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A long standing problem has been to develop “good” binary linear block codes, C,
to be used for error-correction. The length of the block is denoted n and the dimension
of the code is denoted k. So in this notation C ⊆ GF (2)n is a k-dimensional subspace.

Another important parameter is the smallest weight of any non-zero codeword, d.
This is related to error-correction because C can correct [d−1

2 ] errors.
We will construct an interesting family of codes Ci which have the property that

log2(|Ci|)
n has a limit = 1

4 and d
n has a limit ≥ 1

4 . We will also investigate how this
family violates the “fake Goppa conjecture.” Moreover, we can show that the Goppa
conjecture is incompatible with a conjecture on hyperelliptic curves over finite fields,
which we call the “small content conjecture.”
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1 Introduction
A linear code, C, of length n is a subspace of GF (q)n for some prime power q and
some n > 1. The addition on C is inherited from the usual coordinate-wise addition
on GF (2)n. Let C be a linear code of length n over F = GF (q). If q = 2 then the
code is called binary. We assume that Fn has been given the standard basis e1 =
(1, 0, ..., 0) ∈ Fn, e2 = (0, 1, 0, ..., 0) ∈ Fn, ..., en = (0, 0, ..., 0, 1) ∈ Fn. The
dimension of C is denoted k, so the number of elements of C is equal to qk. A subset
of GF (q)n without an addition operation is called a non-linear code.

Another important parameter associated to the code is the number of errors which
it can, in principle, correct. For this notion, we need to introduce the Hamming metric.
For any two x,y ∈ Fn, let d(x,y) denote the number of coordinates where these two
vectors differ:

d(x,y) = |{1 ≤ i ≤ n | xi 6= yi}|. (1)

This is called the Hamming distance or Hamming metric. Define the weight w
of v to be the number of non-zero entries of v. Note, d(x,y) = w(x− y) because the
vector x− y has non-zero entries only at locations where x and y differ. The smallest
distance between distinct codewords in a linear code C is the minimum distance of
C:

d = d(C) = min
c∈C, c 6=0

d(0, c) (2)

A linear code C of length n and dimension k over F has a basis of k vectors of
length n. If those vectors are arranged as rows of a matrix G, then we call the k × n
matrix G a generator matrix for C.

Example 1 The following matrix is a generator matrix for a code of length 9, dimen-
sion 4, and minimum distance 3 over GF (2).

G =




0 0 0 0 1 0 1 0 1
0 1 0 0 0 1 1 0 1
0 0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 1 1




Definition 1 A linear code C of length n is a cyclic code if whenever c = (c1, ..., cn)
is a codeword then so is its cyclic shift c′ = (c2, ..., cn, c1).

Example 2 Consider the binary code C with generator matrix

G =




1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1




Clearly these four rows g1, g2, g3, g4 are obtained from the previous row by a shift to
the right. Also note the shift of g4 to the right is equal to g5 = g1 +g3 +g4. The shift
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of g5 to the right is g6 = g1 +g2 +g3. And the shift of g6 is g7 = g2 +g3 +g4. The
shift of g7 is g1. Therefore, the linear code generated by G is invariatant under shifts
to the right. Therefore C is a cyclic code.

Cyclic codewords are conveniently represented as polynomials modulo xn − 1. In
fact, if c = (c1, · · · , cn) then let

c(x) = c1 + c2x+ · · ·+ cnx
n−1

denote the associated codeword polynomial. In this notation the cyclic shift c′ =
(c2, ..., cn, c1) of c corresponds to the polynomial xc(x) (mod xn−1). In other words
cyclic shifts correspond to multiplication by x. Since cyclic shifts leave cyclic codes
invariant, multiplication by any power of xmodulo xn−1 corresponds to a codeword in
C. Since C is a linear code, the sum of any two such codeword polynomials is another
codeword polynomial. Therefore, in fact, the product of any codeword polynomial
times any polynomial in x modulo xn − 1 is another codeword polynomial.

