
GUAVA

A GAP4 Package for computing with error-correcting codes

Version 2.7

May 23, 2006

Jasper Cramwinckel
Erik Roijackers
Reinald Baart
Eric Minkes
Lea Ruscio
Cen Tjhai

David Joyner (Maintainer)

Cen Tjhai
— Email: cen.tjhai@plymouth.ac.uk
— Homepage: http://www.plymouth.ac.uk/staff/ctjhai
— Address: School of Computing, Communications and Electronics,

University of Plymouth,
Plymouth, Devon, PL4 8AA, UK.

David Joyner (Maintainer)
— Email: wdj@usna.edu

— Homepage: http://cadigweb.ew.usna.edu/˜wdj/gap/GUAVA/
— Address: Mathematics Department,

U. S. Naval Academy,
Annapolis, MD,
21402 USA.

mailto://cen.tjhai@plymouth.ac.uk
http://www.plymouth.ac.uk/staff/ctjhai
mailto:// wdj@usna.edu
http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/

GUAVA 2

Copyright
c© 1992-2003 Jasper Cramwinckel, Erik Roijackers,Reinald Baart, Eric Minkes, Lea Ruscio (for the tex ver-

sion) c© 2004 David Joyner, Cen Tjhai, Jasper Cramwinckel, Erik Roijackers, Reinald Baart, Eric Minkes, Lea
Ruscio.

GUAVA is released under the GNU General Public License (GPL). This file is part of
GUAVA, though as documentation it is released under the GNU Free Documentation License (see
http://www.gnu.org/licenses/licenses.html#FDL).

GUAVA is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

GUAVA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with GUAVA; if not, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details, see http://www.fsf.org/licenses/gpl.html.
For many years GUAVA has been released along with the “backtracking” C programs of J. Leon. In one of

his *.c files the following statements occur: “Copyright (C) 1992 by Jeffrey S. Leon. This software may be
used freely for educational and research purposes. Any other use requires permission from the author.”

Acknowledgements
GUAVA was originally written by Jasper Cramwinckel, Erik Roijackers, and Reinald Baart in the early-to-mid
1990’s as a final project during their study of Mathematics at the Delft University of Technology, Department
of Pure Mathematics, under the direction of Professor Juriaan Simonis. This work was continued in Aachen,
at Lehrstuhl D fur Mathematik. In version 1.3, new functions were added by Eric Minkes, also from Delft
University of Technology.

JC, ER and RB would like to thank the GAP people at the RWTH Aachen for their support, A.E. Brouwer
for his advice and J. Simonis for his supervision.

The GAP 4 version of GUAVA (versions 1.4 and 1.5) was created by Lea Ruscio and (since 2001,
starting with version 1.6) is currently maintained by David Joyner, who (with the help of several stu-
dents) has added several new functions. Starting with version 2.7, the “best linear code” tables have
been updated. For further details, see the CHANGES file in the GUAVA directory, also available at
http://cadigweb.ew.usna.edu/˜wdj/gap/GUAVA/CHANGES.guava.

This documentation was prepared with the GAPDoc package of Frank Lübeck and Max Neunhöffer. The
conversion from TeX to GAPDoc’s XML was done by David Joyner in 2004.

Please send bug reports, suggestions and other comments about GUAVA to support@gap-system.org.
Currently known bugs and suggested GUAVA projects are listed on the bugs and projects web page
http://cadigweb.ew.usna.edu/˜wdj/gap/GUAVA/guava2do.html. Older releases and further history can
be found on the GUAVA web page http://cadigweb.ew.usna.edu/˜wdj/gap/GUAVA/.

Contributors: Other than the authors listed on the title page, the following people have contributed code
to the GUAVA project: Alexander Hulpke, Steve Linton, Frank Lübeck, Aron Foster, Wayne Irons, Clifton
(“Clipper”) Lennon, Jason McGowan, Shuhong Gao, Greg Gamble, and, indirectly, Jeffrey Leon.

For documentation on Leon’s programs, see the src/leon/doc subdirectory of GUAVA.

http://www.gnu.org/licenses/licenses.html#FDL
http://www.fsf.org/licenses/gpl.html
http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/CHANGES.guava
mailto://support@gap-system.org
http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/guava2do.html
http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/

Contents

1 Introduction 10
1.1 Introduction to the GUAVA package . 10
1.2 Installing GUAVA . 10
1.3 Loading GUAVA . 11

2 Coding theory functions in GAP 12
2.1 Distance functions . 12

2.1.1 AClosestVectorCombinationsMatFFEVecFFE 12
2.1.2 AClosestVectorComb..MatFFEVecFFECoords 13
2.1.3 DistancesDistributionMatFFEVecFFE . 13
2.1.4 DistancesDistributionVecFFEsVecFFE . 14
2.1.5 WeightVecFFE . 14
2.1.6 DistanceVecFFE . 14

2.2 Other functions . 15
2.2.1 ConwayPolynomial . 15
2.2.2 RandomPrimitivePolynomial . 15

3 Codewords 17
3.1 Construction of Codewords . 18

3.1.1 Codeword . 18
3.1.2 CodewordNr . 19
3.1.3 IsCodeword . 20

3.2 Comparisons of Codewords . 20
3.2.1 = . 20

3.3 Arithmetic Operations for Codewords . 21
3.3.1 + . 21
3.3.2 - . 21
3.3.3 + . 21

3.4 Functions that Convert Codewords to Vectors or Polynomials 22
3.4.1 VectorCodeword . 22
3.4.2 PolyCodeword . 22

3.5 Functions that Change the Display Form of a Codeword 23
3.5.1 TreatAsVector . 23
3.5.2 TreatAsPoly . 23

3.6 Other Codeword Functions . 24
3.6.1 NullWord . 24

3

GUAVA 4

3.6.2 DistanceCodeword . 24
3.6.3 Support . 24
3.6.4 WeightCodeword . 25

4 Codes 26
4.1 Comparisons of Codes . 28

4.1.1 = . 28
4.2 Operations for Codes . 29

4.2.1 + . 29
4.2.2 * . 29
4.2.3 * . 29
4.2.4 InformationWord . 30

4.3 Boolean Functions for Codes . 30
4.3.1 in . 30
4.3.2 IsSubset . 31
4.3.3 IsCode . 31
4.3.4 IsLinearCode . 31
4.3.5 IsCyclicCode . 31
4.3.6 IsPerfectCode . 32
4.3.7 IsMDSCode . 32
4.3.8 IsSelfDualCode . 33
4.3.9 IsSelfOrthogonalCode . 33
4.3.10 IsSelfComplementaryCode . 33
4.3.11 IsAffineCode . 34
4.3.12 IsAlmostAffineCode . 34

4.4 Equivalence and Isomorphism of Codes . 35
4.4.1 IsEquivalent . 35
4.4.2 CodeIsomorphism . 35
4.4.3 AutomorphismGroup . 35
4.4.4 PermutationAutomorphismGroup . 36

4.5 Domain Functions for Codes . 37
4.5.1 IsFinite . 37
4.5.2 Size . 37
4.5.3 LeftActingDomain . 37
4.5.4 Dimension . 37
4.5.5 AsSSortedList . 38

4.6 Printing and Displaying Codes . 38
4.6.1 Print . 38
4.6.2 String . 39
4.6.3 Display . 39
4.6.4 DisplayBoundsInfo . 40

4.7 Generating (Check) Matrices and Polynomials . 40
4.7.1 GeneratorMat . 40
4.7.2 CheckMat . 41
4.7.3 GeneratorPol . 41
4.7.4 CheckPol . 42
4.7.5 RootsOfCode . 42

GUAVA 5

4.8 Parameters of Codes . 42
4.8.1 WordLength . 42
4.8.2 Redundancy . 43
4.8.3 MinimumDistance . 43
4.8.4 MinimumDistanceLeon . 44
4.8.5 DecreaseMinimumDistanceUpperBound 45
4.8.6 MinimumDistanceRandom . 45
4.8.7 CoveringRadius . 47
4.8.8 SetCoveringRadius . 48

4.9 Distributions . 48
4.9.1 MinimumWeightWords . 48
4.9.2 WeightDistribution . 49
4.9.3 InnerDistribution . 49
4.9.4 DistancesDistribution . 49
4.9.5 OuterDistribution . 50

4.10 Decoding Functions . 50
4.10.1 Decode . 50
4.10.2 Decodeword . 51
4.10.3 GeneralizedReedSolomonDecoderGao . 52
4.10.4 GeneralizedReedSolomonListDecoder . 53
4.10.5 BitFlipDecoder . 53
4.10.6 NearestNeighborGRSDecodewords . 54
4.10.7 NearestNeighborDecodewords . 55
4.10.8 Syndrome . 56
4.10.9 SyndromeTable . 56
4.10.10 StandardArray . 57
4.10.11 PermutationDecode . 57
4.10.12 PermutationDecodeNC . 58

5 Generating Codes 59
5.1 Generating Unrestricted Codes . 59

5.1.1 ElementsCode . 59
5.1.2 HadamardCode . 60
5.1.3 ConferenceCode . 60
5.1.4 MOLSCode . 61
5.1.5 RandomCode . 62
5.1.6 NordstromRobinsonCode . 62
5.1.7 GreedyCode . 62
5.1.8 LexiCode . 63

