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Abstract:

A duality between exactness and approximation arises in many areas of

human activity. Somewhat paradoxically, the uses of /em digital

computers have lead to great strides in the mathematical understanding

of approximation. At the same time, but somewhat less visibly, great

strides have been made in understanding how to do exact mathematical

computations as well. I will give a status report with examples linear

algebra, computations with integer matrices.
Isupported by NSF grant CCR0515197
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A brief history of exact linear algebra

A brief history of exact linear algebra

computation

A brief history of sparse matrix exact linear
algebra computation
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Outline

• LinBox project and other implementation efforts.

• Prehistory.

• Algorithmic developments for dense matrices.

• Algorithmic developments for sparse and structured matrices

(blackbox methods).

• survey of applications.

• predictions and open problems.
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Exact as opposed to what?

Linear algebra may be exact or approximate. Symbolic or numeric.

In the numeric case one is concerned with accuracy, the issues of

stability and convergence of methods.. In the exact case one is

concerned with expression size, the problems of memory and

runtime created by expresson swell during computations.

Neither set of issues was paid much mind before the computer age.
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19th century

All linear algebra was exact.

1801, Gauss described the “common” method of solving linear

equations, also invented modular arithmetic.

Determinant preceeded matrix as concept in 19th century.

(Sylvester, Cauchy, Binet...)

Most important mathematics of linear algebra was developed such

as canonical forms.

1861 Smith introduces normal form for integer matrix equivalence.

18xx Frobenius canonical form for rational matrix similarity.

1870 Jordan canonical form (over finite fields!) for matrix

similarity.

In all, they produced the underpinnings so that the 20th century

can view linear algebra as the simple, completely understood case

to which you can reduce your favorite problem.
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First half of 20th century

The big thing is the modern algebra movement.

Abstract Algebra provides a useful mathematical framework for

1. modern modular algorithms (Smith form over Zpe helping

compute Smith form over Z), and

2. generic programming approach. Key abstractions: arithmetic

domain of computation (field, ring), the blackbox (Linear

operator on finite dimensional vector space, module).
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Second half of 20th century

The great story is the story of numeric linear algebra.

... of it’s methods

exact, direct methods applied approximately (questions of stability)

approximate, iterative methods (questions of convergence)

... of it’s fundamental role in scientific computing



Naval Academy, 2007Sep24 8

Second half of 20th century in Computer Algebra

The great stories are the stories of closed form integration, symbolic

differential equations solving, and of polynomial manipulation.

60’s: Slagle’s “Saint”, Moses’ “Sin” programs. Richardson’s

elementary function integration algorithm. General purpose

symbolic math systems REDUCE and Macsyma.

70’s: Polynomial GCD and factoring. First significant improvement

in GCD since Euclid.

80’s: Second generation general purpose commercial symbolic math

systems Maple, Mathematica, Magma (group theory)

90’s: Greater attention to special purpose systems to obtain high

performance for specific categories of symbolic math: Linear

algebra (LinBox), Buchberger’s algorithm. Also emergence of open

source systems in the face of the high cost and high inertia of the 3

M’s. (singular, gap, cocoa, pari, etc.)
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21st Century...

00’s Sage (Stein, Joyner), QEPCad/SACLIB(Collins, Brown)

Exact linear algebra draws from a half century of numeric

(approximate) linear algebra developments, producing

computational capability for problems that were (a) unthinkable by

approximate methods, or (b) thinkable, but unsolvable due to

computational stability problems.
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70s - Era of algebraic complexity

Algebraic complexity - count arithmetic operations: ambition,

distraction, uglification, and derision. (vs bit complexity - also

consider the sizes of the operands)

Arithmetic complexity measures serve

• well for matrix of floating point. (Coincides with development

of numeric linear algebra)

• well for matrix over small finite field.

• poorly for integer or rational matrix.

Let S(n) = algebraic complexity to solve an n × n system.

Let M(n) = algebraic complexity to multiply n × n matrices.

Known: O(n2) ⊆ O(S(n)) ⊆ O(M(n)) ⊂ O(n3) [Strassen 69, Pan

78]

Open: O(n2) 6= O(S(n))? O(S(n)) 6= O(M(n))?
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80’s - Facing the bit complexity

The problem:

Given A, b, integer n × n matrix and n-vector, find rational vector

x : Ax = b.

Suppose entries in A, b are bounded by β. Let d = log(β). The

input size is O(n2d + nd).

Det(A) is bounded by (n1/2β)n, storage size by n(log(n)/2 + d). By

Cramer’s rule, the output involves n determinants as numerator

and det(A) as denominator, Size of solution vector x is

O(n2(log(n) + d), greater than size of A, b in general!

