
Feedba
k with Carry Shift Registers and BentSequen
esMIDN 1/C Charles CelerierMay 7, 2012Abstra
tA stream 
ipher uses pseudorandom sequen
es to mimi
 the se
urityof a one-time pad. This paper will investigate how bent fun
tions 
anbe used to generate f-�ltered bent sequen
es with large 2-adi
 valuation.Rearrangements of these sequen
es 
ould be e�e
tive for �ltering the statesof feedba
k with 
arry shift registers (FCSRs) in stream 
iphers. The non-linearity of f-�ltered bent sequen
es 
ould provide resistan
e for FCSR-based stream 
iphers in register synthesis atta
ks. In this paper, we showthat it is possible to 
ompute the 2-adi
 valuation of a bent sequen
egenerated by a Maiorana-M
Farland 
lass Boolean fun
tion.1 Introdu
tionBytes of data, or short sequen
es of 1s and 0s, are ex
hanged between 
omputersystems ea
h day on publi
 
hannels. Be
ause gentlemen do read ea
h other'smail, it is ne
essary to se
ure the 
ommuni
ation of private data sent over publi

hannels. The solution to this problem is solved by 
ryptography, the designingof systems to se
ure data ex
hanges over publi
 
hannels.The following example is the 
lassi
al 
ommuni
ation s
enario presented inmany books on 
ryptography. Let there be two parties, Ali
e and Bob, whowish to 
ommuni
ate with one another. A third party, Eve, is a potentialeavesdropper. Ali
e wants to send a message, known as the plaintext, to Bob.To a

omplish this without Eve knowing what the message is before it is re
eivedby Bob, Ali
e must en
rypt her message by some prearranged method, usuallyinvolving an en
ryption key, to generate a related message 
alled 
iphertext.The idea is that the sent 
iphertext, even if it is inter
epted by Eve, will betoo di�
ult to interpret and will 
on
eal the plaintext message. Upon re
eiptof the 
iphertext, Bob will de
rypt the message, usually involving a de
ryptionkey, similar to the en
ryption of the message, and obtain the plaintext message.A visual of this s
enario is presented in Figure 1.This s
enario is the standard example found in many di�erent introdu
tory
ryptography referen
es. Cryptographers have 
reated numerous en
ryptionand de
ryption s
hemes, or 
ryptosystems, to se
ure the messages sent between1
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ommuni
ation s
enario for 
ryptographyAli
e and Bob. Many of these systems have been broken be
ause of the amountof work that goes into the study of breaking 
ryptosystems, 
alled 
ryptanaly-sis. A 
onstant battle exists between the designers and breakers of 
ryptosys-tems, strengthening designs and atta
ks every day. In fa
t, designing a strong
ryptosystem typi
ally requires knowledge of 
ryptography and 
ryptanalysis.When designing a 
ryptosystem, every 
ryptographer assumes Ker
kho�s' prin-
iple [22℄: �In assessing the se
urity of a 
ryptosystem, one should always assumethe enemy knows the method being used.� The se
urity of a 
ryptosystem 
an-not be based on the 
on
ealment of the en
ryption and de
ryption algorithms.In pra
ti
e, the enemy 
an obtain the algorithms in many ways, in
luding thedefe
tion or 
apture of people. The se
urity must be based solely on the key.This paper will explore bent sequen
es for their potential strength in stream
iphers. A

ording to Rueppel in [19℄, a stream 
ipher divides bit sequen
esinto individual bits and en
iphers ea
h bit with a time-varying fun
tion whosetime-dependen
y is governed by the internal state of the stream 
ipher. Thestream 
ipher 
an also be thought of in terms of a keystream whi
h is a sequen
eof 1s and 0s the same length of the message that is added to the message usingaddition in F2 (also known as XOR). If the keystream was perfe
tly random,then the 
ryptosystem would be unbreakable, or perfe
tly se
ret, as dis
overedby Claude Shannon in his famous paper �Communi
ation Theory of Se
re
ySystems,� written se
retly in 1945 and published in 1949. This 
ryptosystemis known as the one-time pad. Though it is perfe
tly se
ret, it 
an be di�
ultto implement be
ause of the inability to produ
e perfe
tly random keystreams.Constru
ting a method to produ
e perfe
tly random sequen
es is a 
ontradi
tionin itself.Though it is di�
ult to 
reate perfe
tly random sequen
es, it is feasible toget 
lose. A sequen
e whi
h is 
lose to being random is 
alled a pseudorandomsequen
e. In [6℄, Golomb lists three randomness postulates on periodi
 binarysequen
es:R-1. In every period, the number of 0s is nearly equal to the number of 1s.R-2. In every period, half the runs have length one, one-fourth have lengthtwo, one-eighth have length three, et
., as long as the number of runs so2



indi
ated ex
eeds 1. Moreover, for ea
h of these lengths, there are equallymany runs of 0s and of 1s.R-3. The auto-
orrelation fun
tion C(τ) is two-valued. Expli
itly
C(τ) =

1

p

p
∑

n=1

(−1)anan+τ =

{

1 if τ = 0,

K if 0 < τ < p.These postulates today have be
ome a measure of how 
lose a sequen
e is tobeing 
onsidered pseudorandom. The 
laim is that binary sequen
es with ex-tremely long periods would be nearly indistinguishable from perfe
tly randombinary sequen
es.In the 
ase of this paper, the f -�ltered Boolean sequen
e de�ned in Se
tion 5is 
onsidered in the 
ontext of pseudorandom sequen
es and FCSRs. The mainresult is the 
al
ulated 2-adi
 valuation of f -�ltered bent sequen
es generatedby the Maiorana-M
Farland 
lass of Boolean fun
tions.In Se
tion 2, Boolean fun
tions are �rst introdu
ed, and the se
tion 
on-
ludes with the de�nition of the Walsh transform and bent fun
tions. In Se
-tion 3, the N -adi
 ring is de�ned and a few properties of 2-adi
 sequen
es aredis
ussed. The 2-adi
 valuation de�ned in this se
tion is 
riti
al to understand-ing the main result in Se
tion 5. Se
tion 4 de�nes the FCSR following a funda-mental dis
ussion on �nite state ma
hines and n-state shift registers. Two shiftregister synthesis algorithms are given to demonstrate the ne
essity of addinga non-linear 
omponent to an FCSR before using it as a se
ure stream 
ipher.Finally, Se
tion 5 de�nes what this paper 
alls f -�ltered Boolean sequen
es andproves the main result on the 2-adi
 valuation of bent sequen
es generated bythe fun
tions in the Maiorana-M
Farland 
lass.Most of the examples in this paper are shown using Sage v4.8. Meth-ods and fun
tions for the examples are either from the 
lass sage.
rypto.boolean_fun
tions, whi
h 
omes with the 
urrent version of Sage, or 
an befound in the s
ript afsr.sage whi
h is available for download athttps://github.
om/
elerier/oslo .To use the methods and fun
tions, type the following in your Sage 
onsole:Sagesage: from sage.
rypto .boolean_fun
tions import *sage: atta
h afsr.sageA
knowledgments: I thank Professor David Joyner for his advi
e and expertisewhi
h allowed me to write this paper. Without his help, this work would nothave been possible. I would also like to thank Professor Mark Goresky of thePrin
eton Institute for Advan
ed Study for his kind en
ouragement and forsuggesting the problem addressed by the main result of this thesis. I also thank3
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the Math Department for travel funds to attend the National Conferen
e forUndergraduate Resear
h at Weber State University in Ogden, Utah.2 Boolean Fun
tionsThis se
tion will establish the de�nition of a Boolean fun
tion and how to writethese fun
tions as polynomials. The goal is to introdu
e the Walsh transform,and important tools used in 
ryptography. The Walsh transform measures thenon-linearity of a Boolean fun
tion. This se
tion 
on
ludes with the de�nition ofbent fun
tions whi
h in terms of the Walsh transform are �perfe
tly non-linear�Boolean fun
tions. The de�nitions and notations will follow those found in [4℄.2.1 Review of Boolean Fun
tionsThe two element �eld (F2,⊕, ·) is the set {0, 1} with de�ned binary operations
⊕ and ·, also 
ommonly referred to as the logi
al XOR and AND operatorsrespe
tively. XOR AND

0⊕ 0 := 0 0 · 0 := 0
0⊕ 1 := 1 0 · 1 := 0
1⊕ 0 := 1 1 · 0 := 0
1⊕ 1 := 0 1 · 1 := 1Table 1: Binary Operations for F2It should be 
lear that (F2,⊕, ·) is a 
ommutative ring with an identity.Additionally, the only non-zero element 1 is its own inverse. In fa
t, (F2,⊕, ·)is a �nite �eld, whi
h will now be denoted by F2. The n-dimensional ve
torspa
e over F2 will be denoted by F

n
2 , with the usual inner produ
t. Componentsof ve
tors in F

n
2 will be known as bits. For two ve
tors x, y ∈ F

n
2 where x =

(x0, . . . , xn−1) and y = (y0, . . . , yn−1), the inner produ
t in F
n
2 will be de�nedas x · y := x0 · y0 ⊕ · · · ⊕ xn−1 · yn−1.The elements of F2 will sometimes be regarded as integers and other times aselements of Z/2Z. Generally, the only time that 
onsidering 0 and 1 as elementsof F2 is ne
essary is when adding ve
tors in F

n
2 .Example 2.1.1. Sagesage: V=GF (2) ^3sage: a=V([1 ,0 ,1℄) ; b=V([0 ,1 ,1℄) ;sage: a+b(1, 1, 0)sage: a.dot_produ
t (b)1 4



Ea
h ve
tor in F
n
2 
an be uniquely represented by an integer between 0 and

2n − 1. To do this, the 
omponents of ea
h ve
tor in F
n
2 are trivially mappedto the integers 0 and 1, and then used in the one-to-one binary representationfun
tion B:

B : Fn
2 → {0, . . . , n− 1} such that B(u) :=

n−1
∑

i=0

ui · 2
i. (1)If we de�ne the ve
tors vi ∈ F

n
2 by vi = B−1(i) for 0 ≤ i ≤ 2n−1, then thesequen
e (v0, v1, . . . , v2n−1) is said to be in binary order. This ordering is thestandard ordering used by Sage to list ve
tors in F

n
2 .Example 2.1.2. Sagesage: V=GF (2) ^3sage: V.list ()[(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1),(0, 1, 1), (1, 1, 1)℄sage: [GFn_to_integer(v) for v in V℄[0, 1, 2, 3, 4, 5, 6, 7℄This de�nition of B has 
reated the 
onvention where the least signi�
antbit appears on the left and the most signi�
ant bit appears on the right. TheHamming weight and Hamming distan
e fun
tions are used to 
ount the numberof 1s in a ve
tor and 
ount the number of di�eren
es between two ve
tors in F

n
2 .These are fundmental fun
tions in 
oding theory and are useful when talkingabout Boolean fun
tions.De�nition 2.1.3. Let x, y ∈ F

n
2 . Then wt : Fn

2 → {0, . . . , n} is de�ned by
wt(x) :=

n−1
∑

i=0

xiand d : Fn
2 × F

n
2 → {0, . . . , n} is de�ned by

d(x, y) := wt(x+ y).Then wt(x) is the Hamming weight of x and d(x, y) is the Hamming distan
ebetween x and y.De�nition 2.1.4. Let x ∈ F
n
2 . Then supp : Fn

