
A Practical Algorithm for Massively-Parallel

Dense Matrix Multiplication in time n2.777

over any Field someday, but for now, the

Reals.

1

Thanks for Support

• This work was supported by

• The NSF VIGRE grant to UMCP, which allowed for me

to have a dissertation completion fellowship.

• The East Anglia Development Corporation, which funded

my stay with Nicolas Courtois at University College of

London in Ipswich, UK.

• The NSF grant for SAGE.

• William Stein’s NSF grant for a large-scale computer at

University of Washington.

2

• Thanks for inviting me to the US Naval Academy too!

While this is a math talk, I need to discuss

some algorithmics as motivation. . .

3

What is ω?

• It is well known that the following operations are big-Theta

of each other.

• Matrix Multiplication

• Matrix Squaring

• Matrix Inversion

• Triangular-Only Matrix Inversion

• LUP Factorization

4

• These proofs are from scattered sources, but have been col-

lected into an appendix of my dissertation.

• Together, they imply that any “black box” which performs

the above operations in, for example, Θ(nω) time will be

able to perform the others in that time also, with only trivial

modifications.

• Thus I am focusing on matrix multiplication for now.

• People actually build libraries this way (e.g. Arne Storjohann,

and unimodular integer matrices).

History

• In 1969 Volker Strassen published a short-cut for multiplying

2× 2 matrices with 7 instead of 8 multiplies.

• Once upon a time, a multiply was an expensive operation.

But today, additions and multiplies are just single instruc-

tions.

• But using this recursively is different.

• A 1024×1024 matrix times another becomes 7 multiplies

of size 512× 512.

• That becomes 49 multiplies of size 256× 256.

5

• Maybe at that point we switch to classical algorithms, but

• a 256× 256 multiply is ∼ 2563 operations,

• and an add is ∼ 2562 operations!!

Calculating Omega

• Based on the above,

M(n) = 7M(n/2) +O(n2)

= 49M(n/4) +O(n2)

= 73M(n/23) +O(n2)

= 74M(n/24) +O(n2)
... ...

= 7iM(n/2i) +O(n2)

• Let i = log2 n/n0 and thus 2−i = n0/n, and substitute

M(n) = 7log2n/n0M(n0) =
(
n
n0

)log2 7
M(n0)

• And so we have Θ(nlog2 7) ≈ Θ(n2.807)

6

Generalize

• We had a shortcut for 2× 2 multiplication in 7 steps, so we

had complexity

log2 7 =
log 7

log 2

• If one has a shortcut for n× n multiplication in s steps, one

would have complexity

logn s =
log s

logn

7

Does anyone use Strassen?

• The net running time is Θ(nlog2 7), which is Θ(n2.807···).

• This is fun because the exponent is irrational. Even non-

integer exponents are rare in undergraduate algorithms courses.

• At first, people were worried about numerical stability, but

first, that’s been shown to be not an issue.

• For finite fields (my application area), there is no rounding

error, ever!

• In practice, even for matrices as small as 120×120, Strassen’s

Algorithm is used.

8

Other Short-Cuts

• Strassen 1969: 2× 2 with 2× 2 in 7 steps. n2.807.

• Gastinel 1971: 3 × 3 with 3 × 3 in 25 steps (compare with

27). n2.930.

• Hopcroft and Kerr 1971: 3×3 with 3×3 in 24 steps (compare

with 27). n2.893.

• Laderman 1975: 3× 3 with 3× 3 in 23 steps (compare with

27). n2.854.

• Makarov 1978: 5× 5 with 5× 5 in 103 steps (compare with

125). n2.880.

9

• Bini, Capovati, Lotti, 1979: The Great Lost Paper. n2.7799.

The great lost paper: I had to go to the Library of Congress!

• Schachtel 1986: 5×5 with 5×5 in 102 steps (compare with

125). n2.874.

• Makarov 1987: 5× 5 with 5× 5 in 100 steps (compare with

125). n2.861.

• Laderman 1992: Exponent not given in abstract, paper ab-

surdly hard to find (ask me about Elsevir) but they claim

better than Strassen for 20 < n < 1020, which is basically

everything, but only for R,C,Q, not finite fields. I’m not sure

what that could possibly mean actually.