5.2 Generating Linear Codes . 63
5.2.1 GeneratorMatCode . 63
5.2.2 CheckMatCodeMutable . 64
5.2.3 CheckMatCode . 64
5.2.4 HammingCode . 65
5.2.5 ReedMullerCode . 65
5.2.6 AlternantCode . 65
5.2.7 GoppaCode . 66

GUAVA 6

5.2.8 GeneralizedSrivastavaCode . 66
5.2.9 SrivastavaCode . 67
5.2.10 CordaroWagnerCode . 67
5.2.11 FerreroDesignCode . 67
5.2.12 RandomLinearCode . 68
5.2.13 OptimalityCode . 69
5.2.14 BestKnownLinearCode . 69

5.3 Gabidulin Codes . 71
5.3.1 GabidulinCode . 71
5.3.2 EnlargedGabidulinCode . 71
5.3.3 DavydovCode . 71
5.3.4 TombakCode . 71
5.3.5 EnlargedTombakCode . 71

5.4 Golay Codes . 72
5.4.1 BinaryGolayCode . 72
5.4.2 ExtendedBinaryGolayCode . 72
5.4.3 TernaryGolayCode . 73
5.4.4 ExtendedTernaryGolayCode . 73

5.5 Generating Cyclic Codes . 73
5.5.1 GeneratorPolCode . 74
5.5.2 CheckPolCode . 75
5.5.3 RootsCode . 75
5.5.4 BCHCode . 76
5.5.5 ReedSolomonCode . 77
5.5.6 QRCode . 77
5.5.7 QQRCodeNC . 78
5.5.8 QQRCode . 78
5.5.9 FireCode . 78
5.5.10 WholeSpaceCode . 79
5.5.11 NullCode . 79
5.5.12 RepetitionCode . 79
5.5.13 CyclicCodes . 80
5.5.14 NrCyclicCodes . 80

5.6 Evaluation Codes . 81
5.6.1 EvaluationCode . 81
5.6.2 GeneralizedReedSolomonCode . 81
5.6.3 GeneralizedReedMullerCode . 82
5.6.4 ToricPoints . 83
5.6.5 ToricCode . 83

5.7 Algebraic geometric codes . 83
5.7.1 AffineCurve . 83
5.7.2 AffinePointsOnCurve . 84
5.7.3 GenusCurve . 85
5.7.4 GOrbitPoint . 85
5.7.5 DivisorOnAffineCurve . 86
5.7.6 DivisorAddition . 87
5.7.7 DivisorDegree . 87

GUAVA 7

5.7.8 DivisorNegate . 87
5.7.9 DivisorIsZero . 87
5.7.10 DivisorsEqual . 88
5.7.11 DivisorGCD . 88
5.7.12 DivisorLCM . 88
5.7.13 RiemannRochSpaceBasisFunctionP1 . 89
5.7.14 DivisorOfRationalFunctionP1 . 90
5.7.15 RiemannRochSpaceBasisP1 . 90
5.7.16 MoebiusTransformation . 91
5.7.17 ActionMoebiusTransformationOnFunction 92
5.7.18 ActionMoebiusTransformationOnDivisorP1 92
5.7.19 IsActionMoebiusTransformationOnDivisorDefinedP1 92
5.7.20 DivisorAutomorphismGroupP1 . 93
5.7.21 MatrixRepresentationOnRiemannRochSpaceP1 93
5.7.22 GoppaCodeClassical . 94
5.7.23 EvaluationBivariateCode . 95
5.7.24 EvaluationBivariateCodeNC . 95
5.7.25 OnePointAGCode . 96

6 Manipulating Codes 98
6.1 Functions that Generate a New Code from a Given Code 98

6.1.1 ExtendedCode . 98
6.1.2 PuncturedCode . 99
6.1.3 EvenWeightSubcode . 99
6.1.4 PermutedCode . 100
6.1.5 ExpurgatedCode . 100
6.1.6 AugmentedCode . 101
6.1.7 RemovedElementsCode . 101
6.1.8 AddedElementsCode . 102
6.1.9 ShortenedCode . 102
6.1.10 LengthenedCode . 103
6.1.11 ResidueCode . 104
6.1.12 ConstructionBCode . 104
6.1.13 DualCode . 104
6.1.14 ConversionFieldCode . 105
6.1.15 TraceCode . 105
6.1.16 CosetCode . 106
6.1.17 ConstantWeightSubcode . 106
6.1.18 StandardFormCode . 107
6.1.19 PiecewiseConstantCode . 107

6.2 Functions that Generate a New Code from Two Given Codes 108
6.2.1 DirectSumCode . 108
6.2.2 UUVCode . 108
6.2.3 DirectProductCode . 109
6.2.4 IntersectionCode . 109
6.2.5 UnionCode . 110
6.2.6 ExtendedDirectSumCode . 110

GUAVA 8

6.2.7 AmalgamatedDirectSumCode . 111
6.2.8 BlockwiseDirectSumCode . 111

7 Bounds on codes, special matrices and miscellaneous functions 113
7.1 Distance bounds on codes . 113

7.1.1 UpperBoundSingleton . 114
7.1.2 UpperBoundHamming . 114
7.1.3 UpperBoundJohnson . 114
7.1.4 UpperBoundPlotkin . 115
7.1.5 UpperBoundElias . 115
7.1.6 UpperBoundGriesmer . 116
7.1.7 IsGriesmerCode . 116
7.1.8 UpperBound . 116
7.1.9 LowerBoundMinimumDistance . 117
7.1.10 LowerBoundGilbertVarshamov . 117
7.1.11 LowerBoundSpherePacking . 117
7.1.12 UpperBoundMinimumDistance . 118
7.1.13 BoundsMinimumDistance . 118

7.2 Covering radius bounds on codes . 119
7.2.1 BoundsCoveringRadius . 119
7.2.2 IncreaseCoveringRadiusLowerBound . 119
7.2.3 ExhaustiveSearchCoveringRadius . 120
7.2.4 GeneralLowerBoundCoveringRadius . 121
7.2.5 GeneralUpperBoundCoveringRadius . 121
7.2.6 LowerBoundCoveringRadiusSphereCovering 122
7.2.7 LowerBoundCoveringRadiusVanWee1 . 122
7.2.8 LowerBoundCoveringRadiusVanWee2 . 123
7.2.9 LowerBoundCoveringRadiusCountingExcess 123
7.2.10 LowerBoundCoveringRadiusEmbedded1 124
7.2.11 LowerBoundCoveringRadiusEmbedded2 124
7.2.12 LowerBoundCoveringRadiusInduction . 125
7.2.13 UpperBoundCoveringRadiusRedundancy 125
7.2.14 UpperBoundCoveringRadiusDelsarte . 126
7.2.15 UpperBoundCoveringRadiusStrength . 126
7.2.16 UpperBoundCoveringRadiusGriesmerLike 126
7.2.17 UpperBoundCoveringRadiusCyclicCode 127

7.3 Special matrices in GUAVA . 127
7.3.1 KrawtchoukMat . 128
7.3.2 GrayMat . 128
7.3.3 SylvesterMat . 128
7.3.4 HadamardMat . 129
7.3.5 VandermondeMat . 129
7.3.6 PutStandardForm . 130
7.3.7 IsInStandardForm . 131
7.3.8 PermutedCols . 131
7.3.9 VerticalConversionFieldMat . 131
7.3.10 HorizontalConversionFieldMat . 132

GUAVA 9

7.3.11 MOLS . 132
7.3.12 IsLatinSquare . 133
7.3.13 AreMOLS . 133

7.4 Some functions related to the norm of a code . 134
7.4.1 CoordinateNorm . 134
7.4.2 CodeNorm . 134
7.4.3 IsCoordinateAcceptable . 134
7.4.4 GeneralizedCodeNorm . 135
7.4.5 IsNormalCode . 135

7.5 Miscellaneous functions . 135
7.5.1 CodeWeightEnumerator . 135
7.5.2 CodeDistanceEnumerator . 136
7.5.3 CodeMacWilliamsTransform . 136
7.5.4 CodeDensity . 136
7.5.5 SphereContent . 137
7.5.6 Krawtchouk . 137
7.5.7 PrimitiveUnityRoot . 137
7.5.8 PrimitivePolynomialsNr . 138
7.5.9 IrreduciblePolynomialsNr . 138
7.5.10 MatrixRepresentationOfElement . 138
7.5.11 ReciprocalPolynomial . 139
7.5.12 CyclotomicCosets . 139
7.5.13 WeightHistogram . 140
7.5.14 MultiplicityInList . 140
7.5.15 MostCommonInList . 140
7.5.16 RotateList . 141
7.5.17 CirculantMatrix . 141

7.6 Miscellaneous polynomial functions . 141
7.6.1 MatrixTransformationOnMultivariatePolynomial 141
7.6.2 DegreeMultivariatePolynomial . 141
7.6.3 DegreesMultivariatePolynomial . 142
7.6.4 CoefficientMultivariatePolynomial . 142
7.6.5 SolveLinearSystem . 143
7.6.6 GuavaVersion . 143
7.6.7 CoefficientToPolynomial . 143
7.6.8 CoefficientToPolynomial . 144
7.6.9 DegreesMonomialTerm . 144
7.6.10 DivisorsMultivariatePolynomial . 145

Chapter 1

Introduction

1.1 Introduction to the GUAVA package

This is the manual of the GAP package GUAVA that provides implementations of some routines de-
signed for the construction and analysis of in the theory of error-correcting codes. This version of
GUAVA requires GAP 4.4.5 or later.