Denote by Rn the ring of polynomials with coefficients in F modulo xn − 1:

Rn = F[x]/(xn − 1). (3)

Define an ideal I ofRn to be any subset ofRn closed under addition and multiplication
by an arbitrary element of Rn:

• If f, g ∈ I then f + g ∈ I , and

• If f ∈ I and r ∈ Rn then rf ∈ I .

In other words an ideal in Rn is simply a subset closed under addition and multiplica-
tion by an arbitrary polynomial modulo xn−1. In particular, the collection of codeword
polynomials associated to a cyclic code is an ideal of Rn.

Lemma 1 There is a natural one-to-one correspondence between cyclic codes of length
n over F and ideals of Rn.

This can be found in any book on coding theory, for example MacWilliams and Sloane
[MS].

In fact the algebraic software package GUAVA allows you to easily pass back and
forth between codewords as vectors and codewords as polynomials.

In order to define the generator polynomial of a cyclic code we need the following
mathematical fact.

Lemma 2 Every ideal I of Rn is of the form g(x)Rn. In other words every element of
I is a multiple of g(x) for some polynomial g(x) in Rn.

Ideals of the form I = g(x)Rn are called principal ideals, and g(x) is called a gener-
ator of the ideal I .

Proof Suppose not. Let s(x) be a non-zero element in I of smallest degree. Pick an
arbitrary non-zero element f(x) in I . By the division algorithm, we can write f(x) =
q(x)s(x) + r(x) where q and r are polynomials and either r(x) = 0 or the degree of
r(x) is strictly less than the degree of s(x). Notice that r(x) = f(x)−q(x)s(x) belongs
to I by definition. This contradicts the assumption that s(x) has smallest degree unless
r(x) = 0. Therefore every element of I is a multiple of s(x). Take g(x) = s(x). ¤
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Definition 2 Let C be a cyclic code of length n. Let I be the ideal corresponding to C
by Lemma 1. We call g(x) a generator polynomial of C if it is a generator of I .

Example 3 We continue with Example 2. Let g(x) = 1+x2+x3. This is the codeword
polynomial associated to the top row of the generator matrix. g(x) is the generator
polynomial of the cyclic code C. Note that x7−1 = (x+1)(x3 +x2 +1)(x3 +x+1).

More generally we have the following result:

Lemma 3 The generator polynomial always divides xn − 1.

Proof By the division algorithm xn − 1 = q(x)g(x) + r(x) for some quotient q(x)
and some remainder r(x) of degree less than g(x). In Rn this means that r(x) =
−q(x)g(x). So r(x) corresponds to a codeword since g(x) is the generator polyno-
mial. This is impossible since g(x) has minimal degree of any codeword in C unless
r(x) = 0.¤

Lemma 4 If the generator polynomial g(x) of a cyclic code C has degree r then
dim(C) = n− r.

Proof To prove this it suffices to show that |C| = qn−r. Note that

〈g(x)〉 = {g(x)f(x) | f(x) ∈ Fq[x]/(xn − 1), deg(f(x)) ≤ n− r − 1}

has qn−r elements. ¤

2 Quadratic Residue Codes
Let p be a prime. We denote by GF (p)× the subset of non-zero elements in the field
GF (p). For any finite field F , F× is a cyclic group. A generator of that cyclic group
is a called a primitive element of the field F .

We define x ∈ GF (p)× to be a quadratic residue if x (mod p) is a square in the
finite field GF (p)×. Let Q ⊆ GF (p)× denote the subset of quadratic residues and
N ⊆ GF (p)× denote the subset of non-quadratic residues.

A simple observation is that Q is a subgroup of GF (p)×, in particular a quadratic
residue times another quadratic residue is a quadratic residue. Similarly, a quadratic
residue times a quadratic non-residue is a quadratic non-residue. In particular we
can represent the quotient GF (p)×/Q using two elements, the identity 1 and a fixed
quadratic non-residue:

{1 ·Q, η ·Q} = GF (p)×/Q,

where η denotes a fixed quadratic non-residue.