• All slower than Strassen, except BCL79, which had rounding-

error problems.

The other papers

• That is one branch of the “family tree” of this topic.

• The other branch involves papers that have algorithms which

are elegant in theory, but are never intended to be imple-

mented.

• e.g. Schönhage’s Algorithm involves “the dual numbers” of

a field: F[ε]/ε2.

• It beats the näıve algorithm only for n > 314. I have an

expository paper about this.

• A matrix of this size has 328 ≈ 1013.4 entries. Forget about

when it beats Strassen’s Algorithm.

10

Theoretical Papers

• Then Schönhage’s T Theorem, and any follow-on paper,

prove algorithms exist, without actually giving an algorithm.

• This has to do with the concept of the border-rank of a

tensor, and involves limits.

• So only an infinite sequence of problems would be completed

in the given running time.

• This includes Coppersmith-Winograd 1986, for n2.36.

11

Partial Results on Lowering Omega

• I have a system of polynomial equations which one can try

to solve over any field (i.e. the coefficients and constants

are 0 and 1 only).

• These equations model the map usually called “matrix mul-

tiplication”, but that’s just one map in a space of bilinear

maps from two particular spaces into a third.

• I can’t solve it exactly at the moment over any field. :-(

• But I can solve it approximately, and already, I’ve got inter-

esting things to say.

• . . . including three algorithms:

12

• For 3× 3 in 22 steps: n2.814 (superbly accurate).

• For 4× 4 in 48 steps: n2.792 (fairly accurate).

• For 4× 4 in 47 steps: n2.777 (less accurate).

• for dense matrix multiplication on R,

• with numerical error low enough to demostrate that it

works,

• “not great” numerical stability in general,

• but outstanding numerical stability in the case of random

i.i.d. matrices.

5 Interesting Questions

Q1) Can we find algorithms faster than Strassen’s algorithm, that
are useable in any way? (After all n2.81 6= n2.36 !)

Q2) How do you work with matrices too large to fit in RAM?
(Nicolas Courtois calls this linear algebra “on the disk.”)

Q3) Can linear algebra be made massively parallel, in the dense
case? (The sparse case has examples).

Q4) When accuracy (over R) to the extent of 10−6 is “okay”,
can we get faster than the exact algorithms?

Q5) What is the smallest number of multiplies required to multi-
ply a a×b matrix with a b×c matrix, over a non-commutative
ring.

13

The Equations!

14

A Bilinear Map

• Consider the space Mn(F)×Mn(F).

• There are many maps from Mn(R)×Mn(R)→Mn(R).

• Some of those are bilinear:

f(aX + bY, Z) = af(X,Z) + bf(Y, Z)

• One of those is matrix multiplication.

• Suppose you knew that you had a bilinear map. How could

you tell if it were matrix multiplication?

15

First Make a Basis

• Denote the matrix which is 0 everywhere, but 1 at i, j as Sij.

• The n2 matrices S =
{
S1,1, . . . , S1,n, S2,1, . . . , S2,n, . . . , Sn,1, . . . , Sn,n

}
form a basis of Mn(R).

• The n4 ordered pairs of matrices in S × S form a basis for

Mn(R)×Mn(R).

• If my map is “correct” for these n4 matrices, it is correct for

all the matrix pairs in Mn(R)×Mn(R).

16

How do you mean “correct”?

• We know what matrix multiplication should be, and so we

construct a “constraint satisfaction problem” or CSP.

• Observe now

SabScd = δbcSad

• Recall δxy =

{
x 6= y 0
x = y 1

• These are matrix equations, how do I make them field equa-

tions?

17

Writing Field Equations

• Let Entryij(X) mean what you think it means.

• Surely Entryij(Sad) = δiaδjd.

• Substituting this into SabScd = δbcSad

• We obtain

Entryij(SabScd) = δbcδiaδjd︸ ︷︷ ︸
our right hand side

18

As Generic a Model as Possible

• Suppose we want to multiply n×n matrices with n×n matrices

with s products.

• Call the outputs of these s products to be P1, . . . , Ps.