The functions can be divided into three subcategories:

• Construction of codes: GUAVA can construct unrestricted, linear and cyclic codes. Information
about the code, such as operations applicable to the code, is stored in a record-like data structure
called a GAP object.

• Manipulations of codes: Manipulation transforms one code into another, or constructs a new
code from two codes. The new code can profit from the data in the record of the old code(s), so
in these cases calculation time decreases.

• Computations of information about codes: GUAVA can calculate important parameters of codes
quickly. The results are stored in the codes’ object components.

Except for the automorphism group and isomorphism testing functions, which make use of J.S.
Leon’s programs (see [Leo91] and the documentation in the ’src’ subdirectory of the ’guava’ directory
for some details), GUAVA is written in the GAP language, and runs on any system supporting GAP4.3
and above. Several algorithms that need the speed were integrated in the GAP kernel.

Good general references for error-correcting codes and the technical terms in this manual are
MacWilliams and Sloane [MS83] Huffman and Pless [HP03].

1.2 Installing GUAVA

To install GUAVA (as a GAP 4 Package) unpack the archive file in a directory in the ‘pkg’ hierarchy
of your version of GAP 4.

After unpacking GUAVA the GAP-only part of GUAVA is installed. The parts of GUAVA depending
on J. Leon’s backtrack programs package (for computing automorphism groups) are only available in
a UNIX environment, where you should proceed as follows: Go to the newly created ‘guava’ directory
and call ‘./configure /gappath’ where /gappath is the path to the GAP home directory. So for
example, if you install the package in the main ‘pkg’ directory call

10

GUAVA 11

./configure ../..

This will fetch the architecture type for which GAP has been compiled last and create a ‘Makefile’.
Now call

make

to compile the binary and to install it in the appropriate place. (For a windows machine with CYGWIN
installed - see http://www.cygwin.com/ - instructions for compiling Leon’s binaries are likely to be
similar to those above. On a 64-bit SUSE linux computer, instead of the configure command above -
which will only compile the 32-bit binary - type

./configure ../.. --enable-libsuffix=64
make

to compile Leon’s program as a 64 bit native binary. This may also work for other 64-bit linux
distributions as well.)

Starting with version 2.5, you must also install the GAP package SONATA to load GAP. You can
download this from the GAP website and unpack it in the ‘pkg’ subdirectory.

This completes the installation of GUAVA for a single architecture. If you use this installation
of GUAVA on different hardware platforms you will have to compile the binary for each platform
separately.

1.3 Loading GUAVA

After starting up GAP, the GUAVA package needs to be loaded. Load GUAVA by typing at the GAP
prompt:

Example
gap> LoadPackage("guava", "2.1");

If GUAVA isn’t already in memory, it is loaded and the author information is displayed. If you are a
frequent user of GUAVA, you might consider putting this line in your ‘.gaprc’ file.

http://www.cygwin.com/

Chapter 2

Coding theory functions in GAP

This chapter will recall from the GAP4.4.5 manual some of the GAP coding theory and finite field
functions useful for coding theory. Some of these functions are partially written in C for speed. The
main functions are

• AClosestVectorCombinationsMatFFEVecFFE,

• AClosestVectorCombinationsMatFFEVecFFECoords,

• CosetLeadersMatFFE,

• DistancesDistributionMatFFEVecFFE,

• DistancesDistributionVecFFEsVecFFE,

• DistanceVecFFE and WeightVecFFE,

• ConwayPolynomial and IsCheapConwayPolynomial,

• IsPrimitivePolynomial, and RandomPrimitivePolynomial.

However, the GAP command PrimitivePolynomial returns an integer primitive polynomial not the
finite field kind.

2.1 Distance functions

2.1.1 AClosestVectorCombinationsMatFFEVecFFE

♦ AClosestVectorCombinationsMatFFEVecFFE(mat, F, vec, r, st) (function)

This command runs through the F-linear combinations of the vectors in the rows of the matrix mat
that can be written as linear combinations of exactly r rows (that is without using zero as a coefficient)
and returns a vector from these that is closest to the vector vec. The length of the rows of mat and
the length of vec must be equal, and all elements must lie in F. The rows of mat must be linearly
independent. If it finds a vector of distance at most st, which must be a nonnegative integer, then it
stops immediately and returns this vector.

12

GUAVA 13

Example
gap> F:=GF(3);;
gap> x:= Indeterminate(F);; pol:= xˆ2+1;
x_1ˆ2+Z(3)ˆ0
gap> C := GeneratorPolCode(pol,8,F);
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> v:=Codeword("12101111");
[1 2 1 0 1 1 1 1]
gap> v:=VectorCodeword(v);
[Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0]
gap> G:=GeneratorMat(C);
[[Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)],
[0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3)],
[0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0]]

gap> AClosestVectorCombinationsMatFFEVecFFE(G,F,v,1,1);
[0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0]

2.1.2 AClosestVectorComb..MatFFEVecFFECoords

♦ AClosestVectorComb..MatFFEVecFFECoords(mat, F, vec, r, st) (function)

AClosestVectorCombinationsMatFFEVecFFECoords returns a two element list containing (a)
the same closest vector as in AClosestVectorCombinationsMatFFEVecFFE, and (b) a vector v with
exactly r non-zero entries, such that v∗mat is the closest vector.

Example
gap> F:=GF(3);;
gap> x:= Indeterminate(F);; pol:= xˆ2+1;
x_1ˆ2+Z(3)ˆ0
gap> C := GeneratorPolCode(pol,8,F);
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> v:=Codeword("12101111"); v:=VectorCodeword(v);;
[1 2 1 0 1 1 1 1]
gap> G:=GeneratorMat(C);;
gap> AClosestVectorCombinationsMatFFEVecFFECoords(G,F,v,1,1);
[[0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0],
[0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0]]

2.1.3 DistancesDistributionMatFFEVecFFE

♦ DistancesDistributionMatFFEVecFFE(vecs, vec) (function)

DistancesDistributionMatFFEVecFFE returns the distances distribution of the vector vec to
the vectors in the list vecs. All vectors must have the same length, and all elements must lie in a
common field. The distances distribution is a list d of length Length(vec)+1, such that the value d[i]
is the number of vectors in vecs that have distance i+1 to vec.

Example
gap> v:=[Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0];;
gap> vecs:=[[Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)],

GUAVA 14

> [0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)],
> [0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3)],
> [0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3)],
> [0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3)],
> [0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0]];;
gap> DistancesDistributionMatFFEVecFFE(vecs,GF(3),v);
[0, 4, 6, 60, 109, 216, 192, 112, 30]

2.1.4 DistancesDistributionVecFFEsVecFFE

♦ DistancesDistributionVecFFEsVecFFE(vecs, vec) (function)

DistancesDistributionVecFFEsVecFFE returns the distances distribution of the vector vec to
the vectors in the list vecs. All vectors must have the same length, and all elements must lie in a
common field. The distances distribution is a list d of length Length(vec)+1, such that the value d[i]
is the number of vectors in vecs that have distance i+1 to vec.

Example
gap> v:=[Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0];;
gap> vecs:=[[Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)],
> [0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)],
> [0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3)],
> [0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3)],
> [0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3)],
> [0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0]];;
gap> DistancesDistributionVecFFEsVecFFE(vecs,v);
[0, 0, 0, 0, 0, 4, 0, 1, 1]

2.1.5 WeightVecFFE

♦ WeightVecFFE(vec) (function)

WeightVecFFE returns the weight of the finite field vector vec, i.e. the number of nonzero entries.
Example

gap> v:=[Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0];;
gap> WeightVecFFE(v);
7

2.1.6 DistanceVecFFE

♦ DistanceVecFFE(vec1, vec2) (function)

The Hamming metric on GF(q)n is the function

dist((v1, ...,vn),(w1, ...,wn)) = |{i ∈ [1..n] | vi 6= wi}|.

This is also called the (Hamming) distance between v = (v1, ...,vn) and w = (w1, ...,wn).
DistanceVecFFE returns the distance between the two vectors vec1 and vec2, which must have
the same length and whose elements must lie in a common field. The distance is the number of places
where vec1 and vec2 differ.

GUAVA 15

Example
gap> v1:=[Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0];;
gap> v2:=[Z(3), Z(3)ˆ0, Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0];;
gap> DistanceVecFFE(v1,v2);
2

2.2 Other functions

We basically repeat, with minor variation, the material in the GAP manual or from Frank Luebeck’s
website http://www.math.rwth-aachen.de:8001/˜Frank.Luebeck/data/ConwayPol on Con-
way polynomials. The PRIME FIELDS: If p ≥ 2 is a prime then GF(p) denotes the field Z/pZ,
with addition and multiplication performed mod p.

