≡ 583 ≡ 97 (mod 35)Therefore (xn), (yn), (zn) → α.Beause there are in�nitely many sequene representations for any N -adiinteger, it is useful to de�ne a anonial sequene to be used when writingN -adiintegers as sequenes.De�nition 3.1.3. For a given N -adi integer α, a given sequene (an) with theproperties:i. (an) → αii. (an) = (a0, a0 + a1 ·N, . . . , a0 + · · ·+ ai ·N
i, . . . ) : 0 ≤ ai < N ∀i ≥ 0will be alled anonial.The sequene (a0, a1, a2, . . . , ai, . . . ) is the digit representation of α. When

N < 10, the digits are usually written adjaent to one another. Another equiva-lent representation of α is the power series representation where α =
∑∞

i=0 aiN
iwhere the ai's are from the digit representation of α.Example 3.1.4. In Example 3.1.2, the sequene (xn) was a anonial sequenethat determined the N -adi integer α. A few more examples of anonial se-quenes determining 7-adi integers are given here:

β = 3164 · · · = 3 + 1 · 7 + 6 · 72 + 4 · 73 + · · · , then the anonial sequene
(bn) → β is

(bn) = (3, 3 + 1 · 7, 3 + 1 · 7 + 6 · 72, 3 + 1 · 7 + 6 · 72 + 4 · 73, . . . )

= (3, 10, 304, 1676, . . .)

γ = 0164 · · · = 0+1 ·7+6 ·72+4 ·73+ · · · , then the anonial sequene (cn) → γis
(cn) = (0, 1 · 7, 1 · 7 + 6 · 72, 1 · 7 + 6 · 72 + 4 · 73, . . . )

= (0, 7, 301, 1673, . . .)18



δ = 5031 · · · = 5+0 ·7+3 ·72+1 ·73+ · · · , then the anonial sequene (dn) → δis
(dn) = (5, 5, 5 + 3 · 72, 5 + 3 · 72 + 1 · 73, . . . )

= (5, 5, 152, 495, . . . ).De�nition 3.1.5. Addition and multipliation in ZN are done term by term.Let α, β ∈ ZN and (xn) → α, (yn) → β. Then,
(xn) + (yn) := (x0 + y0, x1 + y1, . . . ) → α+ β

(xn) · (yn) := (x0 · y0, x1 · y1, . . . ) → α · βDe�ne (0, 0, 0, . . . ) → 0 ∈ ZN and (1, 1, 1, . . . ) → 1 ∈ ZNLemma 3.1.6. For α ∈ ZN , α+ 0 = 0 + α = α and 1 · α = α · 1 = α.Proof. Let (xn) → α ∈ ZN .
(xn) + (0, 0, . . . ) = (x0 + 0, x1 + 0, . . . , xi + 0, . . . )

= (x0, . . . , xi, . . . ).

(0, 0, . . . ) + (xn) = (0 + x0, 0 + x1, . . . , 0 + xi, . . . )

= (x0, . . . , xi, . . . ).

(xn) = (xn)+(0, 0, . . . ) = (0, 0, . . . )+(xn) implies α = α+0 = 0+α. Therefore,the additive identity in ZN is 0.
(xn) · (1, 1, . . . ) = (x0 · 1, x1 · 1, . . . , xi · 1, . . . )

= (x0, . . . , xi, . . . ).

(1, 1, . . . ) · (xn) = (1 · x0, 1 · x1, . . . , 1 · xi, . . . )

= (x0, . . . , xi, . . . ).

(xn) = (xn) · (1, 1, . . . ) = (1, 1, . . . ) · (xn) implies α = α · 1 = 1 · α. Therefore,the multipliative identity in ZN is 1.Finally, this setion de�nes a ring and proves that ZN is a ommutative ringwith an identity.De�nition 3.1.7. A ring is a set R with two binary operations de�ned on it.These are usually alled addition denoted by +, and multipliation denoted by
· or juxtaposition, satisfying the following six axioms:1. Addition is ommutative: a+ b = b+ a ∀a, b ∈ R.2. Addition is assoiative: a+ (b+ c) = (a+ b) + c ∀a, b, c ∈ R.3. There exists an additive identity, denoted by 0, suh that a+0 = a ∀a ∈ R.19



4. ∀a ∈ R there exists an additive inverse, denoted by −a, suh that a +
(−a) = 0.5. Multipliation is assoiative: a(bc) = (ab)c ∀a, b, c ∈ R6. Multipliation is left and right distributive over addition:

a(b+ c) = ab+ ac

(b + c)a = ba+ caIf it is also true that7. Multipliation is ommutative: ab = ba ∀a, b ∈ R, then R is a ommuta-tive ring.Further if8. There exists a multipliative identity denoted by 1 suh that a · 1 = a and
1 · a = a ∀a ∈ R, then R is a ring with an identity.If R satis�es all eight properties, then R is a ommutative ring with an identity.Theorem 3.1.8. ZN is a ommutative ring with an identity.Proof. Let (xn), (yn), (zn) determine α, β, γ ∈ ZN respetively. Then1. Commutativity of Addition

(xn) + (yn) = (x0 + y0, . . . , xi + yi, . . . )

= (y0 + x0, . . . , yi + xi, . . . )

= (yn) + (xn).