• Since we’ve accounted for all the products, the final answer

matrix C1,1, . . . , Cn,n must have Ci,j equal to a linear combi-

nation of these s products, and possibly other debris.

• Every product has a left half, and a right half, which are

matrices. Call these L1, . . . , Ls and R1, . . . , Rs.

• Note that we’ve accounted for all s products, so the formulas

for L and R must not contain a matrix multiplication.

19

But What are Li and Ri?

• This is the heart of the matter!

• Note that we’ve accounted for all s products, so the formulas

for L and R must not contain a matrix multiplication.

• What can L1 and R1 be composed of?

• They can be linear combinations of the 2n2 input elements,

A1,1, . . . , An,1, A1,2, . . . , An,2, . . . , A1,n, . . . , An,n, as well

as B1,1, . . . , Bn,n.

• The “true formula” for Cij = Ai1B1j +Ai2B2j + · · ·+AinBnj.

• There are no BA or A2 or B2 terms in there!

20

Therefore. . .

• So in calculating L1 and R1,. . .

• we know L1 is a linear combination of the Aij’s

• and R1 is a linear combination of the Bij’s.

• and the others?!

21

And the others?

• For example L2 and R2 might contain P1. But we could

substitute into the formulae for L2 and R2 the formula for

P1 and get a formula for L2 and R2 that does not include

P1.

• So all the Li’s and Ri’s are linear combinations of the input

matrixes, nothing more and nothing less.

• How do we know that L has no constant term in the linear

combination? (affine?)

• Otherwise, A = 0 with B 6= 0 would produce a nonzero

product, which is absurd for a bilinear map.

22

• Likewise, any “quadratic” terms (A2
ij) would destroy the lin-

earity part of bilinear.

• So both Li and Ri are just linear combinations of Aij’s and

Bij’s respectively, without mixing.

• This model was inspired by both Strassen’s and Laderman’s

algorithms.

The Formulation

• Let Lk = Σij αijkAij

• Let Rk = Σij βijkBij

• Then Pk = LkRk.

• If every processor can read all the Aij’s and Bij’s, then each

Pk can be computed on a separate processor!

• Each Cij is just a linear combination of the Pk’s.

• Let Cij = Σk γijkPk

23

What Does this Give us?

• Suppose you are computing SabScd.

• Then Lk = αabk, because everything else is zero, and your

matrix entry is one.

• Likewise Rk = βcdk.

• Of course this means Pk = αabkβcdk.

• Let Cij = Σk γijkPk = Σk γijkαabkβcdk

24

And what does this Mean?!

• Defining the Li’s and Ri’s as we have, calculating them is just

a bunch of additions and scalar multiplications, (i.e. free).

• Multiplying them requires s multiplies, to get P1, . . . , Ps. (i.e.

expensive).

• The final answer matrix is just linear combinations of these,

(i.e. free).

• In particular, for calculating SabScd one obtains

Cij = Σ
k
γijkPk = Σ

k
γijkαabkβcdk

• Ah ha! But Entryij(SabScd) = δbcδiaδjd.

25

• Thus we obtain n2 cubic equations, just about SabScd:

Σ
k
γijkαabkβcdk = δbcδiaδjd

• But there are n4 such pairs SabScd.

• Thus I have n6 cubic equations, whose coefficients and con-

stants are zero and one.

• I am trying to find the image of a particular vector under a

cubic form.

• Observe, it doesn’t matter what the underlying field (or unital

ring) is.

Discussion of Parameters

• So the degree is 3 and I have n6 equations.

• It is also noteworthy that I have 3n2s unknowns.

• If s = nlog2 7−ε then I have 3n4.807−ε unknowns.

• Fewer variables then unknowns mean it should be easy to

solve right? Highly overdefined, Ideal for a multivariate poly-

nomial expert or the XL algorithm. Well. . .

26

How big is this?

• For n = 3 and s = 26 I have 729 equations and 702 un-

knowns.

• For n = 3 and s = 22 I have 729 equations and 594 un-

knowns.

• For n = 4 and s = 48 I have 4096 equations and 2304

unknowns.

• For n = 4 and s = 47 I have 4096 equations and 2256

unknowns.