The PRIME POWER FIELDS: Suppose q = pr is a prime power, r > 1, and put F = GF(p). Let
F [x] denote the ring of all polynomials over F and let f (x) denote a monic irreducible polynomial in
F [x] of degree r. The quotient E = F [x]/(f (x)) = F [x]/ f (x)F [x] is a field with q elements. If f (x)
and E are related in this way, we say that f (x) is the DEFINING POLYNOMIAL of E. Any defining
polynomial factors completely into distinct linear factors over the field it defines.

For any finite field F , the multiplicative group of non-zero elements F× is a cyclic group. An
α ∈ F is called a PRIMITIVE ELEMENT if it is a generator of F×. A defining polynomial f (x) of F is
said to be PRIMITIVE if it has a root in F which is a primitive element.

2.2.1 ConwayPolynomial

♦ ConwayPolynomial(p, n) (function)

A standard notation for the elements of GF(p) is given via the representatives 0, ..., p− 1 of the
cosets modulo p. We order these elements by 0 〈 1 〈 2 〈 ... 〈 p− 1. We introduce an ordering
of the polynomials of degree r over GF(p). Let g(x) = grxr + ...+ g0 and h(x) = hrxr + ...+ h0 (by
convention, gi = hi = 0 for i 〉 r). Then we define g 〈 h if and only if there is an index k with gi = hi

for i 〉 k and (−1)r−kgk 〈 (−1)r−khk.
The CONWAY POLYNOMIAL fp,r(x) for GF(pr) is the smallest polynomial of degree r with re-

spect to this ordering such that:

• fp,r(x) is monic,

• fp,r(x) is primitive, that is, any zero is a generator of the (cyclic) multiplicative group of GF(pr),

• for each proper divisor m of r we have that fp,m(x(pr−1)/(pm−1))≡ 0 (mod fp,r(x)); that is, the
(pr −1)/(pm−1)-th power of a zero of fp,r(x) is a zero of fp,m(x).

ConwayPolynomial(p,n) returns the polynomial fp,r(x) defined above.
IsCheapConwayPolynomial(p,n) returns true if ConwayPolynomial(p, n) will give a re-

sult in reasonable time. This is either the case when this polynomial is pre-computed, or if n, p are not
too big.

2.2.2 RandomPrimitivePolynomial

♦ RandomPrimitivePolynomial(F, n) (function)

http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol

GUAVA 16

For a finite field F and a positive integer n this function returns a primitive polynomial of degree n
over F, that is a zero of this polynomial has maximal multiplicative order |F |n−1.

IsPrimitivePolynomial(f) can be used to check if a univariate polynomial f is primitive or
not.

Chapter 3

Codewords

Let GF(q) denote a finite field with q (a prime power) elements. A code is a subset C of some finite-
dimensional vector space V over GF(q). The length of C is the dimension of V . Usually, V = GF(q)n

and the length is the number of coordinate entries. When C is itself a vector space over GF(q) then it
is called a linear code and the dimension of C is its dimension as a vector space over GF(q).

In GUAVA, a ‘codeword’ is a GAP record, with one of its components being an element in V .
Likewise, a ‘code’ is a GAP record, with one of its components being a subset (or subspace with given
basis, if C is linear) of V .

Example
gap> C:=RandomLinearCode(20,10,GF(4));
a [20,10,?] randomly generated code over GF(4)
gap> c:=Random(C);
[1 a 0 0 0 1 1 aˆ2 0 0 a 1 1 1 a 1 1 a a 0]
gap> NamesOfComponents(C);
["LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",
"GeneratorMat", "name", "Basis", "NiceFreeLeftModule", "Dimension",
"Representative", "ZeroImmutable"]

gap> NamesOfComponents(c);
["VectorCodeword", "WordLength", "treatAsPoly"]
gap> c!.VectorCodeword;
[immutable compressed vector length 20 over GF(4)]
gap> Display(last);
[Z(2ˆ2), Z(2ˆ2), Z(2ˆ2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2, 0*Z(2), Z(2ˆ2), Z(2ˆ2),
Z(2)ˆ0, Z(2ˆ2)ˆ2, 0*Z(2), 0*Z(2), Z(2ˆ2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2ˆ2)ˆ2,
Z(2)ˆ0, 0*Z(2)]

gap> C!.Dimension;
10

Mathematically, a ‘codeword’ is an element of a code C, but in GUAVA the Codeword and
VectorCodeword commands have implementations which do not check if the codeword belongs to C
(i.e., are independent of the code itself). They exist primarily to make it easier for the user to construct
a the associated GAP record. Using these commands, one can enter into a GAP both a codeword c
(belonging to C) and a received word r (not belonging to C) using the same command. The user can
input codewords in different formats (as strings, vectors, and polynomials), and output information is
formatted in a readable way.

A codeword c in a linear code C arises in practice by an initial encoding of a ’block’ message m,
adding enough redundancy to recover m after c is transmitted via a ’noisy’ communication medium.

17

GUAVA 18

In GUAVA, for linear codes, the map m 7−→ c is computed using the command c:=m*C and recovering
m from c is obtained by the command InformationWord(c,C). These commands are explained more
below.

Many operations are available on codewords themselves, although codewords also work together
with codes (see chapter 4 on Codes).

The first section describes how codewords are constructed (see Codeword (3.1.1) and IsCodeword
(3.1.3)). Sections 3.2 and 3.3 describe the arithmetic operations applicable to codewords. Section
3.4 describe functions that convert codewords back to vectors or polynomials (see VectorCodeword
(3.4.1) and PolyCodeword (3.4.2)). Section 3.5 describe functions that change the way a codeword
is displayed (see TreatAsVector (3.5.1) and TreatAsPoly (3.5.2)). Finally, Section 3.6 describes a
function to generate a null word (see NullWord (3.6.1)) and some functions for extracting properties
of codewords (see DistanceCodeword (3.6.2), Support (3.6.3) and WeightCodeword (3.6.4)).

3.1 Construction of Codewords

3.1.1 Codeword

♦ Codeword(obj[, n][,][F]) (function)

Codeword returns a codeword or a list of codewords constructed from obj. The object obj can be
a vector, a string, a polynomial or a codeword. It may also be a list of those (even a mixed list).

If a number n is specified, all constructed codewords have length n. This is the only way to make
sure that all elements of obj are converted to codewords of the same length. Elements of obj that are
longer than n are reduced in length by cutting of the last positions. Elements of obj that are shorter
than n are lengthened by adding zeros at the end. If no n is specified, each constructed codeword is
handled individually.

If a Galois field F is specified, all codewords are constructed over this field. This is the only way
to make sure that all elements of obj are converted to the same field F (otherwise they are converted
one by one). Note that all elements of obj must have elements over F or over ‘Integers’. Converting
from one Galois field to another is not allowed. If no F is specified, vectors or strings with integer
elements will be converted to the smallest Galois field possible.

Note that a significant speed increase is achieved if F is specified, even when all elements of obj
already have elements over F.

Every vector in obj can be a finite field vector over F or a vector over ‘Integers’. In the last case,
it is converted to F or, if omitted, to the smallest Galois field possible.

Every string in obj must be a string of numbers, without spaces, commas or any other characters.
These numbers must be from 0 to 9. The string is converted to a codeword over F or, if F is omitted,
over the smallest Galois field possible. Note that since all numbers in the string are interpreted as one-
digit numbers, Galois fields of size larger than 10 are not properly represented when using strings. In
fact, no finite field of size larger than 11 arises in this fashion at all.

Every polynomial in obj is converted to a codeword of length n or, if omitted, of a length dictated
by the degree of the polynomial. If F is specified, a polynomial in obj must be over F.

Every element of obj that is already a codeword is changed to a codeword of length n. If no n
was specified, the codeword doesn’t change. If F is specified, the codeword must have base field F.

Example
gap> c := Codeword([0,1,1,1,0]);
[0 1 1 1 0]

GUAVA 19

gap> VectorCodeword(c);
[0*Z(2), Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, 0*Z(2)]
gap> c2 := Codeword([0,1,1,1,0], GF(3));
[0 1 1 1 0]
gap> VectorCodeword(c2);
[0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, 0*Z(3)]
gap> Codeword([c, c2, "0110"]);
[[0 1 1 1 0], [0 1 1 1 0], [0 1 1 0]]
gap> p := UnivariatePolynomial(GF(2), [Z(2)ˆ0, 0*Z(2), Z(2)ˆ0]);
Z(2)ˆ0+x_1ˆ2
gap> Codeword(p);
xˆ2 + 1

This command can also be called using the syntax Codeword(obj,C). In this format, the elements
of obj are converted to elements of the same ambient vector space as the elements of a code C. The
command Codeword(c,C) is the same as calling Codeword(c,n,F), where n is the word length of C
and the F is the ground field of C.