Definition 3 The Legendre symbol is defined by
(
a

p

)
=

{
1, if a ∈ Q,
−1, if a ∈ N.
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Observe that by the above discussion the Legendre symbol is a multiplicative char-
acter on GF (p)×.

Lemma 5 |Q| = |N | = p−1
2 .

Proof Follows from the above observation by a simple counting argument. ¤
Now let us define the family of quadratic residue codes.

Definition 4 Let p be a prime such that 2 is a quadratic residue (mod p) (by quadratic
reciprocity, we know p ≡ ±1 (mod 8)). Choose an integer m such that 2m − 1 is di-
visible by p and let θ denote a primitive element of GF (2m). Let α = θ(2

m−1)/p.
Let

gQ(x) =
∏

r∈Q

(x− αr), gN (x) =
∏

r∈N

(x− αr).

Define CQ to be the cyclic code of length p with generator polynomial gQ and define
CN to be the cyclic code of length p with generator polynomial gN . These define the
quadratic residue codes, or QR codes.

Note that these generator polynomials, gQ and gN both divide xp−1. By the lemma
above dim(CQ) = dim(CN ) = p+1

2 .

Example 4 This is the generator matrix for the QR code CQ of length p = 7.

G =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1




For any binary code C of length n let Ĉ denote the extended code defined by

Ĉ = {(c1, · · · , cn, cn+1) | cn+1 = c1 + · · ·+ cn, (c1, · · · , cn) ∈ C}.

For example ifC is the codeCQ above then (1, 1, 0, 1, 0, 0, 0, 1) belongs to Ĉ since
(1, 1, 0, 1, 0, 0, 0) belongs to C.

Recall that ([MS],§1.9), the check matrix of Ĉ is

Ĥ =




1 1 . . . 1
0

H
...
0




Lemma 6 If p ≡ 1 (mod 4) then (ĈQ)⊥ = ĈN . If p ≡ −1 (mod 4) then (ĈN )⊥ =
ĈN and (ĈQ)⊥ = ĈQ.

One of the most remarkable facts about quadratic residue codes is the following
theorem.
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Theorem 1 (Gleason-Prange) If p ≡ ±1 (mod 8) then the automorphism group of
ĈQ contains a group isomorphic to PSL(2, p).

Recall that the automorphism group of a binary code of length n is the group of all
permutations of the n coordinates which send codewords to codewords.

We intend to extend the Gleason-Prange theorem to a new class of codes studied
here (called “QQR codes”).

3 Quasi-Quadratic Residue Codes
These are some observations on the interesting paper by Bazzi and Mitter [BM].

If S ⊆ GF (p), let fS(x) =
∏

a∈S(x − a) ∈ GF (p)[x]. Let χ be the quadratic
residue character, which is 1 on the set Q quadratic residues in GF (p)×, −1 on the set
N non-quadratic residues, and is 0 on 0 ∈ GF (p). Let R = GF (2)[x]/(xp − 1) and
rS ∈ R denotes the polynomial

rS(x) =
∑

i∈S

xi,

where S ⊆ GF (p). (Note that r2S = r2S , where 2S is the set of elements 2s ∈ GF (p),
for s ∈ S. In particular, since Q ⊆ GF (p)× is a subgroup, r2Q = rQ if and only if
2 ∈ Q if and only if p ≡ ±1 (mod 8) (by the quadratic reciprocity law). Moreover, if
2 ∈ N then r2Q = rN .)

Define the QQR code as

CNQ = {(rNrS , rQrS) | S ⊆ GF (p)},

where N,Q are as above.

These are binary codes of length 2p and dimension p.

Lemma 7 (Bazzi-Mitter [BM], Proposition 3.3) Assume 2 and −1 are non-quadratic
residues mod p (i.e. p ≡ 3 (mod 8)).