• For n = 5 and s = 91 I have 15,625 equations and 6825

unknowns.

27

Credit Where Credit is Due

• The equations

Σ
k
γijkαabkβcdk = δbcδiaδjd

• We independently discovered by Richard Brent in 1970 while

at Standford.

• I have discussed this with him, and I am naming these “The

Brent Equations.”

28

These are the Equations from Hell!

• I’ve been working on this since mid-January 2006.

• Everything I had tried has failed until I wrote my own code:
Plunge and Descender.

• XL Algorithm.

• ElimLin and its variants.

• SAT-solvers.

• SAT-solvers with loads of preprocessesing.

• Every form of Groebner Basis method Nicolas Courtois
tried.

29

• Multidimensional Newton’s Method.

• Broyden’s Method.

• One version of BFGS.

• Just dumping it into MAGMA.

• A few others!

Symmetry of Solutions

• When solving systems of polynomial equations, the group of

bijective maps which send all solutions to other solutions is

very important.

• Sometimes you can “mod out” by it, or a major direct sum-

mand of it.

• Other times you can use this group to gain intuition, and then

add artificial unneeded constraints that reduce the number of

solutions, but still retain a few, to make the problem easier

to solve.

• I have found two major direct summands of the symmetry

group of the solutions.

30

Type I: “Reorder” Symmetries

• The s intermediate products, P1, P2, . . . , Ps are all calculated

independently from the initial data.

• Thus you could rename them Pσ(1), Pσ(2), . . . , Pσ(s), by using

any σ ∈ Ss (e.g. S47).

• Essentially this is reordering the terms of the sum:

Σ
k
γijkαabkβcdk = δbcδiaδjd

• So we have s! symmetries of this type.

31

Type II: “Rescale” Symmetries

• Consider a map of the form:

∀i, j αijk 7→ ckαijk

∀i, j βijk 7→ c′kβijk
∀i, j γijk 7→ c′′kγijk

• For any non-zero ck, c
′
k in F, and c′′k = 1/ckc

′
k.

• This clearly leaves the Brent Equations untouched:

Σ
k
γijkαabkβcdk = δbcδiaδjd

• There are
[
(|F| − 1)2

]S
choices for this.

32

What does this mean?

• These changes are not only independent, but a symmetry of

the “reorder” type and of the “rescale” type commute!

• So the number of symmetries has

S!
[
(|F| − 1)2

]S
as a divisor.

• Over GF(5), this means that a Gröbner Basis would have to

take into account, in the 4× 4 in 47 step case

47!
[
(|F| − 1)2

]47
≈ 1.105× 10116

solutions.

33

• Over R this means the solutions form a continuum that lo-

cally is a S2-dimensional surface.

• Therefore you can imagine the polynomial system as a sur-

face.

• For 4 × 4 in 47 steps, it has dimension 2256, and is sitting

in a 4096 dimensional space.

• The level-set for 0 is the set of points that we want.

• And that is a 2209 dimensional surface.

So What Did Work?!

• I wish to find the α’s, β’s, and γ’s such that

∀(i, j, a, b, c, d) − δbcδiaδjd + Σ
k
γijkαabkβcdk = 0

• Therefore, define ri,j,a,b,c,d = −δbcδiaδjd + Σk γijkαabkβcdk

• If I can find α’s, β’s, and γ’s such that all the ri,j,a,b,c,d are

zero, then I am happy.

• Make a one-dimensional vector out of the r’s. If their L2

norm is zero, (or if it’s square is zero) then they are all each

identically zero.

34

More. . .

• Make a one-dimensional vector out of the r’s. If their L2

norm is zero, (or if it’s square is zero) then they are all each

identically zero.

• Well hey! That’s just squaring each of my 4096 cubic poly-

nomials and adding them together!!

• Thus I now have ONE polynomial in 567 . . .2256 variables,

and I want to find a zero of this polynomial.

35

More. . .

• Make a one-dimensional vector out of the r’s. If their L2

norm is zero, (or if it’s square is zero) then they are all each

identically zero.

• Well hey! That’s just squaring each of my 4096 cubic poly-

nomials and adding them together!!