2 → 2{0,...,n−1} is de�ned by
supp(x) := {i ∈ {0, . . . , n− 1} : xi = 1}Example 2.1.5. 5



Sagesage: V=GF (2) ^5sage: a=V([0,1,1,0,1℄) ; b=V([0,0,1,1,0℄)sage: Hamming_weight(a)3sage: Hamming_weight(b)2sage: a.support ()[1, 2, 4℄sage: b.support ()[2, 3℄sage: Hamming_weight(a+b)3 There is an interesting orthogonality property in the ve
tor spa
e Fn
2 knownas the orthogonality prin
iple that every non-zero ve
tor in F

n
2 is orthogonal toexa
tly half of the ve
tors in the ve
tor spa
e.Proposition 2.1.6. Let x ∈ F

n
2 . Then

∑

y∈F
n
2

(−1)x·y =

{

2n for x = 0,

0 otherwise.Proof. Let x = 0 ∈ F
n
2 . Then ∀y ∈ F

n
2 , x · y = 0, so (−1)x·y = 1. Therefore,

∑

y∈F
n
2
(−1)x·y = |Fn

2 | = 2n.Let x ∈ F
n
2 where x 6= 0. Assume the ith bit of x is non-zero and de�ne

ei ∈ F
n
2 as a ve
tor with all zero bits ex
ept for the ith bit whi
h is 1. Then

∑

y∈F
n
2

(−1)x·y =
∑

y∈F
n
2

(−1)x·(y+ei)

=
∑

y∈F
n
2

(−1)x·y(−1)x·ei

= −
∑

y∈F
n
2

(−1)x·y.Therefore,∑y∈F
n
2
(−1)x·y = −

∑

y∈F
n
2
(−1)x·y, whi
h implies

∑

y∈F
n
2

(−1)x·y = 0.Example 2.1.7. Sagesage: V=GF (2) ^6sage: [sum ([( -1) ^(x.dot_produ
t (y)) for y in V℄) for x in V℄6



[64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0℄When introdu
ed to a new ve
tor spa
e, it is natural to begin looking atfun
tions in that �eld. The parti
ular fun
tions of interest here will be whatare known as Boolean fun
tions.De�nition 2.1.8. Any fun
tion f de�ned su
h that
f : Fn

2 → F2is a Boolean fun
tion. The set of all Boolean fun
tions on n variables will bedenoted by BFn.The number of Boolean fun
tions in
reases extremely rapidly as the numberof variables in
reases.1
|BFn| = 22

n (2)The Boolean fun
tion f is presented in a truth table in Table 2. The Ham-ming weight of f is the number of 1s that f has when evaluated at every pointin the F
n
2 :

wt(f) = |{u ∈ F
n
2 : f(u) = 1}|.2.2 Boolean PolynomialsA truth table is not a very 
ompa
t method to de�ne a Boolean fun
tion. It ismu
h more e�
ient and easier to implement a Boolean fun
tion when writtenas a formula. This 
an be done by writing a Boolean fun
tion algebrai
ally. Asa �rst step toward de�ning f algebrai
ally a one-to-one and onto fun
tion willbe de�ned whi
h maps every f in BFn to a ve
tor in F

2n

2 . This will be thefun
tion V : BFn → F
2n

2 su
h that
V (f) := (f(v0), . . . , f(v2n−1)) where vi = B−1(i). (3)It is trivial to show that addition is homomorphi
 under V ,

V (f1 ⊕ f2) = V (f1)⊕ V (f2).1With today's fastest super
omputer operating at 10.51 peta�ops (the K 
omputer inJapan), if one �oating point operation was expended visiting every Boolean fun
tion of 7variables, it would take over a thousand trillion years to 
omplete the pro
ess. This length oftime is roughly 70,000 times the age of the universe. Though every symmetri
 
ryptosystemin use 
an be broken down into several Boolean fun
tions of several variables, it would beinfeasible to brute for
e sear
h through all of the possibilities of Boolean fun
tions whi
hre
onstru
t the 
ryptosystem. 7



x0 x1 x2 x3 f(x0, x1, x2, x3)0 0 0 0 01 0 0 0 10 1 0 0 11 1 0 0 00 0 1 0 11 0 1 0 00 1 1 0 11 1 1 0 00 0 0 1 01 0 0 1 00 1 0 1 11 1 0 1 00 0 1 1 01 0 1 1 00 1 1 1 11 1 1 1 1Table 2: Truth Table of fThen the standard basis of F2n

2 
an be used to pull ba
k to an equivalent basisof BFn. Let ei ∈ F
2n

2 be de�ned so that
e0 = (1, 0, . . . )

e1 = (0, 1, . . . )...
e2n−1 = (0, . . . , 0, 1).The atomi
 Boolean fun
tions will be de�ned as the fi ∈ BFn where thereexists an ei ∈ F

2n

2 su
h that V (fi) = ei. Every ve
tor of F2n

2 
an be writtenas a linear 
ombination of the standard basis ve
tors, and equivalently, everyBoolean fun
tion is a linear 
ombination of atomi
 Boolean fun
tions. Thismeans for every u ∈ F
2n

2 there exists a set of ci ∈ F2 su
h that
u = c0e0 ⊕ · · · ⊕ c2n−1e2n−1

⇔ f = c0f0 ⊕ · · · ⊕ c2n−1f2n−1.where V (f) = u.The fun
tion f de�ned in Table 2 
an be written as a linear 
ombinationof the atomi
 Boolean fun
tions in BF4. Sin
e the 
oe�
ients in the linear
ombinations are either 0 or 1, it is true that every Boolean fun
tion 
an bewritten as the sum of wt(f) atomi
 Boolean fun
tions.The equation f = f1 + f2 + f4 + f6 + f10 + f14 + f15 should be 
lear fromTable 3. Knowing how to write the atomi
 Boolean fun
tions as polynomials8



x0 x1 x2 x3 f f1 f2 f4 f6 f10 f14 f150 0 0 0 0 0 0 0 0 0 0 01 0 0 0 1 1 0 0 0 0 0 00 1 0 0 1 0 1 0 0 0 0 01 1 0 0 0 0 0 0 0 0 0 00 0 1 0 1 0 0 1 0 0 0 01 0 1 0 0 0 0 0 0 0 0 00 1 1 0 1 0 0 0 1 0 0 01 1 1 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 01 0 0 1 0 0 0 0 0 0 0 00 1 0 1 1 0 0 0 0 1 0 01 1 0 1 0 0 0 0 0 0 0 00 0 1 1 0 0 0 0 0 0 0 01 0 1 1 0 0 0 0 0 0 0 00 1 1 1 1 0 0 0 0 0 1 01 1 1 1 1 0 0 0 0 0 0 1Table 3: f broken into atomi
 Boolean fun
tion in BF4would lead to knowing how to write any Boolean fun
tion as a polynomial. Thepolynomials representing the Boolean fun
tions will belong to the the polyno-mial ring F2[x0, . . . , xn−1]/(x
2
0 ⊕ x0, . . . , x

2
n−1 ⊕ xn−1). To properly representan atomi
 Boolean fun
tion, a polynomial must equal 1 at only one ve
tor

(x0, . . . , xn−1). Re
all the support fun
tion from De�nition 2.1.4. Then thepolynomial respresenting ea
h Boolean fun
tion is as follows:
fi =

(

∏

j∈supp(B−1(i))

xj

)(

∏

j 6∈supp(B−1(i))

(1 ⊕ xj)

)

. (4)Proof. Let x = B−1(i) where x = (x0, . . . , xn−1). Then {xi : xi = 1} = {xi :
i ∈ supp(x)}. Therefore,

fi(x) =

(

∏

j∈supp(B−1(i))

xj

)(

∏

j 6∈supp(B−1(i))

(1 ⊕ xj)

)

= 1.Let x 6= B−1(i). Then,
(

∏

j∈supp(B−1(i))

xj

)

= 0

∴ fi(x) = 0.

9



Now the fun
tion f from Table 2 
an be written as the sum of the followingatomi
 polynomials:
f1 = (1⊕ x3)(1⊕ x2)(1⊕ x1)x0

= x0 ⊕ x1x0 ⊕ x2x0 ⊕ x2x1x0 ⊕ x3x0 ⊕ x3x1x0 ⊕ x3x2x0 ⊕ x3x2x1x0

f2 = (1⊕ x3)(1⊕ x2)x1(1⊕ x0)

f4 = (1⊕ x3)x2(1⊕ x1)(1⊕ x0)

f6 = (1⊕ x3)x2x1(1 ⊕ x0)

f10 = x3(1 ⊕ x2)x1(1 ⊕ x0)

f14 = x3x2x1(1⊕ x0)

f15 = x3x2x1x0After summing the atomi
 polynomials upon multiplying them out,
f = x0x1x2x3 ⊕ x0x1x3 ⊕ x0x3 ⊕ x0 ⊕ x1x2x3 ⊕ x1x2 ⊕ x1 ⊕ x2x3 ⊕ x2.This result is easily veri�ed in Sage: Sagesage: f=BooleanFun
tion ([0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1℄)sage: f.algebrai
_normal_form ()x0*x1*x2*x3 + x0*x1*x3 + x0*x3 + x0 + x1*x2*x3 + x1*x2 + x1 + x2*x3 + x2Now the uniqueness of the polynomial representation for ea
h Boolean fun
-tion is 
onsidered. This is easily seen by 
onsidering the uniqueness of ea
hBoolean fun
tion and the size of the polynomial ring.Theorem 2.2.1. Ea
h n-variable Boolean fun
tion is uniquely represeneted asa polynomial in the polynomial ring F2[x0, . . . , xn−1]/(x

2
0⊕x0, . . . , x

2
n−1⊕xn−1).Let f ∈ BFn. Then there exists a unique set of aI ∈ F2, I ∈ 2{0,...,n−1}, su
hthat

f(x) =
∑

I∈2{0,...,n−1}

aI

(

∏

i∈I

xi

) (5)Proof.
|BFn| = |F2n

2 |

= |{(a∅, . . . , aI , . . .) : aI ∈ F2}|

= |F2[x0, . . . , xn−1]/(x
2
0 ⊕ x0, . . . , x

2
n−1 ⊕ xn−1)|Be
ause every Boolean fun
tion is determined by at least one polynomial and thesize of the polynomial ring equals the size of the set of all Boolean fun
tions,ea
h Boolean fun
tion must be uniquely determined by a polynomial in thepolynomial ring. 10