If c = (rNrS , rQrS) is a nonzero codeword of the [2p, p] binary code CNQ then
the weight of this codeword can be expressed in terms of a character sum as

wt(c) = p−
∑

a∈GF (p)

χ(fS(a)),

if |S| is even, and
wt(c) = p+

∑

a∈GF (p)

χ(fGF (p)−S(a)),

if |S| is odd.
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In fact, looking carefully at their proof, one finds the following result:

Lemma 8 Let c = (rNrS , rQrS) be a nonzero codeword of CNQ.

(a) If |S| is even
wt(c) = p−

X

a∈GF (p)

χ(fS(a)).

(b) If |S| is odd and p ≡ 1 (mod 4) then the weight is

wt(c) = p−
X

a∈GF (p)

χ(fGF (p)−S(a)).

(c) If p ≡ 3 (mod 4) and |S| odd both hold then

wt(c) = p +
X

a∈GF (p)

χ(fGF (p)−S(a)).

Proof If A,B ⊆ GF (p) then we claim

wt(rArB) =
∑

k∈GF (p)

parity |A ∩ (k −B)|, (4)

where k − B = {k − b | b ∈ B}. In general it is true that (
∑

` a`x
`)(

∑
m bmx

m) =∑
n cnx

n, cn =
∑

`+m=n a`bm. Indeed,

rA(x)rB(x) =
∑

k∈GF (p)

nkx
k,

where nk counts the x ∈ A, y ∈ B such that x+ y = k. Now

nk ≡
∑

x∈A∩(k−B)

1 = |A ∩ (k −B)| (mod 2),

so (4) is true.
Let S ⊆ GF (p), then we have

p−wt(rQrS)−wt(rNrS) =
∑

a∈GF (p)

1− parity |Q∩(a−S)|− parity |N∩(a−S)|.

Let
Ta(S) = 1− parity |Q ∩ (a− S)| − parity |N ∩ (a− S)|.

Case 1. If |S| is even and a ∈ S then 0 ∈ a− S so |Q ∩ (a− S)| odd implies that
|N ∩ (a−S)| is even, since 0 is not included in Q∩ (a−S) or N ∩ (a−S). Likewise,
|Q ∩ (a− S)| even implies that |N ∩ (a− S)| is odd. Therefore Ta(S) = 0.

Case 2. If |S| is even and a /∈ S then parity|Q ∩ (a − S)| =parity|N ∩ (a − S)|.
If |Q∩ (a− S)| is even then Ta(S) = 1 and if |Q∩ (a− S)| is odd then Ta(S) = −1.

Case 3. |S| is odd. We claim that (a − S)c = a − Sc. (Proof: Let s ∈ S and
s̄ ∈ Sc. Then a − s = a − s̄ =⇒ s = s̄, which is obviously a contradiction.
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Therefore (a− S)∩ (a− Sc) = ∅, so (a− S)c ⊇ (a− Sc). Replace S by Sc to prove
the claim.) Also note that

Q ∩ (a− S) tQ ∩ (a− Sc) = GF (p) ∩Q = Q

has |Q| = p−1
2 elements. So

parity |Q ∩ (a− S)| = parity |Q ∩ (a− Sc)|
iff |Q| is even and

parity |Q ∩ (a− S)| 6= parity |Q ∩ (a− Sc)|
iff |Q| is odd.

Conclusion.
|S| even: Ta(S) =

∏

x∈a−S

(
x

p

)

|S| odd and p ≡ 3 (mod 4) : Ta(S) = −Ta(Sc)

|S| odd and p ≡ 1 (mod 4) : Ta(S) = Ta(Sc)

From which the lemma follows. ¤
Remark 1 • |S| even: The

∑
a∈GF (p) χ(fS(a)) is equal to −p− 2 plus the num-

ber of GF (p)-rational points on the (smooth projective model of the) hyperellip-
tic curve XS : y2 = fS(x). In other words,

∑

a∈GF (p)

χ(fS(a)) = −p− 2 + |XS(GF (p))|.