• Thus I now have ONE polynomial in 567 or 2256 variables,

and I want to find a zero of this polynomial.

• Why not use gradient descent?

• Miraculously, it works.

36

• Mainly because I can do around 15,000 iterations in a day

rather than just a few hundred.

• After trying lots of norms, I found it is best to use the L4

norm, but without the 4
√ .

Two New Innovations

• Generally I do gradient descent followed by Broyden:

• However, I have a new “dancing norm” technique.

• Start with the L4 norm, go to local minima (i.e. relative

improvement is roughly 10−5).

• Then start picking random norms, from L1 to L10, and

go until either 10,000 iterations or relative improvement

as above.

• Without MPFR this would be a disaster!!

• Finally do Broyden.

37

The other “innovation” is Darwinian

Gradient Descent, which I’ll mention at the

end if I have time.

38

How “Good” is my Approximation

• My approximation is not merely floating point. All numbers

are machine representations of rational numbers. (i.e. no

square roots or other non-rational activities occur).

• Continued fractions should recover the original rationals.

• If the numbers are solutions of quadratic polynomials over

the rationals, continued fractions will make that exact too.

• The L∞ norm (maximum) of the r’s is around 0.06.

39

Norms of Residuals

• As a random variable the residuals are 0.0078322± 0.69227.

Norm Value Normalized

L1 214.53 0.052375
L2 8.3183 0.0020308
L3 4.1807 0.0010207
L4 3.1810 0.00077661
L∞ 2.1558 0.00052632

40

Exact Error Formulae

• In Lk, the coefficient of Aab is αabk.

• In Rk, the coefficient of Bcd is βcdk.

• Thus is Pk, the coefficient of AabBcd is αabkβcdk.

• Since Cij = Σk Pkγijk then the coefficient of AabBcd in Cij is

Σ
k
αabkβcdkγijk

• Alternatively,

Cij = Σ
a,b,c,d

AabBcd

(
Σ
k
γijkαabkβcdk

)
41

Finding an Explicit Error Formula

• Alternatively: Cij = Σa,b,c,dAabBcd
(
Σk γijkαabkβcdk

)
• Since in reality (the true formula)

Cij = Σ
b
AibBbj = Σ

abcd
δiaδdjδbcAabBcd

• The error (difference between my algorithm’s value and the

näıve’s value) is therefore

Eij = Σ
a,b,c,d

AabBcd

(
−δiaδdjδbc + Σ

k
γijkαabkβcdk

)
42

More Error Formulae

• Previous slide had: Eij = Σa,b,c,dAabBcd
(
−δiaδdjδbc + Σk γijkαabkβcdk

)
• But −δiaδdjδbc + Σk γijkαabkβcdk = ri,j,a,b,c,d is just one of the

residuals.

• So this yields Eij = Σa,b,c,dAabBcdri,j,a,b,c,d

• Thus you can see when we make all the residuals equal to

zero, there will be no error.

• So we can sort those n4 residuals (out of the n6 available)

in the formula for Eij by the order of the absolute values.

43

What Good are Exact Error Formulae?

• If we know the error exactly, can’t we make a perfect algo-
rithm?

• Yes, but this requires 44 additional multiplies for the AabBcd
for a total of 256 + 47 = 303 multiplies, or n4.122 compared
to n3.

• But by sorting the coefficients, we know which inputs influ-
ence each particular output the most.

• This will enable us to create an “evil matrix” which makes
this as large as possible, good for testing.

• Also, the alternating signs show that random matrices “should”
have error far below the worse case.