Example
gap> C := WholeSpaceCode(7,GF(5));
a cyclic [7,7,1]0 whole space code over GF(5)
gap> Codeword(["0220110", [1,1,1]], C);
[[0 2 2 0 1 1 0], [1 1 1 0 0 0 0]]
gap> Codeword(["0220110", [1,1,1]], 7, GF(5));
[[0 2 2 0 1 1 0], [1 1 1 0 0 0 0]]
gap> C:=RandomLinearCode(10,5,GF(3));
a linear [10,5,1..3]3..5 random linear code over GF(3)
gap> Codeword("1000000000",C);
[1 0 0 0 0 0 0 0 0 0]
gap> Codeword("1000000000",10,GF(3));
[1 0 0 0 0 0 0 0 0 0]

3.1.2 CodewordNr

♦ CodewordNr(C, list) (function)

CodewordNr returns a list of codewords of C. list may be a list of integers or a single integer. For
each integer of list, the corresponding codeword of C is returned. The correspondence of a number
i with a codeword is determined as follows: if a list of elements of C is available, the ith element is
taken. Otherwise, it is calculated by multiplication of the ith information vector by the generator matrix
or generator polynomial, where the information vectors are ordered lexicographically. In particular,
the returned codeword(s) could be a vector or a polynomial. So CodewordNr(C, i) is equal to
AsSSortedList(C)[i], described in the next chapter. The latter function first calculates the set of
all the elements of C and then returns the ith element of that set, whereas the former only calculates
the ith codeword.

Example
gap> B := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> c := CodewordNr(B, 4);
xˆ22 + xˆ20 + xˆ17 + xˆ14 + xˆ13 + xˆ12 + xˆ11 + xˆ10
gap> R := ReedSolomonCode(2,2);

GUAVA 20

a cyclic [2,1,2]1 Reed-Solomon code over GF(3)
gap> AsSSortedList(R);
[[0 0], [1 1], [2 2]]
gap> CodewordNr(R, [1,3]);
[[0 0], [2 2]]

3.1.3 IsCodeword

♦ IsCodeword(obj) (function)

IsCodeword returns ‘true’ if obj, which can be an object of arbitrary type, is of the codeword
type and ‘false’ otherwise. The function will signal an error if obj is an unbound variable.

Example
gap> IsCodeword(1);
false
gap> IsCodeword(ReedMullerCode(2,3));
false
gap> IsCodeword("11111");
false
gap> IsCodeword(Codeword("11111"));
true

3.2 Comparisons of Codewords

3.2.1 =

♦ =(c1, c2) (function)

The equality operator c1 = c2 evaluates to ‘true’ if the codewords c1 and c2 are equal, and to
‘false’ otherwise. Note that codewords are equal if and only if their base vectors are equal. Whether
they are represented as a vector or polynomial has nothing to do with the comparison.

Comparing codewords with objects of other types is not recommended, although it is possible. If
c2 is the codeword, the other object c1 is first converted to a codeword, after which comparison is
possible. This way, a codeword can be compared with a vector, polynomial, or string. If c1 is the
codeword, then problems may arise if c2 is a polynomial. In that case, the comparison always yields
a ‘false’, because the polynomial comparison is called.

The equality operator is also denoted EQ, and EQ(c1,c2) is the same as c1 = c2. There is also
an inequality operator, < >, or not EQ.

Example
gap> P := UnivariatePolynomial(GF(2), Z(2)*[1,0,0,1]);
Z(2)ˆ0+x_1ˆ3
gap> c := Codeword(P, GF(2));
xˆ3 + 1
gap> P = c; # codeword operation
true
gap> c2 := Codeword("1001", GF(2));
[1 0 0 1]
gap> c = c2;
true

GUAVA 21

gap> C:=HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c1:=Random(C);
[1 0 0 1 1 0 0]
gap> c2:=Random(C);
[0 1 0 0 1 0 1]
gap> EQ(c1,c2);
false
gap> not EQ(c1,c2);
true

3.3 Arithmetic Operations for Codewords

3.3.1 +

♦ +(c1, c2) (function)

The following operations are always available for codewords. The operands must have a common
base field, and must have the same length. No implicit conversions are performed.

The operator + evaluates to the sum of the codewords c1 and c2.
Example

gap> C:=RandomLinearCode(10,5,GF(3));
a linear [10,5,1..3]3..5 random linear code over GF(3)
gap> c:=Random(C);
[1 0 2 2 2 2 1 0 2 0]
gap> Codeword(c+"2000000000");
[0 0 2 2 2 2 1 0 2 0]
gap> Codeword(c+"1000000000");

The last command returns a GAP ERROR since the ‘codeword’ which GUAVA associates to
”1000000000” belongs to GF(2) and not GF(3).

3.3.2 -

♦ -(c1, c2) (function)

Similar to addition: the operator - evaluates to the difference of the codewords c1 and c2.

3.3.3 +

♦ +(v, C) (function)

The operator v+C evaluates to the coset code of code C after adding a ‘codeword’ v to all codewords
in C. Note that if c ∈C then mathematically c +C = C but GUAVA only sees them equal as sets. See
CosetCode (6.1.16).

Note that the command C+v returns the same output as the command v+C.
Example

gap> C:=RandomLinearCode(10,5);
a [10,5,?] randomly generated code over GF(2)

GUAVA 22

gap> c:=Random(C);
[0 0 0 0 0 0 0 0 0 0]
gap> c+C;
[add. coset of a [10,5,?] randomly generated code over GF(2)]
gap> c+C=C;
true
gap> IsLinearCode(c+C);
false
gap> v:=Codeword("100000000");
[1 0 0 0 0 0 0 0 0]
gap> v+C;
[add. coset of a [10,5,?] randomly generated code over GF(2)]
gap> C=v+C;
false
gap> C := GeneratorMatCode([[1, 0,0,0], [0, 1,0,0]], GF(2));
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> Elements(C);
[[0 0 0 0], [0 1 0 0], [1 0 0 0], [1 1 0 0]]
gap> v:=Codeword("0011");
[0 0 1 1]
gap> C+v;
[add. coset of a linear [4,2,4]1 code defined by generator matrix over GF(2)]
gap> Elements(C+v);
[[0 0 1 1], [0 1 1 1], [1 0 1 1], [1 1 1 1]]

In general, the operations just described can also be performed on codewords expressed as vectors,
strings or polynomials, although this is not recommended. The vector, string or polynomial is first
converted to a codeword, after which the normal operation is performed. For this to go right, make
sure that at least one of the operands is a codeword. Further more, it will not work when the right
operand is a polynomial. In that case, the polynomial operations (FiniteFieldPolynomialOps) are
called, instead of the codeword operations (CodewordOps).

Some other code-oriented operations with codewords are described in 4.2.

3.4 Functions that Convert Codewords to Vectors or Polynomials

3.4.1 VectorCodeword

♦ VectorCodeword(obj) (function)

Here obj can be a code word or a list of code words. This function returns the corresponding
vectors over a finite field.

Example
gap> a := Codeword("011011");;
gap> VectorCodeword(a);
[0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, Z(2)ˆ0]

3.4.2 PolyCodeword

♦ PolyCodeword(obj) (function)

GUAVA 23

PolyCodeword returns a polynomial or a list of polynomials over a Galois field, converted from
obj. The object obj can be a codeword, or a list of codewords.

Example
gap> a := Codeword("011011");;
gap> PolyCodeword(a);
x_1+x_1ˆ2+x_1ˆ4+x_1ˆ5

3.5 Functions that Change the Display Form of a Codeword

3.5.1 TreatAsVector

♦ TreatAsVector(obj) (function)

TreatAsVector adapts the codewords in obj to make sure they are printed as vectors. obj may
be a codeword or a list of codewords. Elements of obj that are not codewords are ignored. After this
function is called, the codewords will be treated as vectors. The vector representation is obtained by
using the coefficient list of the polynomial.

Note that this only changes the way a codeword is printed. TreatAsVector returns nothing, it
is called only for its side effect. The function VectorCodeword converts codewords to vectors (see
VectorCodeword (3.4.1)).

Example
gap> B := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> c := CodewordNr(B, 4);
xˆ22 + xˆ20 + xˆ17 + xˆ14 + xˆ13 + xˆ12 + xˆ11 + xˆ10
gap> TreatAsVector(c);
gap> c;
[0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1]

3.5.2 TreatAsPoly

♦ TreatAsPoly(obj) (function)

TreatAsPoly adapts the codewords in obj to make sure they are printed as polynomials. obj may
be a codeword or a list of codewords. Elements of obj that are not codewords are ignored. After this
function is called, the codewords will be treated as polynomials. The finite field vector that defines
the codeword is used as a coefficient list of the polynomial representation, where the first element of
the vector is the coefficient of degree zero, the second element is the coefficient of degree one, etc,
until the last element, which is the coefficient of highest degree.

Note that this only changes the way a codeword is printed. TreatAsPoly returns nothing, it is
called only for its side effect. The function PolyCodeword converts codewords to polynomials (see
PolyCodeword (3.4.2)).

Example
gap> a := Codeword("00001",GF(2));
[0 0 0 0 1]
gap> TreatAsPoly(a); a;
xˆ4
gap> b := NullWord(6,GF(4));

GUAVA 24

[0 0 0 0 0 0]
gap> TreatAsPoly(b); b;
0

3.6 Other Codeword Functions

3.6.1 NullWord

♦ NullWord(n, F) (function)

Other uses: NullWord(n) (default F = GF(2)) and NullWord(C). NullWord returns a code-
word of length n over the field F of only zeros. The integer n must be greater then zero. If only a code
C is specified, NullWord will return a null word with both the word length and the Galois field of C.