• |S| odd: The
∑

a∈GF (p) χ(fS(a)) is equal to−p−1 plus the number ofGF (p)-
rational points on the (smooth projective model of the) hyperelliptic curve XS :
y2 = fS(x). In other words,

∑

a∈GF (p)

χ(fS(a)) = −p− 1 + |XS(GF (p))|.

• The genus of the curve y2 = fS(x), when |S| is even, is |S|−2
2 . Therefore, Weil’s

estimate gives in this case

|
∑

a∈GF (p)

χ(fS(a))| ≤ (|S| − 2)q1/2 + 1,

which is trivial if |S| > q1/2.

Remarks on QQR Codes: These codes have very interesting but unexplained be-
havior. The conjecture of Bazzi-Mitter that they (or a subsequence of them) form a
“good family” of codes (where the rate, relative minimum distance pair (R, δ) stays
bounded away from the axes R = 0 and δ = 0) seems not to be consistent with the
above (very limited) data on (R, δ) values, except possibly in the case p ≡ 1 (mod 8).

For a result similar in spirit to the lemma above, see also [HV]. For more informa-
tion on quadratic residue codes, see [MS], [HP], [vLM], and [W].
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4 Long Quadratic Residue Codes
We now introduce a new code, constructed similarly to the Quasi-Quadratic Residue
Codes discussed earlier:

C = {(rNrS , rQrS , rNrSc , rQrSc) | S ⊆ GF (p)}
where, for p prime and T ⊆ GF (p),

rT (x) =
∑

i∈T

xi.

Observe that this code is non-linear with respect to the usual coordinate-wise addition.
For any S ⊆ GF (p), let

cS = (rNrS , rQrS , rNrSc , rQrSc)

and let

vS = (rNrS , rQrS , rNrS , rQrS).

If S1∆S2 denotes the symmetric difference between S1 and S2 then it is easy to check
that

cS1 + cS2 = vS1∆S2 . (5)

We know that

wt(rNrS , rQrS) =





p−∑
a∈GF (p)

(
fS(a)

p

)
, |S| even or |S| odd and p ≡ 1 (mod 4),

p+
∑

a∈GF (p)

(
fSc (a)

p

)
, |S| odd and p ≡ 3 (mod 4),

by Lemma 8. If p ≡ 1 (mod 4) then

wt (rNrS , rQrS , rNrSc , rQrSc) = wt (rNrS , rQrS) + wt (rNrSc , rQrSc)
= p−∑

a∈GF (p)

(
fS(a)

p

)
+ p−∑

a∈GF (p)

(
fSc (a)

p

)

= 2p−∑
a∈GF (p)

[(
fS(a)

p

)
+

(
fSc (a)

p

)]
.

(6)
We have the following trivial estimates:

|
∑

a∈GF (p)

(
fS(a)
p

)
| ≤ |Sc|

and

|
∑

a∈GF (p)

(
fSc(a)
p

)
| ≤ |S|,
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therefore

|
∑

a∈GF (p)

[(
fS(a)
p

)
+

(
fSc(a)
p

)]
| ≤ |Sc|+ |S| = p.

This implies the minimum non-zero weight ρ of C satisfies ρ ≥ p, when p ≡ 1
(mod 4).

We now compute the size of C. We now prove the claim: if p ≡ 3 (mod 4)
then the map that sends S to the codeword (rNrS , rQrS , rNrSc , rQrSc) is injective.
This implies |C| = 2p. Suppose not, then there are two subsets S1, S2 ⊆ GF (p)
that are mapped to the same codeword. Subtracting, the subset T = S1∆S2 satisfies
rQrT = rNrT = rQrT c = rNrT c = 0. If |T | is even then 0 = (rQ + rN )rT =
(rGF (p) − 1)rT = rT . This forces T to be the empty set, so S1 = S2. Now if |T |
is odd then similar reasoning implies that T c is the empty set. Therefore, S1 = ∅ and
S2 = GF (p) or vice versa. This proves the claim.