44

E22 = -0.06292xA22 B22 -0.0614877xA24 B41
+0.0612886xA22 B44 +0.0610065xA24 B14 +0.0606721xA23 B33
+0.0592814xA21 B44 -0.0579049xA23 B34 -0.0570364xA24 B42
-0.056058xA23 B32 -0.0553864xA21 B12 -0.0550288xA31 B11
-0.0548968xA21 B11 +0.054593xA22 B34 +0.0536676xA24 B43
-0.0534431xA22 B21 -0.0533853xA12 B22 -0.053288xA22 B11
-0.0532376xA34 B41 +0.053133xA41 B33 -0.0528467xA24 B13
+0.0526954xA41 B21 +0.0526337xA11 B44 -0.0525068xA22 B33
-0.0520263xA23 B41 +0.0520086xA33 B33 -0.0517967xA23 B23
-0.0515737xA13 B41 -0.0513944xA43 B43 -0.0512641xA13 B34
+0.0511837xA43 B13 -0.0511519xA31 B12 -0.0509815xA41 B32
-0.0509176xA22 B43 -0.0507511xA33 B31 -0.0503835xA12 B11
+0.0502616xA24 B24 -0.0500156xA14 B44 -0.0500137xA14 B31
+0.0499233xA44 B11 -0.0499117xA41 B31 +0.0497977xA23 B24
+0.0497113xA41 B22 -0.0495226xA14 B23 +0.0492809xA23 B21
+0.0491904xA22 B23 -0.0487231xA44 B33 +0.0484801xA12 B23
+0.0481966xA22 B31 -0.0481135xA32 B41 -0.047912xA23 B31
+0.0475391xA23 B22 +0.0474678xA31 B14 +0.0474204xA13 B24
+0.0473955xA34 B44 -0.047353xA21 B21 -0.0469107xA24 B32
+0.0468645xA44 B32 +0.0468399xA43 B41 +0.0468296xA31 B34
+0.0465649xA14 B14 -0.0465638xA43 B12 -0.0464189xA24 B34
+0.0462979xA31 B44 -0.0460573xA33 B32 -0.045983xA24 B23
-0.0459744xA11 B22 +0.04594xA42 B41 -0.0456978xA44 B44
-0.0455621xA22 B12 +0.0455296xA11 B31 -0.0450886xA12 B33
+0.0450226xA12 B41 -0.0449214xA31 B22 -0.0448092xA34 B42

-0.0445862xA43 B14 -0.0443261xA21 B43 -0.0442966xA24 B31
+0.0442112xA34 B14 -0.0441194xA31 B21 +0.0440478xA14 B43
-0.0433177xA33 B13 -0.0433022xA41 B14 -0.0431648xA32 B11
+0.0431474xA12 B44 +0.0430059xA42 B12 +0.0429886xA41 B13
+0.04298xA33 B14 -0.042974xA11 B14 -0.0429626xA23 B42
+0.042588xA22 B32 -0.0425564xA34 B21 -0.0424522xA34 B22
+0.0422993xA12 B34 -0.0422468xA34 B13 +0.0422318xA32 B34
-0.0420247xA13 B23 +0.0418863xA13 B12 -0.0414586xA32 B22
+0.041122xA42 B11 +0.0407682xA13 B11 +0.0405539xA12 B31
+0.0405356xA21 B13 +0.0404861xA24 B33 +0.0404189xA42 B23
+0.0403972xA33 B43 +0.0402442xA14 B21 -0.0401973xA11 B21
+0.0399942xA44 B31 -0.0399207xA14 B41 -0.039903xA42 B24
+0.0398399xA12 B42 +0.0397874xA13 B33 +0.0397766xA44 B43
+0.0396957xA34 B33 -0.0393643xA33 B23 -0.0392003xA12 B24
+0.0391804xA21 B34 +0.0391516xA32 B14 -0.0389888xA21 B22
+0.0388757xA42 B32 -0.0388693xA13 B42 +0.0387992xA23 B43
-0.0387769xA14 B32 +0.0386469xA22 B14 +0.0386086xA44 B12
+0.0383648xA43 B42 -0.0382559xA43 B11 +0.0380984xA34 B24
+0.0379192xA11 B23 +0.0374483xA23 B14 -0.0367711xA41 B44
-0.0366591xA42 B44 -0.0365263xA33 B41 -0.0361846xA31 B33
+0.0361277xA32 B24 +0.0358374xA44 B22 +0.0352818xA21 B23
-0.0352582xA23 B13 +0.0351223xA41 B42 -0.0349926xA14 B11
+0.0349006xA33 B24 +0.0344345xA14 B22 +0.0343162xA22 B42
+0.034246xA33 B21 +0.0342383xA44 B41 -0.0342046xA32 B33
+0.0341853xA43 B22 +0.0341626xA11 B32 -0.0341253xA12 B43