(xn) + (yn) → α + β and (xn) + (yn) = (yn) + (xn) → β + α. Therefore,by De�nition 3.1.1, α+ β = β + α.2. Assoiativity of Addition
(xn) + ((yn) + (zn)) = (xn) + (y0 + z0, . . . , yi + zi, . . . )

= (x0 + (y0 + z0), . . . , xi + (yi + zi), . . . )

= ((x0 + y0) + z0, . . . , (xi + yi) + zi, . . . )

= (x0 + y0, . . . , xi + yi, . . . ) + (zn)

= ((xn) + (yn)) + (zn).Therefore, α+ (β + γ) = (α+ β) + γ.3. Existene of the Additive IdentityBy Lemma 3.1.6, 0 is the additive identity.20



4. Existene of Additive InversesDe�ne −(xn) = (N − x0, N
2 − x1, . . . , N

i+1 − xi, . . . ) → −α. Then
(xn) + (−(xn)) = (x0 +N − x0, x1 +N2 − x1, . . . , xi +N i+1 − xi, . . . )

= (N,N2, . . . , N i+1, . . . )

≡ (0, 0, . . . )

= 0.Therefore, α+ (−α) = 0.5. Assoiativity of Multipliation
(xn)((yn)(zn)) = (xn)(y0z0, . . . , yizi, . . . )

= (x0(y0z0), . . . , xi(yizi), . . . )

= ((x0y0)z0, . . . , (xiyi)zi, . . . )

= (x0y0, . . . , xiyi, . . . )(zn)

= ((xn)(yn))(zn).Therefore, α(βγ) = (αβ)γ.7. Commutativity of Multipliation
(xn)(yn) = (x0y0, . . . , xiyi, . . . )

= (y0x0, . . . , yixi, . . . )

= (yn)(xn).Therefore, αβ = βα.6. Left and right distributivity of multipliation over addition
(xn)((yn) + (zn)) = (xn)(y0 + z0, . . . , yi + zi, . . . )

= (x0(y0 + z0), . . . , xi(yi + zi), . . . )

= (x0y0 + x0z0, . . . , xiyi + xizi, . . . )

= (xn)(yn) + (xn)(zn).By ommutativity of multipliation,
((yn) + (zn))(xn) = (xn)((yn) + (zn))

= (xn)(yn) + (xn)(zn)

= (yn)(xn) + (zn)(xn).Therefore, α(β + γ) = αβ + αγ and (β + γ)α = βα+ γα.21



8. Existene of a multipliative identityBy Lemma 3.1.6, 1 is the multipliative identity.Properties 1 through 8 from De�nition 3.1.7 are satis�ed, so ZN is aommutative ring with an identity.So that the power series representations of N-adi numbers make sense inthe disussion of FCSRs in Setion 4, equivalene is shown between the de�ned
N -adi addition and multipliation and the usual addition and multipliationof power series representations of N -adi integers.Lemma 3.1.9. Addition and multipliation of anonial sequenes of α and
β are equivalent to the usual addition and multipliation of the power seriesrepresentations for α and β.Proof. Let a = (a0, a0 + a1N, . . . , a0 + a1N + · · ·+ akN

k, . . . ) and b = (b0, b0 +
b1N, . . . , b0 + b1N + · · · + bkN

k, . . . ). And α and β be represented by powerseries so that
α =

∞
∑

i=0

aiN
i and β =

∞
∑

i=0

biN
i.Rewrite a = (

∑0
i=0 ai2

i, . . . ,
∑k

i=0 ai2
i, . . . ) and b = (

∑0
i=0 bi2

i, . . . ,
∑k

i=0 bi2
i, . . . ).By the de�ned N -adi addition,

a+ b = (

0
∑

i=0

(ai + bi)2
i, . . . ,

k
∑

i=0

(ai + bi)2
i, . . . )

→

∞
∑

i=0

(ai + bi)2
i

=

∞
∑

i=0

aiN
i +

∞
∑

i=0

biN
i

= α+ β.

22



Clearly addition is equivalent. By the de�ned N -adi multipliation,
a · b = (

0
∑

i=0

ai · bi, . . . ,

k
∑

i=0

k
∑

j=0

(aibj)2
i+j , . . . )

= (a0 · b0, . . . ,
∑

i+j≤k

(aibj)2
i+j , . . . )

→
∞
∑

k=0





∑

i+j=k

aibj2
k





=

(

∞
∑

i=0

ai2
i

)





∞
∑

j=0

bj2
j





= α′ · β′.Therfore, multipliation is equivalent as well.Theorem 3.1.10. An N -adi integer α, whih is determined by a sequene
(xn), is a unit if and only if x0 is relatively prime to N .Proof. Let α be a unit. Then there is an N -adi integer β suh that αβ = 1. If
β is determined by the sequene (yn), then

xiyi ≡ 1 (mod N i+1) ∀i ≥ 0. (13)In partiular, x0y0 ≡ 1 (mod N), hene x0 is relatively prime to N .Conversely, let x0 be relatively prime to N . Then x0 6≡ 0 (mod N). FromEquation (11)
x1 ≡ x0 (mod N)...

xi+1 ≡ xi (mod N i).Working bakward, xi+1 ≡ xi ≡ · · · ≡ x1 ≡ x0 (mod N). Thus, xi is relativelyprime to N ∀i ≥ 0, whih implies xi is relatively prime to N i+1. Consequently,
∀i ≥ 0 ∃yi suh that xiyi ≡ 1 (mod N i+1). Sine xi+1 ≡ xi (mod N)i and
xi+1yi+1 ≡ xiyi (mod N i). Then, yi+1 ≡ yi (mod N i). Therefore the sequene
(yn) determines some N -adi integer β. Beause xiyi ≡ 1 (mod N i+1) ∀i ≥ 0,
αβ = 1. This means α is a unit.From this theorem it follows that a rational integer a ∈ ZN is a unit if andonly if a is relatively prime to N . If a is invertible in ZN , then for any rationalinteger b ∈ ZN , b/a = a−1b ∈ ZN .For any rational number b/a, a relatively prime to N , there exists a sequene
(xn) → b/a ∈ ZN . At this point, it is worth using the digit representation forintegers in ZN . So (xn) = {x0, x0 + x1N, . . . , x0 + · · · + xiN

i, . . . } and23



b/a = x0x1 . . . xi . . . . Rather than �nding a−1 (mod N i+1) to determine eah
xi, it is not too di�ult for every i to �nd ∑i

k=0 xkN
k suh that

b ≡ a

i
∑

k=0

xkN
k (mod N i+1). (14)Then,

xi =

∑i
k=0 xkN

k −
∑i−1

k=0 xkN
k

N i
. (15)Nearly all of the digits for any rational number in ZN an also be found usingpowers of N−1, whih is muh simpler to analyze than the brute fore searhfor the digits mentioned above. The following theorem is a slightly modi�edversion of Theorem 10 in a draft of [7℄ written by Andrew Klapper and MarkGoresky.Theorem 3.1.11. Let u0, q, N ∈ Z, where q is relatively prime to N , |u0| < q,and q = −q0 +