In case p ≡ 1 (mod 4), claim: |C| = 2p−1. Again, suppose there are two subsets
S1, S2 ⊆ GF (p) that are mapped to the same codeword. Then the subset T = S1∆S2

for which rQrT = rNrT = rQrT c = rNrT c = 0. This implies either T = ∅ or
T = GF (p). Therefore, either S1 = S2 or S1 = Sc

2.
We have proven the following result.

Theorem 2 The non-linear code C has length n = 4p and minimum non-zero weight
ρ ≥ p. It has size M = 2p−1 if p ≡ 1 (mod 4), and size M = 2p if p ≡ 3 (mod 4).

4.1 Duality in the LQR code
First, a few observations.

For any T ⊆ GF (p), let T denote the set which is T ∪ {0} if 0 /∈ T , and T − {0}
if 0 ∈ T .

By (5), it suffices to find the minimum non-zero weight of vS , S ⊆ GF (p). We
first find a “duality” relation between vS and vSc , and cS and cSc .

By (6), it is obvious that if p ≡ 1 (mod 4) then vS = vSc .
If p ≡ 1 (mod 4) then rGF (p)rQ = rGF (p)rN = 0, so

vGF (p) = (0, 0, 0, 0) ∈ R4
p = GF (2)n.

If p ≡ 3 (mod 4) then rGF (p)rQ = rQ, rGF (p)rN = rN , so

vGF (p) = (rN , rQ, rN , rQ).

These facts together with (5) imply: if p ≡ 1 (mod 4) then cS = cSc ; if p ≡ 3
(mod 4) then cS = cSc + (rN , rQ, rN , rQ). Consequently, if p ≡ 3 (mod 4) then

vS1∆S2 = cS1 + cS2 = cS1 + cSc
2

+ (rN , rQ, rN , rQ)
= vS1∆Sc

2
+ (rN , rQ, rN , rQ) = v(S1∆S2)c + (rN , rQ, rN , rQ).

In particular, if p ≡ 3 (mod 4) then vS = vSc + (rN , rQ, rN , rQ), and this can be
more compactly re-expressed as
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vS = vSc , (7)

provided p ≡ 3 (mod 4).
By (5), we have

cS = cSc , (8)

provided p ≡ 1 (mod 4). Now that we know this, we can write, if p ≡ 1 (mod 4),

vS1∆S2 = cS1 + cS2 = cS1 + cSc
2

= vS1∆Sc
2

= v(S1∆S2)c .

In particular,

vS = vSc , (9)

provided p ≡ 1 (mod 4). This is also a consequence of (5) and (8). (So now we have
at least three proofs of this fact!)

4.2 Linear version of the LQR code
Let us denote the map S 7−→ cS by φ and its inverse (which only exists if p ≡ 3
(mod 4)) by ψ.

When p ≡ 3 (mod 4), define “addition” ⊕ on C by

cS1 ⊕ cS2 = cS1∆S2 , (10)

for arbitrary subsets of GF (p). It is easy to check that this operation ⊕ is well-defined
in case p ≡ 3 (mod 4).

The surprising fact is the following result.

Lemma 9 In case p ≡ 1 (mod 4), (10) is well-defined.

Proof Assume p ≡ 1 (mod 4). Recall from the above discussion that φ is a 2-to-1
map from the set 2GF (p) of subsets of GF (p) to the codewords of C. For all c ∈ C,
there is a S ⊆ GF (p) and c = cT (for T ⊆ GF (p)) if and only if T = S or T = Sc.
We know cSc

1∆S2 = cS1∆Sc
2

= cSc
1∆Sc

2
= c(S1∆S2)c . This implies ⊕ does not depend

on the choice in φ−1(cS1) = {S1, S
c
1}, φ−1(cS2) = {S2, S

c
2} made to compute the

right-hand side of (10). ¤
This operation ⊕ is commutative, since the symmetric difference operation ∆ is

symmetric, and it is associative since ∆ is associative. Each element is the inverse of
itself and the element c∅ = 0 is the identity.