2.3 The Walsh TransformThe Walsh transform measures the non-linearity of a Boolean fun
tion by deter-mining the distan
e between a given Boolean fun
tion f(x) and a linear fun
tion
λ · x. The Walsh transform is similar to the dis
rete Fourier transform and isin fa
t used to obtain the Fourier 
oe�
ients for a Boolean fun
tion. For thispaper, the Walsh transform is 
onsidered over the dis
rete Fourier transformbe
ause this is the transformation used by Rothaus in his original de�nition ofbent fun
tions published in the Journal of Combinatorial Theory in 1976 [20℄.The de�nitions in this se
tion follow [18℄.De�nition 2.3.1. A 
hara
ter χ of a �nite abelian group G is a group homo-morphism from G into the multipli
ative group of 
omplex numbers.For the purposes of this paper, it should be 
lear that χλ(x) := (−1)λ·x where
λ, x ∈ F

n
2 is a group 
hara
ter of Fn

2 . De�ne the dual group F̂n
2 to be the groupof all 
hara
ters of Fn

2 . The group operation in F̂n
2 is pointwise multipli
ationof fun
tions:

(χ · ψ)(x) = χ(x)ψ(x), x ∈ F
n
2 .This operation is 
losed under multipli
ation.Lemma 2.3.2. F

n
2
∼= F̂n

2Proof. Let Υ : Fn
2 → F̂n

2 where Υ(λ) := χλ. Every 
hara
ter in F̂n
2 
orrespondsto an element of Fn

2 . Thus, |Fn
2 | = |F̂n

2 |. Therefore if Υ is one-to-one, then itmust be an isomorphism.Let Υ(λ1) = Υ(λ2). Then for all x
(−1)λ1·x = (−1)λ2·x

= (−1)(λ1+λ1+λ2)·x

= (−1)λ1·x(−1)(λ1+λ2)·x.Finally, (λ1 + λ2) · x = 0 for all x ∈ F
n
2 , whi
h implies λ1 + λ2 = 0. Therefore,

λ1 = λ2.Addition in F
n
2 
orresponds to multipli
ation in F̂n

2 . By de�nition
(χλ1

·χλ2
)(x) = χλ1

(x)χλ2
(x) = (−1)λ1·x(−1)λ2·x = (−1)(λ1+λ2)·x = χλ1+λ2

(x).It is 
lear from the proof of Lemma 2.3.2 that all the 
hara
ters of Fn
2 
or-respond to all of the linear fun
tions in BFn.De�nition 2.3.3. Let f ∈ BFn. Then f̂ : Fn

2 → R su
h that f̂(x) = (−1)f(x)is a pseudo-Boolean fun
tion. The set of all pseudo Boolean fun
tions is denoted
B̂Fn = {f̂ : f ∈ BFn}.Lemma 2.3.4. Every 
hara
ter χλ belongs to ˆBFn.11



Proof. This is trivially true.Lemma 2.3.5. If
W = span

R
(B̂Fn) =

{

∑

i∈I

aif̂i : f̂i ∈ B̂Fn, ai ∈ R, and |I| <∞

}

,then the F̂n
2 forms an orthonormal basis of W .Proof. The atomi
 Boolean fun
tions 
orrespond to a basis of W . Thus, thedimension of ˆBFn is at most 2n. The 2n 
hara
ters of Fn

2 are elements of B̂Fn,by Lemma 2.3.4.
∑

x∈F
n
2

χλi
(x) · χλj

(x) =
∑

x∈F
n
2

(−1)(λi+λj)·x

=

{

0 if i 6= j

2n if i = j.Therefore, the 
hara
ters of Fn
2 are orthonormal in W . Sin
e the dimension of

W is at most 2n, and there are 2n 
hara
ters, F̂n
2 forms an orthonormal basis of

W .De�nition 2.3.6. Let f ∈ BFn and λ ∈ F
n
2 . Then the Walsh transform of f isde�ned by:

Wf (λ) =
∑

x∈F
n
2

f̂(x)χλ(x). (6)Let
W(f) = (Wf (λ0), . . . ,Wf (λ2n−1)),where λi = B−1(i), be the Walsh spe
trum of f .Example 2.3.7. Here are some examples of the Walsh spe
trums of di�erentBoolean fun
tions: Sagesage: f0= BooleanFun
tion([0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1℄)sage: f0. walsh_hadamard_transform ()(-2, 6, -6, -6, -2, -2, 2, -6, 2, 2, 6, -2, 2, -6, -2, -2)sage: f0. algebrai
_normal_form ( )x0*x1*x2*x3 + x0*x1*x3 + x0*x3 + x0 + x1*x2*x3 + x1*x2 + x1 + x2*x3 + x2sage:sage: f1= BooleanFun
tion([1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0℄)sage: f1. walsh_hadamard_transform ()(0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)sage: f1. algebrai
_normal_form ()x0 + 1sage:sage: f2= BooleanFun
tion([1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1℄)12



sage: f2. walsh_hadamard_transform ()(0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)sage: f2. algebrai
_normal_form ()x0 + x1 + 1sage:sage: f3= BooleanFun
tion([1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,1℄)sage: f3. walsh_hadamard_transform ()(2, 2, -2, 14, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2)sage: f3. algebrai
_normal_form ( )x0*x1*x2*x3 + x0 + x1*x2*x3 + x1 + 1Every pseudo-Boolean fun
tion 
an be written as a linear 
ombination of the
hara
ters of Fn
2 . The 
oe�
ients in these linear 
ombinations reveal importantproperties of the fun
tions. Rothaus rewrote the pseudo-Boolean fun
tion as alinear 
ombination of 
hara
ters as follows [20℄.Lemma 2.3.8. For f̂ ∈ B̂Fn,

f̂(x) =
1

2n/2

∑

λ∈F
n
2

c(λ)χλ(x) (7)where c(λ) are given by
c(λ) =

1

2n/2
Wf (λ) (8)Ea
h c(λ) is 
alled a Fourier 
oe�
ient of f . As observed by Rothausin [20℄, 2n/2c(λ) is the number of zeros minus the number of ones of the fun
tion

f(x)+λ·x. The Hamming weight of f is easily determined using the zero Fourier
oe�
ient c(0):
c(0) =

1

2n/2

∑

x∈F
n
2

(−1)f(x)

=
1

2n/2
(

(2n − wt(f))− wt(f)
)

⇒ wt(f) = 2n−1 − 2n/2−1c(0). (9)Example 2.3.9. There are two 
ases that should be 
lear to the reader.1. Let f(x) = λ · x. Then Wf (λ) = 2n.2. Let f(x) 6= λ · x ∀x. Then f(x) = λ · x+ 1 ∀x. So, Wf (λ) = −2nIn both 
ases, f is an a�ne fun
tion.For large |Wf (λ)|, the Hamming distan
e between f and an a�ne fun
tionin BFn is small. 13



2.4 Bent Fun
tionsThese fun
tions are useful in 
ryptographi
 appli
ations be
ause they add re-sistan
e to di�erential atta
ks as a result of being �perfe
tly non-linear�. Asmentioned before, these were de�ned by Rothaus in 1976. The main result inSe
tion 5 is given on bent fun
tions be
ause of their important 
ryptographi
property of being as far away as possible from every a�ne fun
tion in BFn.De�nition 2.4.1. If all of the Fourier 
oe�
ients of f̂ are ±1 then f is a bentfun
tion.Proposition 2.4.2. [20℄ If f is a bent fun
tion on F
n
2 , then n is even, n = 2k.Moreover, the degree of f is at most k, ex
ept in the 
ase k = 1.Proof. c(λ) = ±1. This implies 2n/2c(λ) is an integer. Therefore n must beeven.Let n = 2k with k > 1, and let r > k. Consider the polynomial f(x,

0, 0, . . . , 0) = g(x) where x = (x1, x2, . . . , xr) (up to this point all indexing hasstarted at 0; it is more 
onvenient in this proof to begin numbering at 1). Thenby Equation (7),
ĝ(x) =

1

2r/2

∑

λ1,λ2,...,λr=0,1

b(λ1, . . . , λr)χ(λ1,...,λr)(x)and
f̂(x, 0) =

1

2n/2

∑

λ1,λ2,...,λn=0,1

c(λ1, . . . , λn)χ(λ1,...,λn)(x, 0).Be
ause f(x, 0) = g(x) and the uniqueness of the Fourier expansion, b and c arerelated su
h that
b(λ1, . . . , λr) =

1

2(n−r)/2

∑

λr+1,...,λn=0,1

c(λ1, . . . , λr , λr+1, . . . , λn).Then,
wt(f(x, 0)) = wt(g(x))

= 2r−1 − 2r/2−1b(0)

= 2r−1 − 2r−n/2−1
∑

λr+1,...,λn=0,1

c(0, . . . , 0, λr+1, . . . , λn).There are 2n−r summands in ∑ c(0, . . . , 0, λr+1, . . . , λn). Sin
e f is bent,
c(λ) = ±1. By rewriting 1 = −1 + 2,

∑

c(0, . . . , 0, λr+1, . . . , λn) = −2n−r + 2wt(c(0, . . . , 0, λr+1, . . . , λn))

= 2
(

wt(c(0, . . . , 0, λr+1, . . . , λn))− 2n−r−1
)Thus, wt(g(x)) is even. This implies that g(x) is the sum of an even num-ber of atomi
 Boolean fun
tions. Therefore the 
oe�
ient of x1x2 · · ·xr in thepolynomial representing g(x) must be 0. This is true for every r > k, so thedegree of f must not be greater than k.14



The set of all bent fun
tions is not known. There however are a few ba-si
 
onstru
tions whi
h are known. The Rothaus 
onstru
tion and Maiorana-M
Farland 
lass of Boolean fun
tions are presented here as two of the known
onstru
tions for bent fun
tions.2.4.1 Rothaus Constru
tion of Bent Fun
tionsIn one of the �rst papers written about bent fun
tions, Rothaus identi�ed twolarge general 
lasses of bent fun
tion on BFn, n = 2k. The simpler of the twois presented here:Proposition 2.4.3. Let n be even, x1, y1, . . . , xk, yk be independent variables,and P (x) ∈ BFn/2 (so P (x) is a fun
tion n/2 variables). Then the polynomial
Q(x, y) ∈ BFn given by

Q(x, y) = x1y1 + x2y2 + · · ·+ xkyk + P (x) (10)is bent.The proof that this fun
tion is bent 
an be found in Rothaus' paper [20℄.Example 2.4.4. Both f and g in this example are bent a

ording to Rothaus.Sagesage: B=BooleanPolynomialRing (6,'x')sage: B.inje
t_variables(verbose =false)sage: f=BooleanFun
tion(x0*x1+x2*x3+x4*x5)sage: f.truth_table (format ='int ')(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0,0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,1)sage: f.is_bent ()Truesage: g=f+BooleanFun
tion(x0*x2+x0)sage: g.truth_table (format ='int ')(0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0,0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0,1)sage: g.is_bent ()True2.4.2 Maiorana-M
Farland Class Constru
tion of Bent Fun
tionsThe Maiorana-M
Farland 
lass (or M-M 
lass) of Boolean fun
tions is a gener-alized Rothaus 
onstru
tion of bent fun
tions. It uses a permutation fun
tion
π on half of the input variables to ea
h fun
tion.De�nition 2.4.5. Let π : Fk