∑r
i=1 qiN

i for 0 ≤ qi < N . De�ne α = u0/q ∈ ZN suhthat α =
∑∞

i=0 aiN
i for 0 ≤ ai < N . Also, de�ne uk ∈ Z suh that uk/q =

∑∞
i=k aiN

i−k ∈ ZN and γ ≡ N−1 (mod q). Then, there exist uk for every k ≥ 0suh that
ak ≡ q−1uk (mod N). (16)If −q < u0 < 0, then uk ∈ {−q, . . . ,−1} for k ≥ 0. Otherwise, for k >

⌊logN (q)⌋ = r, uk ∈ {−q, . . . ,−1}.Let ω ∈ {−q, . . . ,−1} suh that ω ≡ γku0 (mod q). Then for k > ⌊logN (q)⌋ =
r, or if −q < u0 < 0, then k ≥ 0,

ak ≡ q−1ω (mod N). (17)Proof. Write u0/q in terms of uk.
u0
q

= a0 +N
u1
q

= a0 + a1N +N2u2
q

= . . .

=

k−1
∑

i=0

aiN
i +Nk uk

q
∀k ≥ 1. (18)Rewrite (18) to be

Nkuk = u0 − q

(

k−1
∑

i=0

aiN
i

)

∀k ≥ 1 (19)
24



Then |u0| < q and 0 ≤ ai < p from the assumptions and equation (19). Theseimply for all k ≥ 1, |u0| = |q
∑k−1

i=0 aiN
i +Nkuk| < q. Then,

−q

(

1 +
∑k−1

i=0 aiN
i

Nk

)

< uk < q

(

1−
∑k−1

i=0 aiN
i

Nk

)

.

uk may only be greater than zero when 1−
∑k−1

i=0
aiN

i

Nk is greater than zero. Thisonly ours when the sequene (a0, . . . , aj) = (0, . . . , 0) for j ≥ 0. Suh asequene ours if and only if u0 ≥ 0 and u0 ≡ 0 (mod N i) for 0 ≤ i ≤ j, j ≥ 0.This is lear from the onstrution of N -adi sequenes for rational numbers.Therefore uk may only be greater than zero if u0 ≥ 0 and u0 ≡ 0 (mod N i) for
0 ≤ i ≤ j, j ≥ 0. The lower bound for uk is greater than −q. This is learbeause 1+

∑k−1

i=0
aiN

i

Nk ≤ 1. Therefore,
−q < uk < 0 for − q < u0 < 0.If 0 ≤ u0 < q, then the upper bound remains unhanged.

−q < uk < q

(

1−
∑k−1

i=0 aiN
i

Nk

)

for 0 ≤ u0 < qThere is still work to be done on the upper bound.
0 ≤

k−1
∑

i=0

aiN
i < Nk for k ≥ 1

⇒− q

(

k−1
∑

i=0

aiN
i

)

≤ 0

⇒ u0 − q

(

k−1
∑

i=0

aiN
i

)

< q

⇒ Nkuk < q

⇒ uk <
q

Nk
.For k > ⌊logN (q)⌋ = r, |q/Nk| < 1. Therefore, −q < uk < 0 for 0 ≤ u0 <

q and k > r. Further lowering the upperbound, if uk = 0, then u0/q =
∑k−1

i=0 aiN
i + 0. This implies u0/q is a rational integer, whih is not true.Noting �nally that uk must be an integer. If |u0| < q and u0 < 0, or |u0| < q,

u0 ≥ 0, and k > ⌊logN (q)⌋ = r, then
uk ∈ {−q, . . . ,−1}.It has now been shown, for ertain restritions, uk belongs to a spei� setof representatives for the residue lasses of Z/(q). De�ne γ ≡ N−1 (mod q).Reduing Equation (19) modulo q shows that

uk ≡ γuk−1 (mod q). (20)25



Sine this is true for all k greater than or equal to 1, it is lear that
uk ≡ γku0 (mod q). (21)Reduing (19) modulo p shows that
ak ≡ q−1uk (mod N). (22)De�ne ω ≡ γku0 (mod q), and ρ ≡ q−1 (mod N). Finally, if |u0| < q and

u0 < 0, or |u0| < q, u0 ≥ 0, and k > ⌊logN (q)⌋ = r, then
ak ≡ ρω (mod N). (23)Corollary 3.1.12. Let 0 ≤ u0 < q. De�ne j to be the greatest integer suh that

u0 ≡ 0 (mod N j). Then the following are true:i. (a0, . . . , aj−1) = (0, . . . , 0)ii. uk > 0 for k = jiii. uk 6≡ 0 (mod N)Theorem 3.1.11 shows that for −q < u0 < 0, there is a sequene of numer-ators {uk} diretly related to the sequene of digits {ak} for u0/q ∈ ZN . Thesequene of numerators for a given FCSR with onnetion integer q reveals allof the possible stritly periodi states of the register, eah identi�ed by uk/q.This provides an interesting tool for the analysis of di�erent FCSRs.3.2 2-adi IntegersNow the transition is made to disussing the 2-adi integers whose digit se-quenes are in�nite sequenes of 0s and 1s. This brings the disussion loser theprevious setions whih dealt with vetors and funtions de�ned on F
n
2 . The2-adi integers will at as a bridge between the results on Boolean funtions andthe FCSRs whih are de�ned in the next setion.Proposition 3.2.1. [9℄ There is a one-to-one orrespondene between ratio-nal numbers α = p/q ∈ Z2 (where q is odd) and eventually periodi binarysequenes a = (a0, a1, . . . ), whih assoiates to eah suh rational number α itsdigit representation a. The sequene a is stritly periodi if and only if α ≤ 0and |α| < 1.Proof. Consider the stritly periodi ase �rst. Let a = (a0, a1, . . . ) be a stritlyperiodi sequene of period T . Set α = a. Computing in Z2,