-0.0338013xA23 B44 +0.0337856xA24 B22 +0.0336964xA31 B23
-0.0336897xA32 B42 -0.0331754xA12 B21 +0.0330526xA32 B31
+0.0328972xA41 B41 -0.0325432xA41 B23 -0.0325009xA31 B43
-0.0323789xA32 B12 -0.0321515xA11 B41 +0.0318827xA13 B43
-0.0315887xA23 B11 +0.0314131xA11 B12 +0.031325xA42 B31
-0.0311722xA13 B14 -0.03112xA11 B43 -0.0309718xA32 B21
+0.0309218xA21 B24 -0.0308031xA34 B31 -0.0306037xA34 B34
+0.0305985xA44 B21 +0.0302669xA32 B44 -0.0295881xA41 B34
-0.0295818xA33 B42 -0.0293197xA42 B13 +0.0291152xA22 B13
-0.0286632xA34 B12 +0.0286311xA11 B13 -0.0285587xA14 B42
-0.0285091xA44 B14 +0.0283613xA14 B24 -0.0282256xA22 B24
+0.0273397xA24 B12 -0.0266776xA11 B42 +0.0264465xA21 B42
-0.0264318xA44 B24 -0.0264081xA13 B32 +0.026359xA14 B33
+0.0261857xA13 B21 +0.0257823xA42 B43 -0.0256948xA44 B42
+0.0255531xA13 B31 +0.0254014xA43 B44 +0.0252378xA12 B13
+0.0249909xA31 B13 -0.0249875xA11 B34 +0.0247952xA41 B11
-0.0240743xA14 B13 -0.0238927xA43 B24 -0.0232105xA24 B11
+0.022909xA32 B13 +0.0229079xA11 B11 -0.0225982xA31 B42
-0.0217525xA33 B34 +0.0214965xA43 B23 -0.0214058xA33 B44
-0.0213196xA34 B32 +0.0212421xA23 B12 +0.0211252xA33 B22
+0.0208494xA34 B43 -0.0204271xA34 B11 -0.0200119xA13 B13
+0.0192585xA11 B24 +0.0180574xA44 B34 -0.0179604xA42 B33
+0.0173839xA43 B21 -0.0169773xA42 B22 +0.016769xA43 B32
+0.0167259xA42 B42 +0.0166875xA12 B14 -0.0162347xA24 B44
+0.0159972xA31 B24 -0.0153315xA13 B22 -0.0152056xA42 B14

-0.0149822xA21 B14 +0.0129592xA43 B34 -0.0129413xA32 B43
-0.0127591xA34 B23 -0.0127258xA31 B41 +0.0126163xA44 B23
+0.0124708xA42 B21 +0.0112917xA13 B44 +0.0100898xA14 B34
-0.00995775xA31 B32 +0.00995717xA44 B13 -0.00795201xA21 B32
-0.00772578xA21 B33 +0.00753714xA42 B34 -0.00682056xA43 B33
+0.00653761xA41 B24 -0.00580205xA11 B33 -0.00509909xA21 B41
+0.00445486xA24 B21 -0.00417769xA32 B23 +0.00332205xA41 B43
-0.00287378xA43 B31 +0.00239668xA12 B32 -0.00209226xA14 B12
-0.00195028xA22 B41 -0.00193457xA32 B32 +0.00162254xA12 B12
+0.00133523xA31 B31 -0.00113364xA33 B11 +0.00111454xA33 B12
-0.00101309xA21 B31 -7.01795e-05xA41 B12

Error in Practice

• In theory, there should not be very much of a difference

between theory and practice.

• In practice, this is not the case.

• Start with two matrixes of some importance, structure or

type.

• Multiply them both with the proposed algorithm and with

the näıve algorithm.

• The difference of these two products is the error matrix.

• It has norms.

45

What Should it Look Like?

• According to Golub and Van Loan, the error for matrix mul-

tiplication (n× n by n× n) has |C − Ĉ| = nε|A||B|

• where AB = C and Ĉ is the machine-calculated C. Also, ε is

machine-precision.

• Note that |A||B| = |C|.