Simplify: Let β < n, so d < log(n). Then, simply, let us ignore log

factors.

Thus: When size of A, b is O∼(n2), size of x is O∼(n2).
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Direct Elimination Cost

During Gaussian elimination we compute about (1/3)n3 quotients

of minors. Sizes averaging O∼(n).

Thus: The size of intermediate storage is O∼(n3). The time cost

with standard integer arithmetic is O∼(n5).

For example:

10000× 10000 matrix of {0, 1,−1}. Initial memory: 100 Megabytes.

Intermediate memory need: 1012 bytes = 1 Terabyte.

Run time: 1020 cycles = 300 years at 10 GHz speed.
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[Dixon 82]

Given n × n matrix A, vector b over Z, solve Ax = b. Choose a

prime p near 232 (wordsize prime)

Compute LU mod p. O(n3). Set x0 = U−1L−1b (mod p). Set

r1 = (Ax0 − b)/p. O(n2)

[ Hensel lifting - base p expansion of x ]

for i = 1 to nlogp(n) [Hadamard bound] do:

Set xi = U−1L−1ri (mod p). O(n2)

Set ri+1 = (Ax − b)/p. (Can be done in O(n2))

Thus: bit complexity of O∼(n3), memory O∼(n2).
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Ax0 = b(mod p), A(x0 + x1p) = b(mod p2), A(x0 + x1p + x2p2) = b(mod p3), . . .

n3, n2, n2, . . .

Dixon’s method Bit complexity of O∼(n3), memory O∼(n2): No

worse than classic algebraic cost!

For example:

10000× 10000 matrix of {0, 1,−1}. Initial memory: 100 Megabytes.

Intermediate memory need: 108 bytes = 100 Megabytes.

Run time: 1012 cycles = 17 minutes at 1 GHz speed.

Further work: output sensitive method. Early termination.
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1 0 0 0 0 0

−41/44 1 0 0 0

−35/44 1357/390 1 0 0

41/88 1051/780 106351/156218 1 0

91/88 −259/780 9569/156218 9469464/4130959 1

29/88 19/780 18271/156218 −3315826/4130959 −253468858/717012689

35/44 −184/65 −76218/78109 699563/590137 2646876953/2868050756 −412651034075

−4/11 34/39 54004/78109 −5192380/4130959 296262959/717012689 442389509183
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1 0 0 0 0 0

−41/44 1 0 0 0

−35/44 1357/390 1 0 0

41/88 1051/780 106351/156218 1 0

91/88 −259/780 9569/156218 9469464/4130959 1

29/88 19/780 18271/156218 −3315826/4130959 −253468858/717012689

35/44 −184/65 −76218/78109 699563/590137 2646876953/2868050756 −412651034075

−4/11 34/39 54004/78109 −5192380/4130959 296262959/717012689 442389509183

−1/88 −1351/780 −69523/156218 1581304/4130959 −2102895/84354434 −140531533889
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−163135032340604

41702403318845
,

1179722492402710

2024370527400749
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Matrix with one million entries

1000 × 1000, dense

200 × 5000, dense

2000 × 2000, 1/4

dense

10000 × 12000

100 per row, sparse

.. . ...

... .. .

. ... ..

100000 × 100000

10 per row, sparse
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measure sparsity as power of dimension

n × n matrix ⇒ ne nonzero entries

n = 1000 ⇒ 106 = n2, all entries nonzero.

n = 2000 ⇒ 106 = n1.82, one in 4 entries nonzero.

n = 10000 ⇒ 106 = n1.5, one in 100 entries nonzero.

n = 100000 ⇒ 106 = n1.2, one in ten thousand is nonzero.

Gaussian elimination - Dense matrix: n3 = n ∗ ne arithmetic ops.

(e = 2)

Gaussian elimination - Sparse matrix: n ≤ ops ≤ n3

Time is anywhere from much less than n ∗ ne to much more.

Memory need is anywhere from ne to n2 = n ∗ ne

For sparse matrices, asymptotic analysis is much less helpful for

understanding algorithm performance in practice.
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90’s - Era of Blackbox algorithms

Matrix sequence viewpoint (over n2 dimensional vector space):

I, A, A2, . . . , Ad, . . .

Lanczos: Vector sequence viewpoint (over n dimensional space)

b, Ab, A2b, . . . , Aeb, . . .