Example
gap> NullWord(8);
[0 0 0 0 0 0 0 0]
gap> Codeword("0000") = NullWord(4);
true
gap> NullWord(5,GF(16));
[0 0 0 0 0]
gap> NullWord(ExtendedTernaryGolayCode());
[0 0 0 0 0 0 0 0 0 0 0 0]

3.6.2 DistanceCodeword

♦ DistanceCodeword(c1, c2) (function)

DistanceCodeword returns the Hamming distance from c1 to c2. Both variables must be code-
words with equal word length over the same Galois field. The Hamming distance between two words
is the number of places in which they differ. As a result, DistanceCodeword always returns an integer
between zero and the word length of the codewords.

Example
gap> a := Codeword([0, 1, 2, 0, 1, 2]);; b := NullWord(6, GF(3));;
gap> DistanceCodeword(a, b);
4
gap> DistanceCodeword(b, a);
4
gap> DistanceCodeword(a, a);
0

3.6.3 Support

♦ Support(c) (function)

Support returns a set of integers indicating the positions of the non-zero entries in a codeword c.
Example

gap> a := Codeword("012320023002");; Support(a);
[2, 3, 4, 5, 8, 9, 12]

GUAVA 25

gap> Support(NullWord(7));
[]

The support of a list with codewords can be calculated by taking the union of the individual supports.
The weight of the support is the length of the set.

Example
gap> L := Codeword(["000000", "101010", "222000"], GF(3));;
gap> S := Union(List(L, i -> Support(i)));
[1, 2, 3, 5]
gap> Length(S);
4

3.6.4 WeightCodeword

♦ WeightCodeword(c) (function)

WeightCodeword returns the weight of a codeword c, the number of non-zero entries in c. As a
result, WeightCodeword always returns an integer between zero and the word length of the codeword.

Example
gap> WeightCodeword(Codeword("22222"));
5
gap> WeightCodeword(NullWord(3));
0
gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> Minimum(List(AsSSortedList(C){[2..Size(C)]}, WeightCodeword));
3

Chapter 4

Codes

A code is a set of codewords (recall a codeword in GUAVA is simply a sequence of elements of a
finite field GF(q), where q is a prime power). We call these the elements of the code. Depending on
the type of code, a codeword can be interpreted as a vector or as a polynomial. This is explained in
more detail in Chapter 3.

In GUAVA, codes can be a set specified by its elements (this will be called an unrestricted code),
by a generator matrix listing a set of basis elements (for a linear code) or by a generator polynomial
(for a cyclic code).

Any code can be defined by its elements. If you like, you can give the code a name.
Example

gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2));
a (4,3,1..4)2..4 example code over GF(2)

An (n,M,d) code is a code with word length n, size M and minimum distance d. If the minimum
distance has not yet been calculated, the lower bound and upper bound are printed (except in the case
where the code is a random linear codes, where these are not printed for efficiency reasons). So

a (4,3,1..4)2..4 code over GF(2)

means a binary unrestricted code of length 4, with 3 elements and the minimum distance is greater
than or equal to 1 and less than or equal to 4 and the covering radius is greater than or equal to 2 and
less than or equal to 4.

Example
gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2));
a (4,3,1..4)2..4 example code over GF(2)
gap> MinimumDistance(C);
2
gap> C;
a (4,3,2)2..4 example code over GF(2)

If the set of elements is a linear subspace of GF(q)n, the code is called linear. If a code is linear, it
can be defined by its generator matrix or parity check matrix. By definition, the rows of the generator
matrix is a basis for the code (as a vector space over GF(q)). By definition, the rows of the parity
check matrix is a basis for the dual space of the code,

C∗ = {v ∈ GF(q)n | v · c = 0, f or all c ∈C}.

26

GUAVA 27

Example
gap> G := GeneratorMatCode([[1,0,1],[0,1,2]], "demo code", GF(3));
a linear [3,2,1..2]1 demo code over GF(3)

So a linear [n,k,d]r code is a code with word length n, dimension k, minimum distance d and covering
radius r.

If the code is linear and all cyclic shifts of its codewords (regarded as n-tuples) are again code-
words, the code is called cyclic. All elements of a cyclic code are multiples of the monic polynomial
modulo a polynomial xn − 1, where n is the word length of the code. Such a polynomial is called a
generator polynomial The generator polynomial must divide xn−1 and its quotient is called a check
polynomial. Multiplying a codeword in a cyclic code by the check polynomial yields zero (modulo
the polynomial xn−1). In GUAVA, a cyclic code can be defined by either its generator polynomial or
check polynomial.

Example
gap> G := GeneratorPolCode(Indeterminate(GF(2))+Z(2)ˆ0, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)

It is possible that GUAVA does not know that an unrestricted code is in fact linear. This situation occurs
for example when a code is generated from a list of elements with the function ElementsCode (see
ElementsCode (5.1.1)). By calling the function IsLinearCode (see IsLinearCode (4.3.4)), GUAVA
tests if the code can be represented by a generator matrix. If so, the code record and the operations
are converted accordingly.

Example
gap> L := Z(2)*[[0,0,0], [1,0,0], [0,1,1], [1,1,1]];;
gap> C := ElementsCode(L, GF(2));
a (3,4,1..3)1 user defined unrestricted code over GF(2)
so far, GUAVA does not know what kind of code this is
gap> IsLinearCode(C);
true # it is linear
gap> C;
a linear [3,2,1]1 user defined unrestricted code over GF(2)

Of course the same holds for unrestricted codes that in fact are cyclic, or codes, defined by a generator
matrix, that actually are cyclic.

Codes are printed simply by giving a small description of their parameters, the word length, size
or dimension and perhaps the minimum distance, followed by a short description and the base field of
the code. The function Display gives a more detailed description, showing the construction history
of the code.

GUAVA doesn’t place much emphasis on the actual encoding and decoding processes; some al-
gorithms have been included though. Encoding works simply by multiplying an information vector
with a code, decoding is done by the functions Decode or Decodeword. For more information about
encoding and decoding, see sections 4.2 and 4.10.1.

Example
gap> R := ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> w := [1, 0, 1, 1] * R;
[1 0 0 1 1 0 0 1]
gap> Decode(R, w);
[1 0 1 1]

GUAVA 28

gap> Decode(R, w + "10000000"); # One error at the first position
[1 0 1 1] # Corrected by Guava

Sections 4.1 and 4.2 describe the operations that are available for codes. Section 4.3 describe
the functions that tests whether an object is a code and what kind of code it is (see IsCode,
IsLinearCode (4.3.4) and IsCyclicCode) and various other boolean functions for codes. Sec-
tion 4.4 describe functions about equivalence and isomorphism of codes (see IsEquivalent (4.4.1),
CodeIsomorphism (4.4.2) and AutomorphismGroup (4.4.3)). Section 4.5 describes functions that
work on domains (see Chapter ”Domains and their Elements” in the GAP Reference Manual). Sec-
tion 4.6 describes functions for printing and displaying codes. Section 4.7 describes functions
that return the matrices and polynomials that define a code (see GeneratorMat (4.7.1), CheckMat
(4.7.2), GeneratorPol (4.7.3), CheckPol (4.7.4), RootsOfCode (4.7.5)). Section 4.8 describes func-
tions that return the basic parameters of codes (see WordLength (4.8.1), Redundancy (4.8.2) and
MinimumDistance (4.8.3)). Section 4.9 describes functions that return distance and weight distribu-
tions (see WeightDistribution (4.9.2), InnerDistribution (4.9.3), OuterDistribution (4.9.5)
and DistancesDistribution (4.9.4)). Section 4.10 describes functions that are related to decod-
ing (see Decode (4.10.1), Decodeword (4.10.2), Syndrome (4.10.8), SyndromeTable (4.10.9) and
StandardArray (4.10.10)). In Chapters 5 and 6 which follow, we describe functions that generate
and manipulate codes.

4.1 Comparisons of Codes

4.1.1 =

♦ =(C1, C2) (function)

The equality operator C1 = C2 evaluates to ‘true’ if the codes C1 and C2 are equal, and to ‘false’
otherwise.

The equality operator is also denoted EQ, and Eq(C1,C2) is the same as C1 = C2. There is also
an inequality operator, < >, or not EQ.

Note that codes are equal if and only if their set of elements are equal. Codes can also be compared
with objects of other types. Of course they are never equal.

Example
gap> M := [[0, 0], [1, 0], [0, 1], [1, 1]];;
gap> C1 := ElementsCode(M, GF(2));
a (2,4,1..2)0 user defined unrestricted code over GF(2)
gap> M = C1;
false
gap> C2 := GeneratorMatCode([[1, 0], [0, 1]], GF(2));
a linear [2,2,1]0 code defined by generator matrix over GF(2)
gap> C1 = C2;
true
gap> ReedMullerCode(1, 3) = HadamardCode(8);
true
gap> WholeSpaceCode(5, GF(4)) = WholeSpaceCode(5, GF(2));
false

Another way of comparing codes is IsEquivalent, which checks if two codes are equivalent (see
IsEquivalent (4.4.1)). By the way, this called CodeIsomorphism. For the current version of

GUAVA 29

GUAVA, unless one of the codes is unrestricted, this calls Leon’s C program (which only works for
binary linear codes and only on a unix/linux computer).