2Tα =
∞
∑

i=0

ai2
i+T =

∞
∑

i=0

ai+T 2
i+T =

∞
∑

i=T

ai2
i = α−

T−1
∑

i=0

ai2
i.26



Hene
α = −

∑T−1
i=0 ai2

i

2T − 1
(24)is a negative rational number. Write α = p/q as a fration redued to lowestterms with q positive. Then q is odd, p ≤ 0, and |p| < q.On the other hand, suppose that α = p/q is given in lowest terms with q anodd positive integer, p ≤ 0, and |p| < q. Let T be the smallest integer suh that

2T ≡ 1 (mod q). Suh a T exists beause q is odd. Then 2T − 1 is divisble by
q, so set s = (2T − 1)/q. Beause p = q

∑∞
i=0 ai2

i

s · (−p) = s(−q
∞
∑

i=0

ai2
i) = (1 − 2T )(

∞
∑

i=0

ai2
i) =

∞
∑

i=0

ai2
i −

∞
∑

i=T

ai2
i =

T−1
∑

i=0

ai2
iThus α = s · p/(2T − 1) = −(

∑T−1
i=0 ai2

i)/(2T − 1). It diretly follows that
α = 2Tα +

∑T−1
i=0 ai2

i, implying that the digits sequene a of α is stritlyperiodi.Now suppose that α = p/q is an arbitrary rational number. Let M = ⌈α⌉be the next largest integer. If M ≥ 0, then its digit sequene ends in an in�nitestring of 0s. If M < 0, then its digit sequene ends in an in�nite string of 1s.However, α =M + p′/q where p′ ≤ 0 and |p′| < q, so the digit sequene of p′/qis stritly periodi. It follows that the digit sequene a of α = M + p′/q mustbe eventually periodi.On the other hand, an eventually periodi sequene a = (a0, a1, . . . ) or-responds to a rational number α = a beause it is given by a �nite tran-sient term ∑k−1
i=0 ai2

i (for some nonnegative integer k) plus a periodi term,
∑∞

i=k ai2
i = 2k

∑∞
i=0 aj+k2

j, both of whih are rational numbers.The 2-adi valuation is needed for the main result. It is de�ned here.De�nition 3.2.2. Let α = (an) ∈ Z2\(0). Ifm is the smallest number in N suhthat am 6≡ 0 (mod 2m+1), then the 2-adi valuation of α is m, or log2(α) = m.If α = 0, then log2(α) = ∞.De�nition 3.2.3. If α ∈ Z2, then the 2-adi norm of α is ‖α‖2 = 2−m where
m = log2(α).This paper will be areful not to onfuse log2 in ZN with log2 in R.Example 3.2.4. Let α = 00001011011 · · · ∈ Z2. Then log2(α) = 4.4 Shift RegistersThe feedbak with arry shift register (or FCSR) is a type of shift register used instream iphers. Though there exist attaks against this type of shift register byitself, it is possible to ombine FCSRs together in ways that no known attaksare useful. This however does not guarantee seurity beause the ombining of27



the FCSRs greatly inreases the omplexity of the ryptanalysis on the streamipher. Despite the seurity hallenges, the speed of an FCSR implementationis very attrative for engineers of hardware based ryptosystems.This setion will be used as an introdution to �nite state mahines andfeedbak with arry shift registers. The FCSR will be onsidered in the binaryase and analyzed using Z2. This analysis is then extended to the ase whenbent sequenes whih ould be generated by FCSRs, whih leads to the mainresult in Setion 5.4.1 Finite State MahinesIt is appropriate to prefae the disussion about FCSRs with general �nite statemahines. Solomon W. Golomb's book Shift Register Sequenes [6℄, written in1967 and revised in 1982, established a de�nition of �nite state mahines andshift registers used in muh of the literature today.De�nition 4.1.1. A �nite state mahine onsists of a �nite olletion of states
K, whih sequentially aepts a sequene of inputs from a �nite set A, andprodues a sequene of outputs from a �nite set B. Moreover, there is anoutput funtion µ whih omputes the present output as a �xed funtion ofpresent input and present state, and a next state funtion δ whih omputes thenext states as a �xed funtion of present input and present state. In a moremathematial manner, µ and δ are de�ned suh that

µ : K ×A→ B µ(kn, an) = bn (25)
δ : K ×A→ K δ(kn, an) = kn+1 (26)The most fundamental observation by Golomb is the following proposition.Its result guarantees the periodiity of any �nite state mahine with eventuallyperiodi input.Proposition 4.1.2. If the input sequene to a �nite state mahine is eventuallyperiodi, then the output sequene is eventually periodi.Proof. Let p be the period of the inputs one the mahine beomes periodi attime t. Then, for h > 0 and c > t, ac = ac+hp. Sine K is �nite, there must be

r > s > t suh that, for some h > 0 suh that,
kr+1 = δ(kr, ar) = δ(ks, ar+hp) = ks+1.It should also be lear that ar+i = ar+i+hp for h > 0. So by indution, ∀i > 0

kr+i+1 = δ(kr+i, ar+i) = δ(ks+i, ar+i+hp) = ks+i+1Finally, this proves br+i+1 = bs+i+1. Thus, the eventual period of this mahineis r − s. 28



The next objet de�ned is alled an N -ary n-stage mahine. It an beused to represent any �nite state mahine. It is also a natural generalizationof shift registers, so thinking of �nite state mahines in the ontext of N -ary
n-state mahines will make the transition to talking about shift registers muhsmoother.De�nition 4.1.3. Choose n,m, r ∈ N. Then de�ne a �nite state mahine withthe following sets:1. D = {0, . . . , N − 1}. This set ontains the N -ary digits of the mahine.2. K = {