Wiedemann: Scalar sequence viewpoint (over 1 dimensional space)

uT b, uT Ab, uT A2b, . . . , uT Afb, . . .
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The minimal polynomial of a matrix is the lowest degree monic

polynomial is mA(x) =
∑d

i mix
i, such that

m0I + m1A + m2A
2 + ... + mdA

d = 0

The minimal polynomial of the vector sequence determined by A, b

is mA,b(x) =
∑d

i mix
i, such that

m0Ib + m1Ab + m2A
2b + ... + mdA

eb = 0

The minimal polynomial of the scalar sequence determined by

u, A, b is mu,A,b(x) =
∑d

i mix
i, such that

m0u
T Ib + m1u

T Ab + m2u
T A2b + ... + mdu

T Af b = 0

f ≤ e ≤ d, even mu,A,b(x)|mA,b(x)|mA(x)
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mA(x) = (x − 2)(x − 3) = 6 − 5x + x2.
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u = (1 1).

(2) (6) (18) (54) (162)

−3 1

−3 1

−3 1

u = (1 0).

(1) (2) (4) (8) (16)

−2 1

−2 1

−2 1

But u = (0 1) works:

(1) (4) (14) (46) (146)

−4 1

6 −5 1

6 −5 1
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Preconditioners

Let’s use Wiedemann’s minpoly algorithm to get the determinant.

(This is also an example of a Las Vegas algorithm arising from

Monte Carlo method).

1. wu,A,b|lA,b|mA. [always]

2. if wu,A,b(0) = 0, then det(A) = 0. [always]

3. if deg(wu,A,b) = n, then det(A) = wu,A,b(0). [always]

4. det(A) = det(AB)/det(B). [always]

5. If A is nonsingular, vectors u, v, and matrix B are random

variables, then deg(wu,AB,b) = n. [with high probability]
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More preconditioners

If A is nonsingular, then with high probability, det(A) = constant

coefficient of wu,AB,v for random u, v, B.

...when B is a Benes network matrix [Wiedemann 88].

...when B is a Toeplitz matrix [Kaltofen, S 91].

...when B is a Butterfly matrix [Turner -]

...when B is a Sparse matrix [Wiedemann 88, Villard -]

...even when B is diagonal [Chen, Eberly, Kaltofen, S, Turner,

Villard 02].
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the small prime problem

...if field is large enough.

If diagonal preconditioner used, suppose

A =









1 0 0

0 1 0

0 0 1









, then AB =









b1 0 0

0 b2 0

0 0 b3









,

for random diagonal matrix B.

Over GF(2) it is not possible that the diagonal entries are distinct.

Hence deg(mAB) < 3. A fortiori, deg(wu,AB,v) < 3.

But an an extension field is large enough. May use Zech log

arithmetic in nonprime field for speed. [Dumas 2002]

Next: Examples
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Trefethen’s matrix

Ti,j =

8

>

>

<

>

>

:

i-th prime, if i = j, [diagonal of primes]

1, if i − j is a power of 2[bands of 1’s]

0, otherwise.[very sparse matrix]
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
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0 0 22/5 4/5 3/5 −1/5 1 0 −2/5

0 0 0 71/11 12/11 −2/11 7/11 1 3/11

0 0 0 0 1439/142 159/142 127/142 −12/71 29/71

0 0 0 0 0 17850/1439 1388/1439 1324/1439 158/1439
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Rational solve on Trefethen’s matrix

2002

• CRA - Jean-Guillaume Dumas, (4 days, 180 procs)

• CRA and Dixon, Hensel lifting - William Turner ( est. similar

effort )

• Dixon, Hensel lifting - Zhendong Wan (12.5 days, 1 proc, big

mem )

2004

• Hybrid numeric/symbolic solver - Zhendong Wan (12.5

minutes, 1 proc, small mem )

Days to minutes: A factor of 1440 speedup!

• Solution is quotient of integers having 105 digits.
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Hybrid algorithms

Wan’s rational solver is an example of a numeric-symbolic hybrid

applied to a symbolic problem (rational solution to linear system).

Problem for integer systems is to get the numeric part to converge

(numeric preconditioning issue). Poor luck so far.

The converse problem may be more important. Consider a

(large, sparse) numeric linear system which is

• too large or too nasty (fill in) for sparse direct solvers.

• unresponsive to iterative methods.

It may prove useful to solve it exactly. Relative to numeric iterative

methods existing blackbox method is ”slow but sure”.
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Welker’s homology boundary matrices

Problem: Homology of simplicial complexes in dimensions up to

about 10.

Specific computation: Smith Normal form of {0, 1,−1}-boundary

matrices.

Solution: Jean-Guillaume Dumas code (Gap package[Dumas,

Heckenback, S, Welker 2003]/LinBox) for sparse matrix Smith

form. [Dumas, S, Villard 2001.]