2 → F
k
2 be the linear transformation on F

n
2 rep-resented by the matrix π ∈ Mk×k(F2) su
h that the matrix π has exa
tly knon-zero entries arranged so that every row and 
olumn has exa
tly one non-zero entry. Then π is a permutation matrix.15



Example 2.4.6. Sagesage: pi0 =matrix (GF (2) ,[[0,0,1℄,[1,0,0℄ ,[0,1,0℄℄)sage: pi0[0 0 1℄[1 0 0℄[0 1 0℄sage: V=GF (2) ^3sage: x=V([0 ,1 ,1℄) ; y=V([1 ,0 ,0℄)sage: (matrix (x)).transpose ()[0℄[1℄[1℄sage: pi0 *( matrix (x)).transpose ()[1℄[0℄[1℄sage: (matrix (y)).transpose ([1℄[0℄[0℄sage: pi0 *( matrix (y)).transpose ( )[0℄[1℄[0℄For every permutation fun
tion π on F
k
2 the 
omponent permutation fun
tion

π̄ 
an de�ned su
h that for 0 ≤ i ≤ k − 1,
π̄(i) = j where π(ei) = ej for basis ve
tors ei, ej ∈ F

k
2 .Example 2.4.7. If π0 =





0 0 1
1 0 0
0 1 0



 and π1 =





0 1 0
1 0 0
0 0 1



, then π̄0 is thepermutation 
y
le (0 1 2) and π̄1 is the permutation 
y
le (0 1)(2).A simple bent fun
tion 
onstru
tion is a

omplished by using permutationslike the ones de�ned here. These Boolean fun
tions belong to the Maiorana-M
Farland original 
lass. This is the setM whi
h 
ontains all Boolean fun
tionson F
n
2 = {(x, y) = (x0, . . . , xn−1, y0, . . . , yn−1) : x, y ∈ F

n/2
2 }, of the form

f(x, y) = x · π(y)⊕ g(y)where π is any permutation on F
n/2
2 and g is any Boolean fun
tion on F

n/2
2 .Proposition 2.4.8. [3℄All fun
tions in the Maiorana-M
Farland 
lass of Boolean fun
tions are bent.The proof of these fun
tions being bent 
an be found in [3℄.Example 2.4.9. Both f and g in this example are in the Maiorana-M
Farland
lass of Boolean fun
tions. 16



Sagesage: f=BooleanFun
tion(x0*x4+x1*x3+x2*x5)sage: f.truth_table (format ='int ')(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,1)sage: f.is_bent ()Truesage: g=f+BooleanFun
tion(x0*x2+x0)sage: g.is_bent ()True3 N-adi
 IntegersThis se
tion introdu
es the N -adi
 integer ring and de�nes the 2-adi
 valuationwhi
h is 
riti
al to the main result of the paper. The 2-adi
 integers are very
losely 
onne
ted with the binary sequen
es generated by FCSRs whi
h aredis
ussed in Se
tion 4.3.1 N-adi
 Integer RingThe notation used in the de�nition of the N -adi
 numbers will follow the samenotation used by Borevi
h and Shafarevi
h in Chapter 1 of Number Theory [1℄.In this se
tion, the set of N -adi
 integers is shown to be a 
ommutative ringwith an identity.De�nition 3.1.1. Let N be an integer. Then the in�nite integer sequen
e (xn)determines an N -adi
 integer α, or (xn) → α, if
xi+1 ≡ xi (mod N i+1) ∀i ≥ 0. (11)Two sequen
es (xn) and (x′n) determine the same N -adi
 integer if
xi ≡ x′i (mod N i+1) ∀i ≥ 0. (12)The set of all N -adi
 integers will be denoted by ZN .Ea
h integer x is asso
iated with a N -adi
 integer, determined by the se-quen
e (x, x, . . . , x, . . . ). These integers will be 
alled rational integers in the

N -adi
 integers.Example 3.1.2. Let (xn) → α ∈ Z3. Then the �rst 5 terms of (xn) may looksomething like:
(xn) = ( 1 , 1 + 2 · 3 , 1 + 2 · 3 + 1 · 32 ,

1 + 2 · 3 + 1 · 32 , 1 + 2 · 3 + 1 · 32 + 1 · 34 , . . . )

= (1, 7, 16, 16, 97, . . .) 17



Then equivalent sequen
es to (xn) 
ould begin di�erently for the �rst few terms:
(yn) = (4, 25, 16, 178, 583, . . .)

(zn) = (−2,−47, 232,−308, 97, . . .)The sequen
es for (yn) and (zn) satisfy equation (11) for the �rst 5 terms, sothey 
ould be N -adi
 integers up to this point. Also, both are equivalent to
(xn) a

ording to the equivalen
e de�ned in equation (12).

1 ≡ 4 ≡ 2 (mod 3)

7 ≡ 25 ≡ −47 (mod 32)

16 ≡ 16 ≡ 232 (mod 33)

16 ≡ 178 ≡ −308 (mod 34)

97 ≡ 583 ≡ 97 (mod 35)Therefore (xn), (yn), (zn) → α.Be
ause there are in�nitely many sequen
e representations for any N -adi
integer, it is useful to de�ne a 
anoni
al sequen
e to be used when writingN -adi
integers as sequen
es.De�nition 3.1.3. For a given N -adi
 integer α, a given sequen
e (an) with theproperties:i. (an) → αii. (an) = (a0, a0 + a1 ·N, . . . , a0 + · · ·+ ai ·N
i, . . . ) : 0 ≤ ai < N ∀i ≥ 0will be 
alled 
anoni
al.The sequen
e (a0, a1, a2, . . . , ai, . . . ) is the digit representation of α. When

N < 10, the digits are usually written adja
ent to one another. Another equiva-lent representation of α is the power series representation where α =
∑∞

i=0 aiN
iwhere the ai's are from the digit representation of α.Example 3.1.4. In Example 3.1.2, the sequen
e (xn) was a 
anoni
al sequen
ethat determined the N -adi
 integer α. A few more examples of 
anoni
al se-quen
es determining 7-adi
 integers are given here:

β = 3164 · · · = 3 + 1 · 7 + 6 · 72 + 4 · 73 + · · · , then the 
anoni
al sequen
e
(bn) → β is

(bn) = (3, 3 + 1 · 7, 3 + 1 · 7 + 6 · 72, 3 + 1 · 7 + 6 · 72 + 4 · 73, . . . )

= (3, 10, 304, 1676, . . .)

γ = 0164 · · · = 0+1 ·7+6 ·72+4 ·73+ · · · , then the 
anoni
al sequen
e (cn) → γis
(cn) = (0, 1 · 7, 1 · 7 + 6 · 72, 1 · 7 + 6 · 72 + 4 · 73, . . . )

= (0, 7, 301, 1673, . . .)18



δ = 5031 · · · = 5+0 ·7+3 ·72+1 ·73+ · · · , then the 
anoni
al sequen
e (dn) → δis
(dn) = (5, 5, 5 + 3 · 72, 5 + 3 · 72 + 1 · 73, . . . )

= (5, 5, 152, 495, . . . ).De�nition 3.1.5. Addition and multipli
ation in ZN are done term by term.Let α, β ∈ ZN and (xn) → α, (yn) → β. Then,
(xn) + (yn) := (x0 + y0, x1 + y1, . . . ) → α+ β

(xn) · (yn) := (x0 · y0, x1 · y1, . . . ) → α · βDe�ne (0, 0, 0, . . . ) → 0 ∈ ZN and (1, 1, 1, . . . ) → 1 ∈ ZNLemma 3.1.6. For α ∈ ZN , α+ 0 = 0 + α = α and 1 · α = α · 1 = α.Proof. Let (xn) → α ∈ ZN .
(xn) + (0, 0, . . . ) = (x0 + 0, x1 + 0, . . . , xi + 0, . . . )

= (x0, . . . , xi, . . . ).

(0, 0, . . . ) + (xn) = (0 + x0, 0 + x1, . . . , 0 + xi, . . . )

= (x0, . . . , xi, . . . ).

(xn) = (xn)+(0, 0, . . . ) = (0, 0, . . . )+(xn) implies α = α+0 = 0+α. Therefore,the additive identity in ZN is 0.
(xn) · (1, 1, . . . ) = (x0 · 1, x1 · 1, . . . , xi · 1, . . . )

= (x0, . . . , xi, . . . ).

(1, 1, . . . ) · (xn) = (1 · x0, 1 · x1, . . . , 1 · xi, . . . )

= (x0, . . . , xi, . . . ).

(xn) = (xn) · (1, 1, . . . ) = (1, 1, . . . ) · (xn) implies α = α · 1 = 1 · α. Therefore,the multipli
ative identity in ZN is 1.Finally, this se
tion de�nes a ring and proves that ZN is a 
ommutative ringwith an identity.De�nition 3.1.7. A ring is a set R with two binary operations de�ned on it.These are usually 
alled addition denoted by +, and multipli
ation denoted by
· or juxtaposition, satisfying the following six axioms:1. Addition is 
ommutative: a+ b = b+ a ∀a, b ∈ R.2. Addition is asso
iative: a+ (b+ c) = (a+ b) + c ∀a, b, c ∈ R.3. There exists an additive identity, denoted by 0, su
h that a+0 = a ∀a ∈ R.19



4. ∀a ∈ R there exists an additive inverse, denoted by −a, su
h that a +
(−a) = 0.5. Multipli
ation is asso
iative: a(bc) = (ab)c ∀a, b, c ∈ R6. Multipli
ation is left and right distributive over addition:

a(b+ c) = ab+ ac

(b + c)a = ba+ caIf it is also true that7. Multipli
ation is 
ommutative: ab = ba ∀a, b ∈ R, then R is a 
ommuta-tive ring.Further if8. There exists a multipli
ative identity denoted by 1 su
h that a · 1 = a and
1 · a = a ∀a ∈ R, then R is a ring with an identity.If R satis�es all eight properties, then R is a 
ommutative ring with an identity.Theorem 3.1.8. ZN is a 
ommutative ring with an identity.Proof. Let (xn), (yn), (zn) determine α, β, γ ∈ ZN respe
tively. Then1. Commutativity of Addition

(xn) + (yn) = (x0 + y0, . . . , xi + yi, . . . )

= (y0 + x0, . . . , yi + xi, . . . )

= (yn) + (xn).