4.2 Operations for Codes

4.2.1 +

♦ +(C1, C2) (function)

The operator ‘+’ evaluates to the direct sum of the codes C1 and C2. See DirectSumCode (6.2.1).
Example

gap> C1:=RandomLinearCode(10,5);
a [10,5,?] randomly generated code over GF(2)
gap> C2:=RandomLinearCode(9,4);
a [9,4,?] randomly generated code over GF(2)
gap> C1+C2;
a linear [10,9,1]0..10 unknown linear code over GF(2)

4.2.2 *

♦ *(C1, C2) (function)

The operator ‘*’ evaluates to the direct product of the codes C1 and C2. See DirectProductCode
(6.2.3).

Example
gap> C1 := GeneratorMatCode([[1, 0,0,0], [0, 1,0,0]], GF(2));
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> C2 := GeneratorMatCode([[0,0,1, 1], [0,0,0, 1]], GF(2));
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> C1*C2;
a linear [16,4,1]4..12 direct product code

4.2.3 *

♦ *(m, C) (function)

The operator m*C evaluates to the element of C belonging to information word (’message’) m. Here
m may be a vector, polynomial, string or codeword or a list of those. This is the way to do encoding
in GUAVA. C must be linear, because in GUAVA, encoding by multiplication is only defined for linear
codes. If C is a cyclic code, this multiplication is the same as multiplying an information polynomial m
by the generator polynomial of C. If C is a linear code, it is equal to the multiplication of an information
vector m by a generator matrix of C.

To invert this, use the function InformationWord (see InformationWord (4.2.4), which simply
calls the function Decode).

Example
gap> C := GeneratorMatCode([[1, 0,0,0], [0, 1,0,0]], GF(2));
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> m:=Codeword("11");

GUAVA 30

[1 1]
gap> m*C;
[1 1 0 0]

4.2.4 InformationWord

♦ InformationWord(c, C) (function)

Here C is a linear code and c is a codeword in it. The command InformationWord returns
the message word (or ’information digits’) m satisfying c=m*C. This command simply calls Decode,
provided c in C is true. Otherwise, it returns an error.

To invert this, use the encoding function * (see * (4.2.3)).
Example

gap> C:=HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c:=Random(C);
[0 0 0 1 1 1 1]
gap> InformationWord(C,c);
[0 1 1 1]
gap> c:=Codeword("1111100");
[1 1 1 1 1 0 0]
gap> InformationWord(C,c);
"ERROR: codeword must belong to code"
gap> C:=NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> c:=Random(C);
[0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1]
gap> InformationWord(C,c);
"ERROR: code must be linear"

4.3 Boolean Functions for Codes

4.3.1 in

♦ in(c, C) (function)

The command c in C evaluates to ‘true’ if C contains the codeword or list of codewords specified
by c. Of course, c and C must have the same word lengths and base fields.

Example
gap> C:= HammingCode(2);; eC:= AsSSortedList(C);
[[0 0 0], [1 1 1]]
gap> eC[2] in C;
true
gap> [0] in C;
false

GUAVA 31

4.3.2 IsSubset

♦ IsSubset(C1, C2) (function)

The command IsSubset(C1,C2) returns ‘true’ if C2 is a subcode of C1, i.e. if C1 contains all the
elements of C2.

Example
gap> IsSubset(HammingCode(3), RepetitionCode(7));
true
gap> IsSubset(RepetitionCode(7), HammingCode(3));
false
gap> IsSubset(WholeSpaceCode(7), HammingCode(3));
true

4.3.3 IsCode

♦ IsCode(obj) (function)

IsCode returns ‘true’ if obj, which can be an object of arbitrary type, is a code and ‘false’ other-
wise. Will cause an error if obj is an unbound variable.

Example
gap> IsCode(1);
false
gap> IsCode(ReedMullerCode(2,3));
true

4.3.4 IsLinearCode

♦ IsLinearCode(obj) (function)

IsLinearCode checks if object obj (not necessarily a code) is a linear code. If a code has already
been marked as linear or cyclic, the function automatically returns ‘true’. Otherwise, the function
checks if a basis G of the elements of obj exists that generates the elements of obj. If so, G is
recorded as a generator matrix of obj and the function returns ‘true’. If not, the function returns
‘false’.

Example
gap> C := ElementsCode([[0,0,0],[1,1,1]], GF(2));
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> IsLinearCode(C);
true
gap> IsLinearCode(ElementsCode([[1,1,1]], GF(2)));
false
gap> IsLinearCode(1);
false

4.3.5 IsCyclicCode

♦ IsCyclicCode(obj) (function)

GUAVA 32

IsCyclicCode checks if the object obj is a cyclic code. If a code has already been marked as
cyclic, the function automatically returns ‘true’. Otherwise, the function checks if a polynomial g
exists that generates the elements of obj. If so, g is recorded as a generator polynomial of obj and
the function returns ‘true’. If not, the function returns ‘false’.

Example
gap> C := ElementsCode([[0,0,0], [1,1,1]], GF(2));
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> # GUAVA does not know the code is cyclic
gap> IsCyclicCode(C); # this command tells GUAVA to find out
true
gap> IsCyclicCode(HammingCode(4, GF(2)));
false
gap> IsCyclicCode(1);
false

4.3.6 IsPerfectCode

♦ IsPerfectCode(C) (function)

IsPerfectCode(C) returns ‘true’ if C is a perfect code. If C ⊂ GF(q)n then, by definition, this
means that for some positive integer t, the space GF(q)n is covered by non-overlapping spheres of
(Hamming) radius t centered at the codewords in C. For a code with odd minimum distance d = 2t +1,
this is the case when every word of the vector space of C is at distance at most t from exactly one
element of C. Codes with even minimum distance are never perfect.

In fact, a code that is not ”trivially perfect” (the binary repetition codes of odd length, the codes
consisting of one word, and the codes consisting of the whole vector space), and does not have the
parameters of a Hamming or Golay code, cannot be perfect (see section 1.12 in [HP03]).

Example
gap> H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> IsPerfectCode(H);
true
gap> IsPerfectCode(ElementsCode([[1,1,0],[0,0,1]],GF(2)));
true
gap> IsPerfectCode(ReedSolomonCode(6, 3));
false
gap> IsPerfectCode(BinaryGolayCode());
true

4.3.7 IsMDSCode

♦ IsMDSCode(C) (function)

IsMDSCode(C) returns true if C is a maximum distance separable (MDS) code. A linear [n,k,d]-
code of length n, dimension k and minimum distance d is an MDS code if k = n−d +1, in other words
if C meets the Singleton bound (see UpperBoundSingleton (7.1.1)). An unrestricted (n,M,d) code
is called MDS if k = n−d + 1, with k equal to the largest integer less than or equal to the logarithm
of M with base q, the size of the base field of C.

GUAVA 33

Well-known MDS codes include the repetition codes, the whole space codes, the even weight
codes (these are the only binary MDS codes) and the Reed-Solomon codes.

Example
gap> C1 := ReedSolomonCode(6, 3);
a cyclic [6,4,3]2 Reed-Solomon code over GF(7)
gap> IsMDSCode(C1);
true # 6-3+1 = 4
gap> IsMDSCode(QRCode(23, GF(2)));
false

4.3.8 IsSelfDualCode

♦ IsSelfDualCode(C) (function)

IsSelfDualCode(C) returns ‘true’ if C is self-dual, i.e. when C is equal to its dual code (see also
DualCode (6.1.13)). A code is self-dual if it contains all vectors that its elements are orthogonal to. If
a code is self-dual, it automatically is self-orthogonal (see IsSelfOrthogonalCode (4.3.9)).

If C is a non-linear code, it cannot be self-dual (the dual code is always linear), so ‘false’ is
returned. A linear code can only be self-dual when its dimension k is equal to the redundancy r.

Example
gap> IsSelfDualCode(ExtendedBinaryGolayCode());
true
gap> C := ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> DualCode(C) = C;
true

4.3.9 IsSelfOrthogonalCode

♦ IsSelfOrthogonalCode(C) (function)

IsSelfOrthogonalCode(C) returns ‘true’ if C is self-orthogonal. A code is self-orthogonal if
every element of C is orthogonal to all elements of C, including itself. (In the linear case, this simply
means that the generator matrix of C multiplied with its transpose yields a null matrix.)

Example
gap> R := ReedMullerCode(1,4);
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> IsSelfOrthogonalCode(R);
true
gap> IsSelfDualCode(R);
false

4.3.10 IsSelfComplementaryCode

♦ IsSelfComplementaryCode(C) (function)

GUAVA 34

IsSelfComplementaryCode returns ‘true’ if

v ∈C ⇒ 1− v ∈C,

where 1 is the all-one word of length n.
Example

gap> IsSelfComplementaryCode(HammingCode(3, GF(2)));
true
gap> IsSelfComplementaryCode(EvenWeightSubcode(
> HammingCode(3, GF(2))));
false

4.3.11 IsAffineCode

♦ IsAffineCode(C) (function)

IsAffineCode returns ‘true’ if C is an affine code. A code is called affine if it is an affine space.
In other words, a code is affine if it is a coset of a linear code.