∑n−1
i=0 xiN

i : xi ∈ D}. This set ontains the N -ary states of themahine.3. A = {
∑m−1

i=0 yiN
i : yi ∈ D}. This set ontains the N -ary inputs of themahine.4. B = {

∑r−1
i=0 ziN

i : zi ∈ D}. This set ontains the N -ary outputs of themahine.5. ∆ = {δi(x0, . . . , xn−1, y0, . . . , ym−1) : 0 ≤ i < n} where δi : K × A → D.This set ontains the N -ary next state funtions of the mahine.6. M = {µi(x0, . . . , xn−1, y0, . . . , ym−1) : 0 ≤ i < r}. µi : K ×A→ D. This setontains the N -ary output funtions of the mahine.The next state and output are determined from the urrent state and input bythe following equations:
x∗i = δi(x0, . . . , xn−1, y0, . . . , ym−1) 0 ≤ i < n (27)
zi = µi(x0, . . . , xn−1, y0, . . . , ym−1) 0 ≤ i < r (28)This �nite state mahine is alled an N -ary n-stage mahine and will be denotedby M(N,n,m, r).By making the state the input to the mahine as well, this mahine beomesautonomous in the sense that it no longer needs outside input. Then eah newstate and output is based on the previous state of the mahine. For N = 2, fiand gi are Boolean funtions on n+m variables. A binary n-stage mahine anbe de�ned by n+ r Boolean funtions eah on n+m variables.4.2 Feedbak with Carry Shift RegistersIn the set of autonomous �nite state mahines is a type of mahine alled a shiftregister. The variables making up the state of a shift register pass their valuesdiretly to the next variable in the state until the value is pushed out of theregister as the output. Here, what was referred as an n-stage mahine will nowbe alled an r-stage mahine as n will be used to index the output sequenes ofFCSRs. 29



De�nition 4.2.1. Let M(2, r,−1, 0) be an binary r-stage mahine with noinput and exatly 1 output value. Also, let g, fi ∈ BFn where the states
(x0, . . . , xr−1) are the domain of g and fi, fi(x) = xi+1 for 0 ≤ i ≤ n − 2,and g(x) = x0. This type of mahine will be denoted by SR(2, r).When the funtion fr−1 ∈ BFr is linear, then SR(2, r) is alled a linearfeedbak shift register. An LFSR is drawn in Figure 2. This is the ase where
fr−1 =

∑r
i=1 qixr−i where eah xi, qi ∈ F2. The qi's are alled taps. In omputersiene terms, to move forward in the sequene of states, eah bit in the stateof the register shifts to the right one spot and then the newest bit enters on theleft end of the register and is the value given when eah bit from the previousstate is AND'ed with its orresponding tap and then XOR'ed with all the otherAND'ed bit and taps.
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Figure 2: Linear Feedbak Shift RegisterLinear feedbak shift registers are well-studied in [6℄. By using the Berlekamp-Massey algorithm it is possible to reover the state of a given LFSR based onthe output sequene. In fat given an LFSR output sequene with period 2r−1,the Berlekamp-Massey algorithm will �nd a unique minimal-length LFSR whihgenerates this output after the �rst 2n digits have been proessed [14℄. This al-gorithm is studied in more detail in [2℄.In Figure 3, there is a memory ell attahed to the linear feedbak shift reg-ister whih adds some omplexity to the register. In the modi�ed shift registershown in Figure 3, in eah yle, the whole number quotient of ∑r

i=1 qixr−iis kept in the memory ell z. The memory ell from the previous state of themodi�ed shift register is used to determined the sum modulo 2 for the newestbit in the state of the register. A shift register modi�ed in this way is known asa binary feedbak with arry shift register, or FCSR. For this paper, FCSRs willonly be onsidered in the binary ase. Many of the theorems do generalize the
N -ary ase, though sometimes it is neessary that N be prime.De�nition 4.2.2. Let q1, . . . , qr ∈ 0, 1 ⊂ Z and q0 = −1. A binary feedbakwith arry shift register of length n with taps q1, . . . , qr is a modi�ed shift registerwhose states are olletions

(x0, x1, . . . , xr−1; z) where xi ∈ F2 and z ∈ Z30



xr−1 xr−2 . . . x1 x0 -

q1��
��

q2��
��

. . . qr−1��
��

qr��
��

∑

��
��

-�z

-

mod 2div 2

Figure 3: Binary Feedbak with Carry Shift Registerwhere z is alled the memory ell. The state hanges aording to the followingrules:1. Compute
σn =

r
∑

i=1

qian−i + zn−1.2. The output is x0.3. Then the new state (x0, x1, . . . , xn−1; z) = (x1, . . . , xn−1, σn (mod 2);σn(div 2)).Lemma 4.2.3. If the sequene α = (a0, a1, . . . ) where ai ∈ {0, 1} and ai ≡ xi
(mod 2), and ζ = (zn−1, zn, zn+1, . . . ) where eah zi is the value of the memoryell for the orresponding xi, then these two sequenes are related by the followinglinear reurrene

ak + 2zk = q1ak−1 + · · ·+ qrak−r + zk−1 for k ≥ r. (29)Reall from Proposition 4.1.2 that an FCSR must be eventually periodi.By Proposition 3.2.1, the sequene generated by every FCSR an then be repre-sented by a rational number in Z2. This rational number, or sequene generated,is entirely determined by the initial state and the taps of the register.Proposition 4.2.4. [9℄ Let q1, . . . , qr be the taps, zr−1 be the initial memory,and ar−1, . . . , a1, a0 be the initial state of an FCSR. De�ne q = 1 +
∑r

i=1 qi2
iand

p =





r−1
∑

i=0

i
∑

j=0

qjai−j2
i



− zr−12
r.Then the output sequene a of this FCSR is the digit representation of the 2-adiinteger