Therefore, C is a vector space over GF (2) with the operation ⊕. When p ≡ 3
(mod 4), the set of codewords cS , S a singleton subset of GF (p), form a basis. When
p ≡ 1 (mod 4), the set of codewords cS , S a singleton subset of GF (p), are linearly
dependent (their sum is 0), so do not form a basis. However, if you just omit one (any
one – pick your least favorite), you get a basis.

Define the metric d⊕ as follows. For c1, c2 ∈ C, let
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d⊕(c1, c2) = wt(c1 ⊕ c2).

Of course, the Hamming metric, denoted dH to be unambiguous, satisfies dH(c1, c2) =
wt(c1 + c2).

We make a few remarks comparing d⊕ to dH . If c ∈ C ∼= R4
p is written c =

(p1(c), p2(c), p3(c), p4(c)), for polynomials pi(c) ∈ Rp, then

wt(c1⊕c2) = wt(p1(c1⊕c2))+wt(p2(c1⊕c2))+wt(p3(c1⊕c2))+wt(p4(c1⊕c2)),
and

wt(c1+c2) = wt(p1(c1+c2))+wt(p2(c1+c2))+wt(p3(c1+c2))+wt(p4(c1+c2)).

By definition of C,

wt(p1(c1 ⊕ c2)) = wt(p1(c1 + c2)), wt(p2(c1 ⊕ c2)) = +wt(p2(c1 + c2)).

On the other hand, if c1 = cS1 , c2 = cS2 ,

wt(p3(c1 ⊕ c2)) + wt(p4(c1 ⊕ c2)) = wt(rNr(S1∆S2)c) + wt(rQr(S1∆S2)c)

and

wt(p3(c1 + c2)) + wt(p4(c1 + c2)) = wt(rNrS1∆S2) + wt(rQrS1∆S2).

The difference between d⊕(c1, c2) and dH(c1, c2) can now by computed using Lemma
8.

We assert that, with this notion of addition, the “⊕-Hamming metric” on (C,⊕) is
the more “natural” one to use.

This and the previous section prove the following result.

Theorem 3 The linear code (C,⊕) has length n = 4p and minimum ⊕-distance d ≥
p. It has size M = 2p−1 if p ≡ 1 (mod 4), and size M = 2p if p ≡ 3 (mod 4).

4.3 The fake Singleton bound
Here is an example from Amin Shokrollahi [S].

This example will construct, in a naive way, a set of 2m vectors, call it C, in F2m
2 ,

and an addition & in C, such that C is a binary vector space under &, and such that the
weight of c&c′ is always at least n (this construction gets you all the way to the “fake
Singleton” bound). Here it is.

Let ` denote the n-dimensional vector in which all entries are 1. Let C = {(a , a+
`) | a ∈ Fm

2 }. For c = (a, a+ `) and c′ = (a′, a′ + `) let c&c′ := (a+ a′, a+ a′ + `).
Under this “addition” C becomes a binary vector space. The weight of any element
in C is m, so the &-distance of any two elements in C, defined as the weight of their
&-addition, is m. This is a code of length n = 2m, dimension k = m, and minimum
&-distance d& = m, so the fake singleton bound k+d& ≤ n+1 is almost attained. In
particular, we have asymptotic rateR = 1

2 and relatively minimum⊕-distance δ& = 1
2 .
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5 Gilbert-Varshamov

5.1 Background
The volume of a Hamming sphere of radius r in GF (2)n is

V (n, r) =
r∑

i=0

(
n
i

)
.

The binary version of the Gilbert-Varshamov bound asserts that there is a code C (pos-
sibly non-linear) of length n and minimum distance d which has at least 2n

V (n,d−1)

elements [HP]. A well-known conjecture of Goppa asserts that the binary version of
the Gilbert-Varshamov bound is asymptotically exact ([JV],[G]).