(xn) + (yn) → α + β and (xn) + (yn) = (yn) + (xn) → β + α. Therefore,by De�nition 3.1.1, α+ β = β + α.2. Asso
iativity of Addition
(xn) + ((yn) + (zn)) = (xn) + (y0 + z0, . . . , yi + zi, . . . )

= (x0 + (y0 + z0), . . . , xi + (yi + zi), . . . )

= ((x0 + y0) + z0, . . . , (xi + yi) + zi, . . . )

= (x0 + y0, . . . , xi + yi, . . . ) + (zn)

= ((xn) + (yn)) + (zn).Therefore, α+ (β + γ) = (α+ β) + γ.3. Existen
e of the Additive IdentityBy Lemma 3.1.6, 0 is the additive identity.20



4. Existen
e of Additive InversesDe�ne −(xn) = (N − x0, N
2 − x1, . . . , N

i+1 − xi, . . . ) → −α. Then
(xn) + (−(xn)) = (x0 +N − x0, x1 +N2 − x1, . . . , xi +N i+1 − xi, . . . )

= (N,N2, . . . , N i+1, . . . )

≡ (0, 0, . . . )

= 0.Therefore, α+ (−α) = 0.5. Asso
iativity of Multipli
ation
(xn)((yn)(zn)) = (xn)(y0z0, . . . , yizi, . . . )

= (x0(y0z0), . . . , xi(yizi), . . . )

= ((x0y0)z0, . . . , (xiyi)zi, . . . )

= (x0y0, . . . , xiyi, . . . )(zn)

= ((xn)(yn))(zn).Therefore, α(βγ) = (αβ)γ.7. Commutativity of Multipli
ation
(xn)(yn) = (x0y0, . . . , xiyi, . . . )

= (y0x0, . . . , yixi, . . . )

= (yn)(xn).Therefore, αβ = βα.6. Left and right distributivity of multipli
ation over addition
(xn)((yn) + (zn)) = (xn)(y0 + z0, . . . , yi + zi, . . . )

= (x0(y0 + z0), . . . , xi(yi + zi), . . . )

= (x0y0 + x0z0, . . . , xiyi + xizi, . . . )

= (xn)(yn) + (xn)(zn).By 
ommutativity of multipli
ation,
((yn) + (zn))(xn) = (xn)((yn) + (zn))

= (xn)(yn) + (xn)(zn)

= (yn)(xn) + (zn)(xn).Therefore, α(β + γ) = αβ + αγ and (β + γ)α = βα+ γα.21



8. Existen
e of a multipli
ative identityBy Lemma 3.1.6, 1 is the multipli
ative identity.Properties 1 through 8 from De�nition 3.1.7 are satis�ed, so ZN is a
ommutative ring with an identity.So that the power series representations of N-adi
 numbers make sense inthe dis
ussion of FCSRs in Se
tion 4, equivalen
e is shown between the de�ned
N -adi
 addition and multipli
ation and the usual addition and multipli
ationof power series representations of N -adi
 integers.Lemma 3.1.9. Addition and multipli
ation of 
anoni
al sequen
es of α and
β are equivalent to the usual addition and multipli
ation of the power seriesrepresentations for α and β.Proof. Let a = (a0, a0 + a1N, . . . , a0 + a1N + · · ·+ akN

k, . . . ) and b = (b0, b0 +
b1N, . . . , b0 + b1N + · · · + bkN

k, . . . ). And α and β be represented by powerseries so that
α =

∞
∑

i=0

aiN
i and β =

∞
∑

i=0

biN
i.Rewrite a = (

∑0
i=0 ai2

i, . . . ,
∑k

i=0 ai2
i, . . . ) and b = (

∑0
i=0 bi2

i, . . . ,
∑k

i=0 bi2
i, . . . ).By the de�ned N -adi
 addition,

a+ b = (

0
∑

i=0

(ai + bi)2
i, . . . ,

k
∑

i=0

(ai + bi)2
i, . . . )

→

∞
∑

i=0

(ai + bi)2
i

=

∞
∑

i=0

aiN
i +

∞
∑

i=0

biN
i

= α+ β.

22



Clearly addition is equivalent. By the de�ned N -adi
 multipli
ation,
a · b = (

0
∑

i=0

ai · bi, . . . ,

k
∑

i=0

k
∑

j=0

(aibj)2
i+j , . . . )

= (a0 · b0, . . . ,
∑

i+j≤k

(aibj)2
i+j , . . . )

→
∞
∑

k=0





∑

i+j=k

aibj2
k





=

(

∞
∑

i=0

ai2
i

)





∞
∑

j=0

bj2
j





= α′ · β′.Therfore, multipli
ation is equivalent as well.Theorem 3.1.10. An N -adi
 integer α, whi
h is determined by a sequen
e
(xn), is a unit if and only if x0 is relatively prime to N .Proof. Let α be a unit. Then there is an N -adi
 integer β su
h that αβ = 1. If
β is determined by the sequen
e (yn), then

xiyi ≡ 1 (mod N i+1) ∀i ≥ 0. (13)In parti
ular, x0y0 ≡ 1 (mod N), hen
e x0 is relatively prime to N .Conversely, let x0 be relatively prime to N . Then x0 6≡ 0 (mod N). FromEquation (11)
x1 ≡ x0 (mod N)...

xi+1 ≡ xi (mod N i).Working ba
kward, xi+1 ≡ xi ≡ · · · ≡ x1 ≡ x0 (mod N). Thus, xi is relativelyprime to N ∀i ≥ 0, whi
h implies xi is relatively prime to N i+1. Consequently,
∀i ≥ 0 ∃yi su
h that xiyi ≡ 1 (mod N i+1). Sin
e xi+1 ≡ xi (mod N)i and
xi+1yi+1 ≡ xiyi (mod N i). Then, yi+1 ≡ yi (mod N i). Therefore the sequen
e
(yn) determines some N -adi
 integer β. Be
ause xiyi ≡ 1 (mod N i+1) ∀i ≥ 0,
αβ = 1. This means α is a unit.From this theorem it follows that a rational integer a ∈ ZN is a unit if andonly if a is relatively prime to N . If a is invertible in ZN , then for any rationalinteger b ∈ ZN , b/a = a−1b ∈ ZN .For any rational number b/a, a relatively prime to N , there exists a sequen
e
(xn) → b/a ∈ ZN . At this point, it is worth using the digit representation forintegers in ZN . So (xn) = {x0, x0 + x1N, . . . , x0 + · · · + xiN

i, . . . } and23



b/a = x0x1 . . . xi . . . . Rather than �nding a−1 (mod N i+1) to determine ea
h
xi, it is not too di�
ult for every i to �nd ∑i

k=0 xkN
k su
h that

b ≡ a

i
∑

k=0

xkN
k (mod N i+1). (14)Then,

xi =

∑i
k=0 xkN

k −
∑i−1

k=0 xkN
k

N i
. (15)Nearly all of the digits for any rational number in ZN 
an also be found usingpowers of N−1, whi
h is mu
h simpler to analyze than the brute for
e sear
hfor the digits mentioned above. The following theorem is a slightly modi�edversion of Theorem 10 in a draft of [7℄ written by Andrew Klapper and MarkGoresky.Theorem 3.1.11. Let u0, q, N ∈ Z, where q is relatively prime to N , |u0| < q,and q = −q0 +

∑r
i=1 qiN

i for 0 ≤ qi < N . De�ne α = u0/q ∈ ZN su
hthat α =
∑∞

i=0 aiN
i for 0 ≤ ai < N . Also, de�ne uk ∈ Z su
h that uk/q =

∑∞
i=k aiN

i−k ∈ ZN and γ ≡ N−1 (mod q). Then, there exist uk for every k ≥ 0su
h that
ak ≡ q−1uk (mod N). (16)If −q < u0 < 0, then uk ∈ {−q, . . . ,−1} for k ≥ 0. Otherwise, for k >

⌊logN (q)⌋ = r, uk ∈ {−q, . . . ,−1}.Let ω ∈ {−q, . . . ,−1} su
h that ω ≡ γku0 (mod q). Then for k > ⌊logN (q)⌋ =
r, or if −q < u0 < 0, then k ≥ 0,

ak ≡ q−1ω (mod N). (17)Proof. Write u0/q in terms of uk.
u0
q

= a0 +N
u1
q

= a0 + a1N +N2u2
q

= . . .

=

k−1
∑

i=0

aiN
i +Nk uk

q
∀k ≥ 1. (18)Rewrite (18) to be

Nkuk = u0 − q

(

k−1
∑

i=0

aiN
i

)

∀k ≥ 1 (19)
24



Then |u0| < q and 0 ≤ ai < p from the assumptions and equation (19). Theseimply for all k ≥ 1, |u0| = |q
∑k−1

i=0 aiN
i +Nkuk| < q. Then,

−q

(

1 +
∑k−1

i=0 aiN
i

Nk

)

< uk < q

(

1−
∑k−1

i=0 aiN
i

Nk

)

.

uk may only be greater than zero when 1−
∑k−1

i=0
aiN

i

Nk is greater than zero. Thisonly o

urs when the sequen
e (a0, . . . , aj) = (0, . . . , 0) for j ≥ 0. Su
h asequen
e o

urs if and only if u0 ≥ 0 and u0 ≡ 0 (mod N i) for 0 ≤ i ≤ j, j ≥ 0.This is 
lear from the 
onstru
tion of N -adi
 sequen
es for rational numbers.Therefore uk may only be greater than zero if u0 ≥ 0 and u0 ≡ 0 (mod N i) for
0 ≤ i ≤ j, j ≥ 0. The lower bound for uk is greater than −q. This is 
learbe
ause 1+

∑k−1

i=0
aiN

i

Nk ≤ 1. Therefore,
−q < uk < 0 for − q < u0 < 0.If 0 ≤ u0 < q, then the upper bound remains un
hanged.