α =

∞
∑

i=0

ai2
i = p/q. (30)31



Proof. Consider the transition from one state of the FCSR to the next. Supposethat, for some given state, the value of the memory is zn−1 and that the ontentsof the register is given by the r bits an−1, . . . , an−r. The next state of the registeris determined by alulating
σn = zn−1 +

r
∑

i=1

qian−i,writing the new memory ontents as zn = σn(div 2), and writing the new on-tents of the state an = σn (mod 2). As stated in Lemma 4.2.3, these equationsmay be ombined into the expression
σn = 2zn + an.It follows that

an =

r
∑

i=1

qian−i + (zn−1 − 2zn), (31)for n ≥ r. Now, by substituting Equation (31) into Equation (30),
α = a0 + a12 + · · ·+ ar−12

r−1 +

∞
∑

n=r

an2
n

= x+

∞
∑

n=r

(

r
∑

i=1

qian−i

)

2n +

∞
∑

n=r

(zn−1 − 2zn)2
n. (32)where x =

∑r−1
i=0 ai2

i is the integer represented by the initial state of the register.The seond summation in Equation (32) anels exept for the �rst term, zr−1,leaving
α = x+ zr−12

r +

∞
∑

n=r

r
∑

i=1

qi2
ian−i2

n−i

= x+ zr−12
r +

r
∑

i=1

qi2
i

(

∞
∑

n=r

an−i2
n−i

)

= x+ zr−12
r +

r
∑

i=1

qi2
i(α− (a02

0 + a12
1 + · · ·+ ar−i−12

r−i−1))

= x+ zr−12
r + α

r
∑

i=1

qi2
i −

r−1
∑

i=1

r−i−1
∑

j=0

qi2
iaj2

j.(where the inner sum is empty, hene zero, when i = r in the third line). Theseequations give
α =

x+ zr−12
r −

∑r−1
i=1

∑r−i−1
j=0 qi2

iaj2
j

1−
∑r

i=1 qi2
i

=

∑r−1
i=0

∑r−i−1
j=0 qi2

iaj2
j − zr−12

r

q32



sine q0 = −1. The double summation is over all pairs of integers 0 ≤ i, j ≤ r−1with i+ j ≤ r − 1. Setting k = i+ j gives
α =

(

∑r−1
k=0

∑k
i=0 qiak−i2

k
)

− zr−12
r

q
=
p

q
(33)as laimed.Corollary 4.2.5. Changing the memory by b hanges the value of α by −b2r/q.If α = p/q < 0, then the initial memory zr−1 ≥ 0.Proof. The �rst statement follows trivially from Equation (33).The seond statemtent is not as obvious. If q < 0, then the numerator mustbe positive for p/q to be negative. Sine

zr−12
r ≥

r−1
∑

k=0

k
∑

i=0

qiak−i2
k ≥ 0, (34)this implies zr−1 = 0. If q > 0, then the numerator must negative. By Equa-tion (34), zr−1 > 0. Therefore, zr−1 ≥ 0.If we de�ne Wt : Z → Z suh that Wt(a) = wt(B−1(a)), then it an alsobe shown that the memory ell of every FCSR is bounded and eventually liesbetween 0 and Wt(q + 1), for q > 0.Proposition 4.2.6. [9℄Let w = Wt(q+1). If an FCSR is in a periodi state, then the memory is inthe range 0 ≤ z < w. If the initial memory zn−1 ≥ w, then it will monotoniallyderease and will arrive in the range 0 ≤ z < w within ⌊log2(zn−1 − w)⌋ + rsteps. If the initial memory zn−1 < 0, then it will monotonially inrease andwill arrive in the range 0 ≤ z < w within ⌈log2(|zn−1|)⌉+r steps. (The logarithmfuntions in this proposition will be real-valued.)Proof. First, observe that if the initial memory value zn−1 lies in the range

0 ≤ zn−1 < w, then the same will be true for all later values of the memory. Thisfollows from De�nition 4.2.2 beause σn =
∑r

i=1 qian−i+zn−1 ≤ w+zn−1 < 2w.So zn = ⌊σn/2⌋ < w.By the same argument, if the initial memory value is zn−1 = w, then thelater values of memory will be no greater than w; but in this ase, within r steps,the memory will drop below w (and will remain so thereafter) for the followingreason. If the memory does not derease (i.e. zn = w), then this means that a 1appeared at all the tapped ells, that σn = 2w, and that xn = σn (mod 2) = 0was fed into the register. The value of σ will fall below 2w when this 0 reahesthe �rst tapped ell (if not before), at whih time we will have z = ⌊σ/2⌋ < w.Moreover, if we initialize an FCSR with a larger memory value, zn−1 > w,then with eah step, the exess en−1 = zn−1−w will beome redued by a fator33



of 1/2, that is en ≤ ⌊en−1/2⌋. So after ⌊log2(zn−1 −w)⌋+ 1 steps, the memorywill be no more than w. This follows from De�nition 4.2.2 whih gives
en = zn − w =

⌊σn
2

⌋

− w ≤

⌊

w + w + en−1

2

⌋

− w =
⌊en−1

2

⌋

.Now onsider the ase of negative initial memory, zn−1 < 0. By De�nition 4.2.2,it is possible that σn ≥ 0, in whih ase the next memory value will be zn ≥ 0(where it will remain thereafter). So suppose that σn < 0. Then, again byDe�nition 4.2.2,
|zn| ≤

|σn|+ 1

2
≤

|zn−1|+ 1

2
.Iterating this formula, it is easy to see that afterK = ⌈log2(|zn−1|)⌉ steps, eitherthe memory z has beome nonnegative, or else