• This yields

|C − Ĉ|
n|C|

= ε

• We will calculate the left identically, and see what we get as

ε.
46

This is Wierd

• Why is it getting better with a larger matrix?

Dimension L1 L∞ Froebenius

200× 200 0.0084936 0.0030843 0.005214
300× 300 0.0059094? 0.0026270 0.003433
400× 400 0.0071614? 0.0022557 0.002585
600× 600 0.0028571 0.0013959 0.001739
800× 800 0.0026459 0.0014069 0.001311
1200× 1200 0.002032 0.00083510 0.000867
1600× 1600 0.000659203 0.00011332 0.000650

• Random matrix effects move closer to the “perfect” distri-

bution as the matrix gets large?

47

Q4: Approximate Multiplication

• Can we use this for approximate matrix multiplication?

• Application: Graphics. The human eye cannot distinguish

among 10−5 differences in color.

• As a result, graphical processesing units (GPU’s) do not use

quad or double precision, nor single precision, but “half pre-

cision” floating point.

• Single Precision is 2 bytes—11 bit mantissa, 5 bit exponent.

• This isn’t even four digits!

• We’re almost, but not quite, there. (We can promise about

three digits).

48

Q3: Massively Parallel Linear Algebra

• Suppose you divided a pair of matrixes into 64× 64 = 4096

pieces.

• At worse, all processors need to know all 8192 input subma-

trixes. (Can we do better?).

• Individual processors can work on the products.

• Naive = 262,144 products.

• Strassen = 117,649 products. (6 recursive calls).

• Proposed Alg = 103,823 products. (3 recursive calls).

49

Then What?

• All the product matrixes get sent back to the mothership.

• Upon receipt, the Cij’s are calculated as linear combinations

(quadratic time, very easy).

• Speed-Up over Strassen: 13.3%

• Speed-Up over Näıve: 152.5%

• (How much more work can I do with same CPU power).

50

Q2: Linear Algebra on Disk

• Suppose I had two 32M × 32M matrixes.

• That doesn’t fit in memory! 1024 Terabytes each.

• Cut it into five proposed algorithm levels, (or 10 Strassen

levels).

• This becomes 32K × 32K, or 1 Gigabyte each.

• Fits into RAM.

51

. . .

• This is like parallel processesing, but serially. Each separate

processor that doesn’t talk to any other is a separate “epoch”

of the program that can’t talk to the future or the past.

• Assume multiplying two of these “splinters” is 1 CPU-hour.

(very optimistic).

• There will be 1M “splinters” on the left, and 1M on the right.

• The näıve method requires 1,073,741,824 multiplies.

• This is 122,573 CPU-years.

• Strassen’s method requires 282,475,249 multiplies.

52

• This is 32,246 CPU-years.

• The proposed method requires 229,345,007 multiplies.

• This is 26,181 CPU-years.

Q5: What Shortcuts Exist?

• This model of a short-cut is not universal.

• E.g. Suppose a matrix inversion occured in the middle of the

algorithm.

• But barring odd things like that, it is universal. If the system

of equations has no solution, then a shortcut of those given

parameters does not exist!

• However, just because you do not find one, does not mean

that one does not exist!!

53

Hope For the Future

• Suppose we had a rational solution.

• Then we have a solution modp for all p.

• (We can also do it modn).

• If not, a bunch of finite field solutions would be cool (e.g.

speeding GF(2) linear algebra for cryptography, or GF(5) for

graph coloring).

• Help! Help! Help! .

54

And now. . . Darwinian Gradient Descent

55

Darwinian Gradient Descent

• Start with 800 computers running BOINC (e.g. at Fordham).

• Step 1: Make a quarter-million initial points (vectors with one field value
for each variable).

• Step 2: Run gradient descent for “a while”.

• Step 3: Rank all the vectors by their infinity norm, or some other metric
that is not one of the L1, L2, . . . , L10 metrics.

• Step 4: Delete the lowest 3/4 of them.

• Step 5: Go to Step 2.

• After 20 iterations of this loop, you’ll have 1 point for each of the 800
machines. Switch to Broyden.

• All guesses are in the top 1/3 of 1%.

56

Gregory Bard

bard @ fordham.edu

57