−q < uk < q

(

1−
∑k−1

i=0 aiN
i

Nk

)

for 0 ≤ u0 < qThere is still work to be done on the upper bound.
0 ≤

k−1
∑

i=0

aiN
i < Nk for k ≥ 1

⇒− q

(

k−1
∑

i=0

aiN
i

)

≤ 0

⇒ u0 − q

(

k−1
∑

i=0

aiN
i

)

< q

⇒ Nkuk < q

⇒ uk <
q

Nk
.For k > ⌊logN (q)⌋ = r, |q/Nk| < 1. Therefore, −q < uk < 0 for 0 ≤ u0 <

q and k > r. Further lowering the upperbound, if uk = 0, then u0/q =
∑k−1

i=0 aiN
i + 0. This implies u0/q is a rational integer, whi
h is not true.Noting �nally that uk must be an integer. If |u0| < q and u0 < 0, or |u0| < q,

u0 ≥ 0, and k > ⌊logN (q)⌋ = r, then
uk ∈ {−q, . . . ,−1}.It has now been shown, for 
ertain restri
tions, uk belongs to a spe
i�
 setof representatives for the residue 
lasses of Z/(q). De�ne γ ≡ N−1 (mod q).Redu
ing Equation (19) modulo q shows that

uk ≡ γuk−1 (mod q). (20)25



Sin
e this is true for all k greater than or equal to 1, it is 
lear that
uk ≡ γku0 (mod q). (21)Redu
ing (19) modulo p shows that
ak ≡ q−1uk (mod N). (22)De�ne ω ≡ γku0 (mod q), and ρ ≡ q−1 (mod N). Finally, if |u0| < q and

u0 < 0, or |u0| < q, u0 ≥ 0, and k > ⌊logN (q)⌋ = r, then
ak ≡ ρω (mod N). (23)Corollary 3.1.12. Let 0 ≤ u0 < q. De�ne j to be the greatest integer su
h that

u0 ≡ 0 (mod N j). Then the following are true:i. (a0, . . . , aj−1) = (0, . . . , 0)ii. uk > 0 for k = jiii. uk 6≡ 0 (mod N)Theorem 3.1.11 shows that for −q < u0 < 0, there is a sequen
e of numer-ators {uk} dire
tly related to the sequen
e of digits {ak} for u0/q ∈ ZN . Thesequen
e of numerators for a given FCSR with 
onne
tion integer q reveals allof the possible stri
tly periodi
 states of the register, ea
h identi�ed by uk/q.This provides an interesting tool for the analysis of di�erent FCSRs.3.2 2-adi
 IntegersNow the transition is made to dis
ussing the 2-adi
 integers whose digit se-quen
es are in�nite sequen
es of 0s and 1s. This brings the dis
ussion 
loser theprevious se
tions whi
h dealt with ve
tors and fun
tions de�ned on F
n
2 . The2-adi
 integers will a
t as a bridge between the results on Boolean fun
tions andthe FCSRs whi
h are de�ned in the next se
tion.Proposition 3.2.1. [9℄ There is a one-to-one 
orresponden
e between ratio-nal numbers α = p/q ∈ Z2 (where q is odd) and eventually periodi
 binarysequen
es a = (a0, a1, . . . ), whi
h asso
iates to ea
h su
h rational number α itsdigit representation a. The sequen
e a is stri
tly periodi
 if and only if α ≤ 0and |α| < 1.Proof. Consider the stri
tly periodi
 
ase �rst. Let a = (a0, a1, . . . ) be a stri
tlyperiodi
 sequen
e of period T . Set α = a. Computing in Z2,

2Tα =
∞
∑

i=0

ai2
i+T =

∞
∑

i=0

ai+T 2
i+T =

∞
∑

i=T

ai2
i = α−

T−1
∑

i=0

ai2
i.26



Hen
e
α = −

∑T−1
i=0 ai2

i

2T − 1
(24)is a negative rational number. Write α = p/q as a fra
tion redu
ed to lowestterms with q positive. Then q is odd, p ≤ 0, and |p| < q.On the other hand, suppose that α = p/q is given in lowest terms with q anodd positive integer, p ≤ 0, and |p| < q. Let T be the smallest integer su
h that

2T ≡ 1 (mod q). Su
h a T exists be
ause q is odd. Then 2T − 1 is divisble by
q, so set s = (2T − 1)/q. Be
ause p = q

∑∞
i=0 ai2

i

s · (−p) = s(−q
∞
∑

i=0

ai2
i) = (1 − 2T )(

∞
∑

i=0

ai2
i) =

∞
∑

i=0

ai2
i −

∞
∑

i=T

ai2
i =

T−1
∑

i=0

ai2
iThus α = s · p/(2T − 1) = −(

∑T−1
i=0 ai2

i)/(2T − 1). It dire
tly follows that
α = 2Tα +

∑T−1
i=0 ai2

i, implying that the digits sequen
e a of α is stri
tlyperiodi
.Now suppose that α = p/q is an arbitrary rational number. Let M = ⌈α⌉be the next largest integer. If M ≥ 0, then its digit sequen
e ends in an in�nitestring of 0s. If M < 0, then its digit sequen
e ends in an in�nite string of 1s.However, α =M + p′/q where p′ ≤ 0 and |p′| < q, so the digit sequen
e of p′/qis stri
tly periodi
. It follows that the digit sequen
e a of α = M + p′/q mustbe eventually periodi
.On the other hand, an eventually periodi
 sequen
e a = (a0, a1, . . . ) 
or-responds to a rational number α = a be
ause it is given by a �nite tran-sient term ∑k−1
i=0 ai2

i (for some nonnegative integer k) plus a periodi
 term,
∑∞

i=k ai2
i = 2k

∑∞
i=0 aj+k2

j, both of whi
h are rational numbers.The 2-adi
 valuation is needed for the main result. It is de�ned here.De�nition 3.2.2. Let α = (an) ∈ Z2\(0). Ifm is the smallest number in N su
hthat am 6≡ 0 (mod 2m+1), then the 2-adi
 valuation of α is m, or log2(α) = m.If α = 0, then log2(α) = ∞.De�nition 3.2.3. If α ∈ Z2, then the 2-adi
 norm of α is ‖α‖2 = 2−m where
m = log2(α).This paper will be 
areful not to 
onfuse log2 in ZN with log2 in R.Example 3.2.4. Let α = 00001011011 · · · ∈ Z2. Then log2(α) = 4.4 Shift RegistersThe feedba
k with 
arry shift register (or FCSR) is a type of shift register used instream 
iphers. Though there exist atta
ks against this type of shift register byitself, it is possible to 
ombine FCSRs together in ways that no known atta
ksare useful. This however does not guarantee se
urity be
ause the 
ombining of27



the FCSRs greatly in
reases the 
omplexity of the 
ryptanalysis on the stream
ipher. Despite the se
urity 
hallenges, the speed of an FCSR implementationis very attra
tive for engineers of hardware based 
ryptosystems.This se
tion will be used as an introdu
tion to �nite state ma
hines andfeedba
k with 
arry shift registers. The FCSR will be 
onsidered in the binary
ase and analyzed using Z2. This analysis is then extended to the 
ase whenbent sequen
es whi
h 
ould be generated by FCSRs, whi
h leads to the mainresult in Se
tion 5.4.1 Finite State Ma
hinesIt is appropriate to prefa
e the dis
ussion about FCSRs with general �nite statema
hines. Solomon W. Golomb's book Shift Register Sequen
es [6℄, written in1967 and revised in 1982, established a de�nition of �nite state ma
hines andshift registers used in mu
h of the literature today.De�nition 4.1.1. A �nite state ma
hine 
onsists of a �nite 
olle
tion of states
K, whi
h sequentially a

epts a sequen
e of inputs from a �nite set A, andprodu
es a sequen
e of outputs from a �nite set B. Moreover, there is anoutput fun
tion µ whi
h 
omputes the present output as a �xed fun
tion ofpresent input and present state, and a next state fun
tion δ whi
h 
omputes thenext states as a �xed fun
tion of present input and present state. In a moremathemati
al manner, µ and δ are de�ned su
h that

µ : K ×A→ B µ(kn, an) = bn (25)
δ : K ×A→ K δ(kn, an) = kn+1 (26)The most fundamental observation by Golomb is the following proposition.Its result guarantees the periodi
ity of any �nite state ma
hine with eventuallyperiodi
 input.Proposition 4.1.2. If the input sequen
e to a �nite state ma
hine is eventuallyperiodi
, then the output sequen
e is eventually periodi
.Proof. Let p be the period of the inputs on
e the ma
hine be
omes periodi
 attime t. Then, for h > 0 and c > t, ac = ac+hp. Sin
e K is �nite, there must be

r > s > t su
h that, for some h > 0 su
h that,
kr+1 = δ(kr, ar) = δ(ks, ar+hp) = ks+1.It should also be 
lear that ar+i = ar+i+hp for h > 0. So by indu
tion, ∀i > 0

kr+i+1 = δ(kr+i, ar+i) = δ(ks+i, ar+i+hp) = ks+i+1Finally, this proves br+i+1 = bs+i+1. Thus, the eventual period of this ma
hineis r − s. 28



The next obje
t de�ned is 
alled an N -ary n-stage ma
hine. It 
an beused to represent any �nite state ma
hine. It is also a natural generalizationof shift registers, so thinking of �nite state ma
hines in the 
ontext of N -ary
n-state ma
hines will make the transition to talking about shift registers mu
hsmoother.De�nition 4.1.3. Choose n,m, r ∈ N. Then de�ne a �nite state ma
hine withthe following sets:1. D = {0, . . . , N − 1}. This set 
ontains the N -ary digits of the ma
hine.2. K = {

∑n−1
i=0 xiN

i : xi ∈ D}. This set 
ontains the N -ary states of thema
hine.3. A = {
∑m−1

i=0 yiN
i : yi ∈ D}. This set 
ontains the N -ary inputs of thema
hine.4. B = {

∑r−1
i=0 ziN

i : zi ∈ D}. This set 
ontains the N -ary outputs of thema
hine.5. ∆ = {δi(x0, . . . , xn−1, y0, . . . , ym−1) : 0 ≤ i < n} where δi : K × A → D.This set 
ontains the N -ary next state fun
tions of the ma
hine.6. M = {µi(x0, . . . , xn−1, y0, . . . , ym−1) : 0 ≤ i < r}. µi : K ×A→ D. This set
ontains the N -ary output fun
tions of the ma
hine.The next state and output are determined from the 
urrent state and input bythe following equations:
x∗i = δi(x0, . . . , xn−1, y0, . . . , ym−1) 0 ≤ i < n (27)
zi = µi(x0, . . . , xn−1, y0, . . . , ym−1) 0 ≤ i < r (28)This �nite state ma
hine is 
alled an N -ary n-stage ma
hine and will be denotedby M(N,n,m, r).By making the state the input to the ma
hine as well, this ma
hine be
omesautonomous in the sense that it no longer needs outside input. Then ea
h newstate and output is based on the previous state of the ma
hine. For N = 2, fiand gi are Boolean fun
tions on n+m variables. A binary n-stage ma
hine 
anbe de�ned by n+ r Boolean fun
tions ea
h on n+m variables.4.2 Feedba
k with Carry Shift RegistersIn the set of autonomous �nite state ma
hines is a type of ma
hine 
alled a shiftregister. The variables making up the state of a shift register pass their valuesdire
tly to the next variable in the state until the value is pushed out of theregister as the output. Here, what was referred as an n-stage ma
hine will nowbe 
alled an r-stage ma
hine as n will be used to index the output sequen
es ofFCSRs. 29



De�nition 4.2.1. Let M(2, r,−1, 0) be an binary r-stage ma
hine with noinput and exa
tly 1 output value. Also, let g, fi ∈ BFn where the states
(x0, . . . , xr−1) are the domain of g and fi, fi(x) = xi+1 for 0 ≤ i ≤ n − 2,and g(x) = x0. This type of ma
hine will be denoted by SR(2, r).When the fun
tion fr−1 ∈ BFr is linear, then SR(2, r) is 
alled a linearfeedba
k shift register. An LFSR is drawn in Figure 2. This is the 
ase where
fr−1 =