|z| ≤
zn−1

2K
+

1

2K
+

1

2K−1
+ · · ·+

1

2
< 2, in whih ase the memory must be m = −1. There is a single situation inwhih the memory an remain at −1 forever: if there are no feedbak taps onthe shift register (so q = −1). In this ase, the memory will feed 1s into the shiftregister forever. However, we assumed that q > 0 to rule out this possibility.If q > 0, then as soon as a nonzero feedbak ours, the memory will beomenonnegative, where it will remain thereafter.Prosition 4.2.6 shows that eventually every FCSR reahes a point where thereare a �nite number of inputs from the memory ells and of states. This meansthat every FCSR eventually satis�es the de�nition of a �nite state mahine.As a result, the output of every FCSR is eventually periodi. In Setion 3, itwas shown than every eventually periodi sequene of 0s and 1s orrespondsto an α = p/q ∈ Z2. This fat makes FCSRs extremely vulnerable to rationalapproximation algorithms.4.3 FCSR SynthesisThe problem of synthesis lies in the following question: Given an eventuallyperiodi sequene of 0s and 1s generated by an FCSR, an you �nd a and bsuh that sequene generated is equivalent to digit representation of a

b ∈ Z2.If there are no onstraints on a and b, then at least a period of the sequenemust be known to solve the problem. However, every FCSR is limited to aertain number of p/q ∈ Z2 that it an generate beome of memory restritions.The rational approximation algorithm shown in this paper uses the fat thatonly so many possibilities exist for a given FCSR to show that it will eventuallyreah the orret approximation in a �nite number of steps. As a quik exampleof this, onsider the FCSR in Figure 4.3. By Proposition 4.2.4, it should belear that the initial states, taps, and memory ompletely determine the 2-adiinteger represented by the sequene generated. Both the initial states and tapsare �nite, and the memory is bounded at the initial stage of the register.34
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Figure 4: FCSR whih generate the sequene −4
5 = 00110011001100110011 · · ·The FCSR in Figure 4.3 is meant as a simple visualization how after foolingwith all of the possible initial states and tap arrangements, the size of thememory beomes the only means to reate new possibilities in the sequenegenerated.4.4 Xu's Rational Approximation AlgorithmIt turns out that given a sequene generated by an FCSR it is easy to reprodueto FCSR from whih it ame from. This is why using FCSRs by themselvesdo not generate seure stream iphers. If used as a stream ipher, the key forthe FCSR would be the taps and the initial state. All an attaker would needis a relatively short piee of the output sequene to reveal every part of thekey. This iphertext only attak is a omplete break of the stream ipher. Infat, any arrangement of taps and initial state of an FCSR an be revealed veryquikly.In Goresky and Klapper's book [7℄, they desribe in pseudoode Xu's rationalapproximation algorithm for π-adi sequenes in any ring R. A demonstrationof Xu's algorithm is presented here in the ontext of the ring Z2. The algorithmtakes as input the �rst n terms of anN -adi sequene a = (a0, a1, . . . ) assoiatedto a rational number α = p/q ∈ Z2 and outputs a rational number αn = p′/q′whose �rst n terms math a. Running Xu's algorithm for small n an sometimesresult in αn whih are far from α, but in the examples below, it is easy to seethat as n grows large, Xu's algorithm eventually reahes the orret α. In fat,for large enough n, Xu's algorithm will reah the orret α.Example 4.4.1. This example uses the funtion rational_synthesis_xu fromthe Sage sript afsr.sage. The soure ode for this funtion an be downloadfrom https://github.om/elerier/oslo/blob/master/sage/afsr.sage .Sagesage: adi_seq (-4,5,2,20)(-4, 5, [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,1℄)sage: a=adi_seq (-4,5,2,20) [2℄ 35

https://github.com/celerier/oslo/blob/master/sage/afsr.sage


sage: for i in range (3 ,20) :...: print i,rational_synthesis_xu (a[0:i℄,2)...:3 (0, 1)4 (-4, 53)5 (-4, 53)6 (-4, 53)7 (-4, 5)8 (-4, 5)sage:sage: adi_seq (-17,77,2,40)(-17, 77, [1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0,0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1,1℄)sage: b=adi_seq (-17,77,2,40) [2℄sage: for i in range (3 ,20) :...: print i,rational_synthesis_xu (b[0:i℄,2)...:3 (-1, 9)4 (-5, 17)5 (-5, 17)6 (1, 3)7 (1, 3)8 (1, 3)9 (-13, 89)10 (-167, 1419)11 (-67, 183)12 (-89, 885)13 (-89, 885)14 (-89, 885)15 (359, 2229)16 (359, 2229)17 (359, 2229)18 (359, 2229)19 (359, 2229)20 (-17, 77)21 (-17, 77)22 (-17, 77)23 (-17, 77)The N -adi sequenes for α = −4
5 and β = −17

77 have small periods, so Xu'salgorithm quikly onverges to the orret α and β.Example 4.4.2. In this next example, the period of the approximated rationalnumber γ = −98
21000−1 equals 1000. Sagesage:adi_seq ( -98 ,2^1000 -1 ,2 ,20)(-98, 107150860718626732094842504906000... , [0, 1, 0, 0, 0, 1, 1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0℄)sage: d=adi_seq ( -98 ,2^1000 -1 ,2 ,10000)[2℄sage: for i in range (3 ,2000):...: print i,rational_synthesis_xu (d[0: i℄,2)...:3 (-2, 9)4 (2, 1) 36