Example: 135135 × 270270 matrix, 5 entries per row (n1.14). Smith

form: 133991 one’s, 220 three’s, 924 zeroes. Time: 4 days.
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Krattenthaler: ”Combinatorialists love

determinants”

Favorite theorem: the number of < . . . > of size n is NICE(n).

NICE formula is (roughly) hypergeometric. For many < . . . > the

n-th instance is a determinant. The nice formula arises if the

determinant involves only small primes.

Example problem: Conjectured formula

det(qmajB(σπ−1)) =
n

∏

i=1

(1 − q2i)e(i)
n

∏

i=2

(1 − qi)f(i)

Done by Macsyma: n = 1, 2, 3, 4(hard) Done by LinBox: n = 5,

matrix size is 2n ∗ n! = 3840, entries are smallish powers of q.

We then deduce e(i) = 2n−1n!/i, f(i) = 2nn!(i − 1)/i

Specific computation: Recent hybrid Smith form algorithm [Wan, S

2004]. (fastest way to get integer determinant in this case).
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Krattenthaler π formula determinants

Another family of determinants generates formulas for π.

Interesting for LinBox: Matrix is very sparse with mostly small (9

digit) entries, but a few entries are very large (1000 digits).

Blackbox for A = B + C, where B entries are int, C entries are

GMP integers Ax = Bx + Cx, where C has few nonzeroes and Bx

is fast to compute.
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Royle’s graph adjacency matrices

Problem: Find two graphs with cospectral symmetric cubes.

Subproblem: Pairs of strongly-regular graphs with cospectral

symmetric square have been found. Do any pairs of

strongly-regular graphs have cospectral symmetric cubes?

Specific computation: Determinants of A + αI mod p, for 32548

matrices. Each of them is of order 7140 with 295680 nonzeros

(n1.4).

Ans: (Pernet and Dumas) No cospectral pairs for strongly-regular

graphs with 36 or fewer vertices. Time cost: About one minute per

determinant. Use blackbox determinant algorithm discussed above.
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Chandler’s Toeplitz matrices

Problem: Smith forms of 0,1 Toeplitz matrices. Order about 10000.

Incidence matrix of flats in projective spaces.

Richly structured Smith forms, but only one small prime occurring

except in largest invariant factor. Easy for LinBox.
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Lie Atlas operator signatures

General topic: understanding symmetry

Specific question: For Weyl group E8, given lie algebra operator α

constructed in a certain way, is α positive (semi)definite in every

irreducible representation?

There are 112 representations. The largest is as 7168 × 7168

rational matrices. The operator α maps to matrix A which is dense

and has entries of length about 100 digits. But also A has a

representation as a product of 121 very sparse matrices, each with

quite small entries.

In the other representations the structure is the same but the

matrix order is smaller and the entry lengths are smaller.

Solution:

Method 1. LU plus CRA of diagonal entries - use A in dense form

(construction a major cost).
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Method 2. Minimal polynomial plus CRA of coefficients - use A in

product form as a blackbox.
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LU or minimal polynomial: about 12000 instances mod wordsize

primes are needed.

[Adams, Saunders, Wan 2005]: Obtained complete computation for

an operator α1 of low rank (verifies a difficult recent theorem).

Partial solution for an operator α2 of full rank. Estimation that the

order 7168 representation will take 2 cpu years for this operator by

current methods.

Lie Atlas group has desire to compute signatures for many such

operators.
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Predictions

• Elimination/Blackbox hybrids (in particular, fuller

implementation and use of block methods).

• Symbolic/Numeric hybrids

• Exact linear algebra applied to numeric problems.

• Linking of LinBox into general purpose systems such as Maple,

Mathematica.

Alternative: native reimplementations - not likely

• Mod p in O∼(n1+e) plus chinese remainder algorithm ⇒

Integer problems in O∼(n2+e) time. Better?

• Extension to polynomial matrices.
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An engineered Smith form algorithm

Degree 
Minpoly
AA^T

Valence
Largest
Invariant

Rank

Factor, d

<sqrt(n) >= sqrt(n)

Elimination EGV

Bisection

log d_r < n log n

Rough Part mod d_r

Smith Form
Invariant Factors

Rank
Form
Smith
Local

Bisection
EGV

elsee < sqrt(n)e = 1

Bound Local mod p^e

Repeat unitl rank agrees, double e for next step 
Starting with a possible e

At each possible p
Smooth Part

d_r, rough part of d
d_s, smooth part of d

log d_r >= n log n

Too big