∑r
i=1 qixr−i where ea
h xi, qi ∈ F2. The qi's are 
alled taps. In 
omputers
ien
e terms, to move forward in the sequen
e of states, ea
h bit in the stateof the register shifts to the right one spot and then the newest bit enters on theleft end of the register and is the value given when ea
h bit from the previousstate is AND'ed with its 
orresponding tap and then XOR'ed with all the otherAND'ed bit and taps.

xn−1 xn−2 . . . x1 x0 -

q1��
��

q2��
��

. . . qn−1��
��

qr��
��

∑

�
�
��

-mod 2
Figure 2: Linear Feedba
k Shift RegisterLinear feedba
k shift registers are well-studied in [6℄. By using the Berlekamp-Massey algorithm it is possible to re
over the state of a given LFSR based onthe output sequen
e. In fa
t given an LFSR output sequen
e with period 2r−1,the Berlekamp-Massey algorithm will �nd a unique minimal-length LFSR whi
hgenerates this output after the �rst 2n digits have been pro
essed [14℄. This al-gorithm is studied in more detail in [2℄.In Figure 3, there is a memory 
ell atta
hed to the linear feedba
k shift reg-ister whi
h adds some 
omplexity to the register. In the modi�ed shift registershown in Figure 3, in ea
h 
y
le, the whole number quotient of ∑r

i=1 qixr−iis kept in the memory 
ell z. The memory 
ell from the previous state of themodi�ed shift register is used to determined the sum modulo 2 for the newestbit in the state of the register. A shift register modi�ed in this way is known asa binary feedba
k with 
arry shift register, or FCSR. For this paper, FCSRs willonly be 
onsidered in the binary 
ase. Many of the theorems do generalize the
N -ary 
ase, though sometimes it is ne
essary that N be prime.De�nition 4.2.2. Let q1, . . . , qr ∈ 0, 1 ⊂ Z and q0 = −1. A binary feedba
kwith 
arry shift register of length n with taps q1, . . . , qr is a modi�ed shift registerwhose states are 
olle
tions

(x0, x1, . . . , xr−1; z) where xi ∈ F2 and z ∈ Z30
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Figure 3: Binary Feedba
k with Carry Shift Registerwhere z is 
alled the memory 
ell. The state 
hanges a

ording to the followingrules:1. Compute
σn =

r
∑

i=1

qian−i + zn−1.2. The output is x0.3. Then the new state (x0, x1, . . . , xn−1; z) = (x1, . . . , xn−1, σn (mod 2);σn(div 2)).Lemma 4.2.3. If the sequen
e α = (a0, a1, . . . ) where ai ∈ {0, 1} and ai ≡ xi
(mod 2), and ζ = (zn−1, zn, zn+1, . . . ) where ea
h zi is the value of the memory
ell for the 
orresponding xi, then these two sequen
es are related by the followinglinear re
urren
e

ak + 2zk = q1ak−1 + · · ·+ qrak−r + zk−1 for k ≥ r. (29)Re
all from Proposition 4.1.2 that an FCSR must be eventually periodi
.By Proposition 3.2.1, the sequen
e generated by every FCSR 
an then be repre-sented by a rational number in Z2. This rational number, or sequen
e generated,is entirely determined by the initial state and the taps of the register.Proposition 4.2.4. [9℄ Let q1, . . . , qr be the taps, zr−1 be the initial memory,and ar−1, . . . , a1, a0 be the initial state of an FCSR. De�ne q = 1 +
∑r

i=1 qi2
iand

p =





r−1
∑

i=0

i
∑

j=0

qjai−j2
i



− zr−12
r.Then the output sequen
e a of this FCSR is the digit representation of the 2-adi
integer

α =

∞
∑

i=0

ai2
i = p/q. (30)31



Proof. Consider the transition from one state of the FCSR to the next. Supposethat, for some given state, the value of the memory is zn−1 and that the 
ontentsof the register is given by the r bits an−1, . . . , an−r. The next state of the registeris determined by 
al
ulating
σn = zn−1 +

r
∑

i=1

qian−i,writing the new memory 
ontents as zn = σn(div 2), and writing the new 
on-tents of the state an = σn (mod 2). As stated in Lemma 4.2.3, these equationsmay be 
ombined into the expression
σn = 2zn + an.It follows that

an =

r
∑

i=1

qian−i + (zn−1 − 2zn), (31)for n ≥ r. Now, by substituting Equation (31) into Equation (30),
α = a0 + a12 + · · ·+ ar−12

r−1 +

∞
∑

n=r

an2
n

= x+

∞
∑

n=r

(

r
∑

i=1

qian−i

)

2n +

∞
∑

n=r

(zn−1 − 2zn)2
n. (32)where x =

∑r−1
i=0 ai2

i is the integer represented by the initial state of the register.The se
ond summation in Equation (32) 
an
els ex
ept for the �rst term, zr−1,leaving
α = x+ zr−12

r +

∞
∑

n=r

r
∑

i=1

qi2
ian−i2

n−i

= x+ zr−12
r +

r
∑

i=1

qi2
i

(

∞
∑

n=r

an−i2
n−i

)

= x+ zr−12
r +

r
∑

i=1

qi2
i(α− (a02

0 + a12
1 + · · ·+ ar−i−12

r−i−1))

= x+ zr−12
r + α

r
∑

i=1

qi2
i −

r−1
∑

i=1

r−i−1
∑

j=0

qi2
iaj2

j.(where the inner sum is empty, hen
e zero, when i = r in the third line). Theseequations give
α =

x+ zr−12
r −

∑r−1
i=1

∑r−i−1
j=0 qi2

iaj2
j

1−
∑r

i=1 qi2
i

=

∑r−1
i=0

∑r−i−1
j=0 qi2

iaj2
j − zr−12

r

q32



sin
e q0 = −1. The double summation is over all pairs of integers 0 ≤ i, j ≤ r−1with i+ j ≤ r − 1. Setting k = i+ j gives
α =

(

∑r−1
k=0

∑k
i=0 qiak−i2

k
)

− zr−12
r

q
=
p

q
(33)as 
laimed.Corollary 4.2.5. Changing the memory by b 
hanges the value of α by −b2r/q.If α = p/q < 0, then the initial memory zr−1 ≥ 0.Proof. The �rst statement follows trivially from Equation (33).The se
ond statemtent is not as obvious. If q < 0, then the numerator mustbe positive for p/q to be negative. Sin
e

zr−12
r ≥

r−1
∑

k=0

k
∑

i=0

qiak−i2
k ≥ 0, (34)this implies zr−1 = 0. If q > 0, then the numerator must negative. By Equa-tion (34), zr−1 > 0. Therefore, zr−1 ≥ 0.If we de�ne Wt : Z → Z su
h that Wt(a) = wt(B−1(a)), then it 
an alsobe shown that the memory 
ell of every FCSR is bounded and eventually liesbetween 0 and Wt(q + 1), for q > 0.Proposition 4.2.6. [9℄Let w = Wt(q+1). If an FCSR is in a periodi
 state, then the memory is inthe range 0 ≤ z < w. If the initial memory zn−1 ≥ w, then it will monotoni
allyde
rease and will arrive in the range 0 ≤ z < w within ⌊log2(zn−1 − w)⌋ + rsteps. If the initial memory zn−1 < 0, then it will monotoni
ally in
rease andwill arrive in the range 0 ≤ z < w within ⌈log2(|zn−1|)⌉+r steps. (The logarithmfun
tions in this proposition will be real-valued.)Proof. First, observe that if the initial memory value zn−1 lies in the range

0 ≤ zn−1 < w, then the same will be true for all later values of the memory. Thisfollows from De�nition 4.2.2 be
ause σn =
∑r

i=1 qian−i+zn−1 ≤ w+zn−1 < 2w.So zn = ⌊σn/2⌋ < w.By the same argument, if the initial memory value is zn−1 = w, then thelater values of memory will be no greater than w; but in this 
ase, within r steps,the memory will drop below w (and will remain so thereafter) for the followingreason. If the memory does not de
rease (i.e. zn = w), then this means that a 1appeared at all the tapped 
ells, that σn = 2w, and that xn = σn (mod 2) = 0was fed into the register. The value of σ will fall below 2w when this 0 rea
hesthe �rst tapped 
ell (if not before), at whi
h time we will have z = ⌊σ/2⌋ < w.Moreover, if we initialize an FCSR with a larger memory value, zn−1 > w,then with ea
h step, the ex
ess en−1 = zn−1−w will be
ome redu
ed by a fa
tor33



of 1/2, that is en ≤ ⌊en−1/2⌋. So after ⌊log2(zn−1 −w)⌋+ 1 steps, the memorywill be no more than w. This follows from De�nition 4.2.2 whi
h gives
en = zn − w =

⌊σn
2

⌋

− w ≤

⌊

w + w + en−1

2

⌋

− w =
⌊en−1

2

⌋

.Now 
onsider the 
ase of negative initial memory, zn−1 < 0. By De�nition 4.2.2,it is possible that σn ≥ 0, in whi
h 
ase the next memory value will be zn ≥ 0(where it will remain thereafter). So suppose that σn < 0. Then, again byDe�nition 4.2.2,
|zn| ≤

|σn|+ 1

2
≤

|zn−1|+ 1

2
.Iterating this formula, it is easy to see that afterK = ⌈log2(|zn−1|)⌉ steps, eitherthe memory z has be
ome nonnegative, or else

|z| ≤
zn−1

2K
+

1

2K
+

1

2K−1
+ · · ·+

1

2
< 2, in whi
h 
ase the memory must be m = −1. There is a single situation inwhi
h the memory 
an remain at −1 forever: if there are no feedba
k taps onthe shift register (so q = −1). In this 
ase, the memory will feed 1s into the shiftregister forever. However, we assumed that q > 0 to rule out this possibility.If q > 0, then as soon as a nonzero feedba
k o

urs, the memory will be
omenonnegative, where it will remain thereafter.Prosition 4.2.6 shows that eventually every FCSR rea
hes a point where thereare a �nite number of inputs from the memory 
ells and of states. This meansthat every FCSR eventually satis�es the de�nition of a �nite state ma
hine.As a result, the output of every FCSR is eventually periodi
. In Se
tion 3, itwas shown than every eventually periodi
 sequen
e of 0s and 1s 
orrespondsto an α = p/q ∈ Z2. This fa
t makes FCSRs extremely vulnerable to rationalapproximation algorithms.4.3 FCSR SynthesisThe problem of synthesis lies in the following question: Given an eventuallyperiodi
 sequen
e of 0s and 1s generated by an FCSR, 
an you �nd a and bsu
h that sequen
e generated is equivalent to digit representation of a