5 (2, 1)6 (2, 1)7 (-22, 69)8 (-22, 69)9 (-302, 1209)10 (-302, 1209)11 (-302, 1209)12 (-302, 1209)13 (-302, 1209)14 (-134, 333)15 (-134, 333)16 (-134, 333)17 (-134, 333)18 (-134, 333)19 (-2818, 10671)20 (-2818, 10671)21 (-2818, 10671)22 (-2818, 10671)23 (-2818, 10671)24 (-26954, 85323)25 (-26954, 85323)26 (-26954, 85323)27 (-26954, 85323)28 (-26954, 85323)29 (98, 1)30 (98, 1)31 (98, 1)32 (98, 1)...2501 ( -32524788108326247... , 180020230874340668557...)2502 (-98, 107150860718626732094842504906000...)The algorithm does not onverge nearly as fast as it did from approximating
α, but it eventually reahes the orret γn at n = 2502. It took approximately1.25s for my omputer to arrive at the orret approximation.5 Boolean SequenesThe interest of this paper is stream iphers, and there are a few di�erent waysto use bent funtions in the implementation of a stream ipher. Sequenesgenerated using bent funtions have nie ryptographi properties beause oftheir perfet nonlinearity. These sequenes an be generated multiple ways.Two easy examples are a �ltering funtion on a shift register produing an m-sequene or a shift register whih uses n di�erent shift registers as input into abent funtion. These two tehniques are disussed by Carlet [3℄. Both of theseonstrutions use input vetors from F

n
2 in a pseudorandom order to generatethe sequene. Before srambling the input in this way, the sequenes generatedby binary ordering of input vetors is onsidered.De�nition 5.0.3. Let (an) be a sequene. If T is the smallest positive integersuh that ai = ai+T , then the minimal period of (an) is T .37



De�nition 5.0.4. Let f ∈ BFn and vi ∈ F
n
2 suh that vi = B−1(i) for 0 ≤ i <

2n. Then,
seq(f) = (f(v0), f(v1), . . . , f(v2n−1), f(v0), . . . ) (35)is a f -�ltered Boolean sequene.De�ned in this way, all f -�ltered Boolean sequenes have a minimal periodat most 2n. Using the binary ordering, the Boolean sequene generated will berepeated olumns of the outputs for the Boolean funtion read from the truthtable of the Boolean funtion. For example, the f -�ltered Boolean sequene inTable 2 is

(0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, . . .).Theorem 5.0.5. The f -�ltered Boolean sequene of a bent funtion has a periodexatly 2n.Proof. For xi, λi ∈ F2 and 0 ≤ i ≤ n − 2, de�ne (x, 1) = (x0, . . . , xn−2, 1),
(x, 0) = (x0, . . . , xn−2, 0), and (λ, 1) = (λ0, . . . , λn−2, 1). Suppose f ∈ BFn and
seq(f) has a period T = 2j < 2n. Then, f(x, 0) = f(x, 1).

c(λ, 1) =
1

2n/2





∑

x∈F
n−1

2

(−1)f(x,0)+(x,0)·(λ,1) + (−1)f(x,1)+(x,1)·(λ,1)





=
1

2n/2





∑

x∈F
n−1

2

(−1)f(x,0)
(

(−1)(x,0)·(λ,1) + (−1)(x,1)·(λ,1)
)





=
1

2n/2





∑

x∈F
n−1

2

(−1)f(x,0)
(

(−1)0·1 + (−1)1·1
)





=
1

2n/2





∑

x∈F
n−1

2

(−1)f(x,0) · 0





= 0.One of the Fourier oe�ients of f must equal zero. Thus, f annot be abent funtion. Clearly, every f -�ltered Boolean sequene has a minimal periodat most 2n. Therefore, if g is a bent funtion, then seq(g) has period exatly
2n. Boolean sequenes will be onsidered as 2-adi exansions of rational numbers.De�nition 5.0.6. Let f ∈ BFn and vi ∈ F

n
2 suh that vi = B−1(i) for 0 ≤ i <

2n. Then,
αf = (f(v0), f(v0) + f(v1) · 2, . . . , f(v0) + · · ·+ f(vi) · 2

i, . . . ) (36)where αf ∈ Z2 is alled the 2-adi expansion of f .38



Lemma 5.0.7. The digit representation of αf is seq(f).Reall the Maiorana-MFarland lass of Boolean funtions from Subsetion2.4.2, and onsider the subset of these funtions where g(y) = 0. Then thefollowing theorem is true.Theorem 5.0.8. log2(αf ) = 2n/2 + 2π̄(0) where f = x · π(y).Proof. Let f(x, y) = x · π(y) and (x, y) = (x0, . . . , xn−1, y0, . . . , yn−1) ∈ F
n
2where x, y ∈ F

n/2
2 . De�ne vi = (x, y)i = B−1(i) for 0 ≤ i ≤ 2n − 1. Then y = 0for 0 ≤ i ≤ 2n/2 − 1 and x = 0 for i = 2n/2. Thus, f(vi) = 0 for 0 ≤ i ≤ 2n/2.Now, log2(αf ) = min{i : f(vi) = 1}. The laim is that min{i : f(vi) = 1} =

2n/2 + 2π̄(0).Let A = {(x, y)i : 2
n/2 ≤ i ≤ 2n/2+1 − 1}. Then A is the set of vetors in F

n
2where

yk =

{

1 if k = 0

0 if k > 0If u = (x, y) ∈ A, then
f(u) = xπ̄(0)y0 =

{

1 if xπ̄(0) = 1

0 if xπ̄(0) = 0Then f(u) = 1 for exatly 2n/2−1 distint elements u ∈ A.De�ne (x′, y′) suh that
x′k =

{

1 if k = π̄(0)

0 if k 6= π̄(0)
y′k =

{

1 if k = 0

0 if k 6= 0Then B(x′, y′) ≤ B(u) for all u ∈ A. Thus, i = B(x′, y′) is the smallest i suhthat f(vi) = 1 and vi ∈ A. f(vi) = 0 for 0 ≤ i ≤ 2n/2.Therefore log2(αf ) = 2n/2 + 2π̄(0).Referenes[1℄ Z. I. Borevih and I. R. Shafarevih, Number theory, Aademi Press, 1966.[2℄ T. B. Brok, Linear feedbak shift registers and yli odes in Sage, Honorspaper (U.S.N.A. Department of Mathematis) (2006).[3℄ C. Carlet, Boolean funtions for ryptography and error orreting odes,Boolean Methods and Models (Y. Crama and P. L. Hammer, eds.), Cam-bridge University Press, 2006.[4℄ T. W. Cusik and P. St ni , Cryptographi Boolean funtions and applia-tions, Elsevier, 2009. 39
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