Conjecture 1 (Fake Goppa Conjecture) There is no infinite family of codes (Ci,⊕),
with addition ⊕ not the usual coordinatewise addition and distance d⊕ as above, for
which the binary version of the ⊕-Gilbert-Varshamov bound is asymptotically exact.

Figure 1: The Gilbert-Varshamov bound: R ≥ 1−H(δ)

Here H(δ) = δ − δ log2(δ) − (1 − δ) log2(1 − δ) is sometimes referred to as the
entropy of the code.

The Gilbert-Varshamov bound implies that there is a code with relative minimum
distance δ = 0.25 and rate R ≥ 0.21.... However our code (C,⊕) above yields
δ⊕ = 0.25 and R = 0.25.

Therefore we have constructed a linear binary code which beats the ⊕-Gilbert-
Varshamov bound, thereby disproving the fake Goppa’s conjecture.

Goppa’s conjecture was investigated recently by Jiang and Vardy [JV], where they
proved that there is a code C (possibly non-linear) of “sufficiently large” length n and
minimum distance d which has at least c 2n

V (n,d−1) log2(V (n, d − 1)) elements, where
c is a positive constant which they do not determine. Our result is somewhat different
because we show that if δ⊕ = 0.25 then the rate R = log2(|C|)

n can be taken larger than
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that predicted either by ⊕ analogs of the Gilbert-Varshamov bound or the Jiang-Vardy
bound.

5.2 Connection with hyperelliptic curves
A hyperelliptic curve over GF (p) is a polynomial equation of the form y2 = h(x)
where h(x) is a polynomial with coefficients in GF (p) with distinct roots. We will
consider the hyperelliptic curve XS defined by y2 = fS(x) where fS is defined in sec-
tion 3. We will let |XS(GF (p))| denote the cardinality of the set of all (x, y) satisfying
y2 = fS(x) plus the number of points at infinity on XS . We define the content of XS

to be |XS(GF (p))|/p.

Conjecture 2 (Small content conjecture for split hyperelliptics)
For an infinite number of primes p for which p ≡ 1 (mod 4), the content of XS is

less than 1.57.

The goal of this section is to prove the following result which relates the theory of
error-correcting codes to the theory of hyperelliptic curves over finite fields.

Theorem 4 If the small content conjecture is true then Goppa’s conjecture is false.

Proof Recall Goppa’s conjecture is that the binary Gilbert-Varshamov is best possible
for any family of binary codes. The GV bound states that the rate R is greater than or
equal to 1−H(δ), where H(δ) = δ − δ log2(δ)− (1− δ) log2(1− δ). According to
Goppa’s conjecture if R = 1

4 then the best possible δ is δ0 = .215. This means that the
minimum distance of our long quadratic residue code with rate R = 1

4 satisfies d <
δ0 · 4p = .859p. Recall that the weight of a codeword c in this LQR code is the weight
of the 4-tuple of polynomials (rNrS , rQrS , rNrSc , rQrSc). Let us assume |S| is even
for simplicity. Then by Lemma 8 and remark 1 we know that the wt(rNrS , rQrS) =
2p+2−|XS(GF (p))|. Now suppose |S| is odd and p ≡ 1 (mod 4). Then By lemma 8
and remark 1 we know that thewt(rNrS , rQrS) = 2p+1−|XS(GF (p))|. By the small
content conjecture, wt(rNrS , rQrS) ≥ 2p+ 1− |XS(GF (p))| > 2p− 1.57p = .43p.
Therefore minS wt((rNrS , rQrS , rNrSc , rQrSc)) ≥ 2 · minSwt(rNrS , rQrS) >
.86p. This contradicts the estimate above.¤

Acknowledgements: I thank Prof. Amin Shokrollahi of the Ecole Polytechnique
Federale de Lausanne in Switzerland for his helpful remarks.
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