b ∈ Z2.If there are no 
onstraints on a and b, then at least a period of the sequen
emust be known to solve the problem. However, every FCSR is limited to a
ertain number of p/q ∈ Z2 that it 
an generate be
ome of memory restri
tions.The rational approximation algorithm shown in this paper uses the fa
t thatonly so many possibilities exist for a given FCSR to show that it will eventuallyrea
h the 
orre
t approximation in a �nite number of steps. As a qui
k exampleof this, 
onsider the FCSR in Figure 4.3. By Proposition 4.2.4, it should be
lear that the initial states, taps, and memory 
ompletely determine the 2-adi
integer represented by the sequen
e generated. Both the initial states and tapsare �nite, and the memory is bounded at the initial stage of the register.34
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Figure 4: FCSR whi
h generate the sequen
e −4
5 = 00110011001100110011 · · ·The FCSR in Figure 4.3 is meant as a simple visualization how after foolingwith all of the possible initial states and tap arrangements, the size of thememory be
omes the only means to 
reate new possibilities in the sequen
egenerated.4.4 Xu's Rational Approximation AlgorithmIt turns out that given a sequen
e generated by an FCSR it is easy to reprodu
eto FCSR from whi
h it 
ame from. This is why using FCSRs by themselvesdo not generate se
ure stream 
iphers. If used as a stream 
ipher, the key forthe FCSR would be the taps and the initial state. All an atta
ker would needis a relatively short pie
e of the output sequen
e to reveal every part of thekey. This 
iphertext only atta
k is a 
omplete break of the stream 
ipher. Infa
t, any arrangement of taps and initial state of an FCSR 
an be revealed veryqui
kly.In Goresky and Klapper's book [7℄, they des
ribe in pseudo
ode Xu's rationalapproximation algorithm for π-adi
 sequen
es in any ring R. A demonstrationof Xu's algorithm is presented here in the 
ontext of the ring Z2. The algorithmtakes as input the �rst n terms of anN -adi
 sequen
e a = (a0, a1, . . . ) asso
iatedto a rational number α = p/q ∈ Z2 and outputs a rational number αn = p′/q′whose �rst n terms mat
h a. Running Xu's algorithm for small n 
an sometimesresult in αn whi
h are far from α, but in the examples below, it is easy to seethat as n grows large, Xu's algorithm eventually rea
hes the 
orre
t α. In fa
t,for large enough n, Xu's algorithm will rea
h the 
orre
t α.Example 4.4.1. This example uses the fun
tion rational_synthesis_xu fromthe Sage s
ript afsr.sage. The sour
e 
ode for this fun
tion 
an be downloadfrom https://github.
om/
elerier/oslo/blob/master/sage/afsr.sage .Sagesage: adi
_seq (-4,5,2,20)(-4, 5, [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,1℄)sage: a=adi
_seq (-4,5,2,20) [2℄ 35

https://github.com/celerier/oslo/blob/master/sage/afsr.sage


sage: for i in range (3 ,20) :...: print i,rational_synthesis_xu (a[0:i℄,2)...:3 (0, 1)4 (-4, 53)5 (-4, 53)6 (-4, 53)7 (-4, 5)8 (-4, 5)sage:sage: adi
_seq (-17,77,2,40)(-17, 77, [1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0,0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1,1℄)sage: b=adi
_seq (-17,77,2,40) [2℄sage: for i in range (3 ,20) :...: print i,rational_synthesis_xu (b[0:i℄,2)...:3 (-1, 9)4 (-5, 17)5 (-5, 17)6 (1, 3)7 (1, 3)8 (1, 3)9 (-13, 89)10 (-167, 1419)11 (-67, 183)12 (-89, 885)13 (-89, 885)14 (-89, 885)15 (359, 2229)16 (359, 2229)17 (359, 2229)18 (359, 2229)19 (359, 2229)20 (-17, 77)21 (-17, 77)22 (-17, 77)23 (-17, 77)The N -adi
 sequen
es for α = −4
5 and β = −17

77 have small periods, so Xu'salgorithm qui
kly 
onverges to the 
orre
t α and β.Example 4.4.2. In this next example, the period of the approximated rationalnumber γ = −98
21000−1 equals 1000. Sagesage:adi
_seq ( -98 ,2^1000 -1 ,2 ,20)(-98, 107150860718626732094842504906000... , [0, 1, 0, 0, 0, 1, 1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0℄)sage: d=adi
_seq ( -98 ,2^1000 -1 ,2 ,10000)[2℄sage: for i in range (3 ,2000):...: print i,rational_synthesis_xu (d[0: i℄,2)...:3 (-2, 9)4 (2, 1) 36



5 (2, 1)6 (2, 1)7 (-22, 69)8 (-22, 69)9 (-302, 1209)10 (-302, 1209)11 (-302, 1209)12 (-302, 1209)13 (-302, 1209)14 (-134, 333)15 (-134, 333)16 (-134, 333)17 (-134, 333)18 (-134, 333)19 (-2818, 10671)20 (-2818, 10671)21 (-2818, 10671)22 (-2818, 10671)23 (-2818, 10671)24 (-26954, 85323)25 (-26954, 85323)26 (-26954, 85323)27 (-26954, 85323)28 (-26954, 85323)29 (98, 1)30 (98, 1)31 (98, 1)32 (98, 1)...2501 ( -32524788108326247... , 180020230874340668557...)2502 (-98, 107150860718626732094842504906000...)The algorithm does not 
onverge nearly as fast as it did from approximating
α, but it eventually rea
hes the 
orre
t γn at n = 2502. It took approximately1.25s for my 
omputer to arrive at the 
orre
t approximation.5 Boolean Sequen
esThe interest of this paper is stream 
iphers, and there are a few di�erent waysto use bent fun
tions in the implementation of a stream 
ipher. Sequen
esgenerated using bent fun
tions have ni
e 
ryptographi
 properties be
ause oftheir perfe
t nonlinearity. These sequen
es 
an be generated multiple ways.Two easy examples are a �ltering fun
tion on a shift register produ
ing an m-sequen
e or a shift register whi
h uses n di�erent shift registers as input into abent fun
tion. These two te
hniques are dis
ussed by Carlet [3℄. Both of these
onstru
tions use input ve
tors from F

n
2 in a pseudorandom order to generatethe sequen
e. Before s
rambling the input in this way, the sequen
es generatedby binary ordering of input ve
tors is 
onsidered.De�nition 5.0.3. Let (an) be a sequen
e. If T is the smallest positive integersu
h that ai = ai+T , then the minimal period of (an) is T .37



De�nition 5.0.4. Let f ∈ BFn and vi ∈ F
n
2 su
h that vi = B−1(i) for 0 ≤ i <

2n. Then,
seq(f) = (f(v0), f(v1), . . . , f(v2n−1), f(v0), . . . ) (35)is a f -�ltered Boolean sequen
e.De�ned in this way, all f -�ltered Boolean sequen
es have a minimal periodat most 2n. Using the binary ordering, the Boolean sequen
e generated will berepeated 
olumns of the outputs for the Boolean fun
tion read from the truthtable of the Boolean fun
tion. For example, the f -�ltered Boolean sequen
e inTable 2 is

(0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, . . .).Theorem 5.0.5. The f -�ltered Boolean sequen
e of a bent fun
tion has a periodexa
tly 2n.Proof. For xi, λi ∈ F2 and 0 ≤ i ≤ n − 2, de�ne (x, 1) = (x0, . . . , xn−2, 1),
(x, 0) = (x0, . . . , xn−2, 0), and (λ, 1) = (λ0, . . . , λn−2, 1). Suppose f ∈ BFn and
seq(f) has a period T = 2j < 2n. Then, f(x, 0) = f(x, 1).

c(λ, 1) =
1

2n/2





∑

x∈F
n−1

2

(−1)f(x,0)+(x,0)·(λ,1) + (−1)f(x,1)+(x,1)·(λ,1)





=
1

2n/2





∑

x∈F
n−1

2

(−1)f(x,0)
(

(−1)(x,0)·(λ,1) + (−1)(x,1)·(λ,1)
)





=
1

2n/2





∑

x∈F
n−1

2

(−1)f(x,0)
(

(−1)0·1 + (−1)1·1
)





=
1

2n/2





∑

x∈F
n−1

2

(−1)f(x,0) · 0





= 0.One of the Fourier 
oe�
ients of f must equal zero. Thus, f 
annot be abent fun
tion. Clearly, every f -�ltered Boolean sequen
e has a minimal periodat most 2n. Therefore, if g is a bent fun
tion, then seq(g) has period exa
tly
2n. Boolean sequen
es will be 
onsidered as 2-adi
 exansions of rational numbers.De�nition 5.0.6. Let f ∈ BFn and vi ∈ F

n
2 su
h that vi = B−1(i) for 0 ≤ i <

2n. Then,
αf = (f(v0), f(v0) + f(v1) · 2, . . . , f(v0) + · · ·+ f(vi) · 2

i, . . . ) (36)where αf ∈ Z2 is 
alled the 2-adi
 expansion of f .38



Lemma 5.0.7. The digit representation of αf is seq(f).Re
all the Maiorana-M
Farland 
lass of Boolean fun
tions from Subse
tion2.4.2, and 
onsider the subset of these fun
tions where g(y) = 0. Then thefollowing theorem is true.Theorem 5.0.8. log2(αf ) = 2n/2 + 2π̄(0) where f = x · π(y).Proof. Let f(x, y) = x · π(y) and (x, y) = (x0, . . . , xn−1, y0, . . . , yn−1) ∈ F
n
2where x, y ∈ F

n/2
2 . De�ne vi = (x, y)i = B−1(i) for 0 ≤ i ≤ 2n − 1. Then y = 0for 0 ≤ i ≤ 2n/2 − 1 and x = 0 for i = 2n/2. Thus, f(vi) = 0 for 0 ≤ i ≤ 2n/2.Now, log2(αf ) = min{i : f(vi) = 1}. The 
laim is that min{i : f(vi) = 1} =

2n/2 + 2π̄(0).Let A = {(x, y)i : 2
n/2 ≤ i ≤ 2n/2+1 − 1}. Then A is the set of ve
tors in F

n
2where

yk =

{

1 if k = 0

0 if k > 0If u = (x, y) ∈ A, then
f(u) = xπ̄(0)y0 =

{

1 if xπ̄(0) = 1

0 if xπ̄(0) = 0Then f(u) = 1 for exa
tly 2n/2−1 distin
t elements u ∈ A.De�ne (x′, y′) su
h that
x′k =

{

1 if k = π̄(0)

0 if k 6= π̄(0)
y′k =

{

1 if k = 0

0 if k 6= 0Then B(x′, y′) ≤ B(u) for all u ∈ A. Thus, i = B(x′, y′) is the smallest i su
hthat f(vi) = 1 and vi ∈ A. f(vi) = 0 for 0 ≤ i ≤ 2n/2.Therefore log2(αf ) = 2n/2 + 2π̄(0).Referen
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