Example
gap> IsAffineCode(HammingCode(3, GF(2)));
true
gap> IsAffineCode(CosetCode(HammingCode(3, GF(2)),
> [1, 0, 0, 0, 0, 0, 0]));
true
gap> IsAffineCode(NordstromRobinsonCode());
false

4.3.12 IsAlmostAffineCode

♦ IsAlmostAffineCode(C) (function)

IsAlmostAffineCode returns ‘true’ if C is an almost affine code. A code is called almost affine
if the size of any punctured code of C is qr for some r, where q is the size of the alphabet of the code.
Every affine code is also almost affine, and every code over GF(2) and GF(3) that is almost affine is
also affine.

Example
gap> code := ElementsCode([[0,0,0], [0,1,1], [0,2,2], [0,3,3],
> [1,0,1], [1,1,0], [1,2,3], [1,3,2],
> [2,0,2], [2,1,3], [2,2,0], [2,3,1],
> [3,0,3], [3,1,2], [3,2,1], [3,3,0]],
> GF(4));;
gap> IsAlmostAffineCode(code);
true
gap> IsAlmostAffineCode(NordstromRobinsonCode());
false

GUAVA 35

4.4 Equivalence and Isomorphism of Codes

4.4.1 IsEquivalent

♦ IsEquivalent(C1, C2) (function)

We say that C1 is permutation equivalent to C2 if C1 can be obtained from C2 by carrying out
column permutations. IsEquivalent returns true if C1 and C2 are equivalent codes. At this time,
IsEquivalent only handles binary codes. (The external unix/linux program DESAUTO from J. S.
Leon is called by IsEquivalent.) Of course, if C1 and C2 are equal, they are also equivalent.

Note that the algorithm is very slow for non-linear codes.
More generally, we say that C1 is equivalent to C2 if C1 can be obtained from C2 by carrying out

column permutations and a permutation of the alphabet.
Example

gap> x:= Indeterminate(GF(2));; pol:= xˆ3+x+1;
Z(2)ˆ0+x_1+x_1ˆ3
gap> H := GeneratorPolCode(pol, 7, GF(2));
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> H = HammingCode(3, GF(2));
false
gap> IsEquivalent(H, HammingCode(3, GF(2)));
true # H is equivalent to a Hamming code
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7)

4.4.2 CodeIsomorphism

♦ CodeIsomorphism(C1, C2) (function)

If the two codes C1 and C2 are permutation equivalent codes (see IsEquivalent (4.4.1)),
CodeIsomorphism returns the permutation that transforms C1 into C2. If the codes are not equiv-
alent, it returns ‘false’.

At this time, IsEquivalent only computes isomorphisms between binary codes on a linux/unix
computer (since it calls Leon’s C program DESAUTO).

Example
gap> x:= Indeterminate(GF(2));; pol:= xˆ3+x+1;
Z(2)ˆ0+x_1+x_1ˆ3
gap> H := GeneratorPolCode(pol, 7, GF(2));
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7)
gap> PermutedCode(H, (3,4)(5,6,7)) = HammingCode(3, GF(2));
true

4.4.3 AutomorphismGroup

♦ AutomorphismGroup(C) (function)

GUAVA 36

AutomorphismGroup returns the automorphism group of a linear code C. For a binary code,
the automorphism group is the largest permutation group of degree n such that each permutation
applied to the columns of C again yields C. GUAVA calls the external program DESAUTO written
by J. S. Leon, if it exists, to compute the automorphism group. If Leon’s program is not com-
piled on the system (and in the default directory) then it calls instead the much slower program
PermutationAutomorphismGroup.

See Leon [Leo82] for a more precise description of the method, and the guava/src/leon/doc
subdirectory for for details about Leon’s C programs.

The function PermutedCode permutes the columns of a code (see PermutedCode (6.1.4)).
Example

gap> R := RepetitionCode(7,GF(2));
a cyclic [7,1,7]3 repetition code over GF(2)
gap> AutomorphismGroup(R);
Sym([1 .. 7])

every permutation keeps R identical
gap> C := CordaroWagnerCode(7);
a linear [7,2,4]3 Cordaro-Wagner code over GF(2)
gap> AsSSortedList(C);
[[0 0 0 0 0 0 0], [0 0 1 1 1 1 1], [1 1 0 0 0 1 1], [1 1 1 1 1 0 0]]
gap> AutomorphismGroup(C);
Group([(3,4), (4,5), (1,6)(2,7), (1,2), (6,7)])
gap> C2 := PermutedCode(C, (1,6)(2,7));
a linear [7,2,4]3 permuted code
gap> AsSSortedList(C2);
[[0 0 0 0 0 0 0], [0 0 1 1 1 1 1], [1 1 0 0 0 1 1], [1 1 1 1 1 0 0]]
gap> C2 = C;
true

4.4.4 PermutationAutomorphismGroup

♦ PermutationAutomorphismGroup(C) (function)

PermutationAutomorphismGroup returns the permutation automorphism group of a linear code
C. This is the largest permutation group of degree n such that each permutation applied to the columns
of C again yields C. It is written in GAP, so is much slower than AutomorphismGroup.

When C is binary PermutationAutomorphismGroup does not call AutomorphismGroup, even
though they agree mathematically in that case. This way PermutationAutomorphismGroup can be
called on any platform which runs GAP.

The older name for this command, PermutationGroup, will become obsolete in the next version
of GAP.

Example
gap> R := RepetitionCode(3,GF(3));
a cyclic [3,1,3]2 repetition code over GF(3)
gap> G:=PermutationAutomorphismGroup(R);
Group([(), (1,3), (1,2,3), (2,3), (1,3,2), (1,2)])
gap> G=SymmetricGroup(3);
true

GUAVA 37

4.5 Domain Functions for Codes

These are some GAP functions that work on ‘Domains’ in general. Their specific effect on ‘Codes’ is
explained here.

4.5.1 IsFinite

♦ IsFinite(C) (function)

IsFinite is an implementation of the GAP domain function IsFinite. It returns true for a code
C.

Example
gap> IsFinite(RepetitionCode(1000, GF(11)));
true

4.5.2 Size

♦ Size(C) (function)

Size returns the size of C, the number of elements of the code. If the code is linear, the size of the
code is equal to qk, where q is the size of the base field of C and k is the dimension.

Example
gap> Size(RepetitionCode(1000, GF(11)));
11
gap> Size(NordstromRobinsonCode());
256

4.5.3 LeftActingDomain

♦ LeftActingDomain(C) (function)

LeftActingDomain returns the base field of a code C. Each element of C consists of elements of
this base field. If the base field is F , and the word length of the code is n, then the codewords are
elements of Fn. If C is a cyclic code, its elements are interpreted as polynomials with coefficients over
F .

Example
gap> C1 := ElementsCode([[0,0,0], [1,0,1], [0,1,0]], GF(4));
a (3,3,1..3)2..3 user defined unrestricted code over GF(4)
gap> LeftActingDomain(C1);
GF(2ˆ2)
gap> LeftActingDomain(HammingCode(3, GF(9)));
GF(3ˆ2)

4.5.4 Dimension

♦ Dimension(C) (function)

GUAVA 38

Dimension returns the parameter k of C, the dimension of the code, or the number of information
symbols in each codeword. The dimension is not defined for non-linear codes; Dimension then
returns an error.

Example
gap> Dimension(NullCode(5, GF(5)));
0
gap> C := BCHCode(15, 4, GF(4));
a cyclic [15,9,5]3..4 BCH code, delta=5, b=1 over GF(4)
gap> Dimension(C);
9
gap> Size(C) = Size(LeftActingDomain(C)) ˆ Dimension(C);
true

4.5.5 AsSSortedList

♦ AsSSortedList(C) (function)

AsSSortedList (as strictly sorted list) returns an immutable, duplicate free list of the elements
of C. For a finite field GF(q) generated by powers of Z(q), the ordering on

GF(q) = {0,Z(q)0,Z(q),Z(q)2, ...Z(q)q−2}

is that determined by the exponents i. These elements are of the type codeword (see Codeword (3.1.1)).
Note that for large codes, generating the elements may be very time- and memory-consuming. For
generating a specific element or a subset of the elements, use CodewordNr (see CodewordNr (3.1.2)).

Example
gap> C := ConferenceCode(5);
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList(C);
[[0 0 0 0 0], [0 0 1 1 1], [0 1 0 1 1], [0 1 1 0 1], [0 1 1 1 0],
[1 0 0 1 1], [1 0 1 0 1], [1 0 1 1 0], [1 1 0 0 1], [1 1 0 1 0],
[1 1 1 0 0], [1 1 1 1 1]]

gap> CodewordNr(C, [1, 2]);
[[0 0 0 0 0], [0 0 1 1 1]]

4.6 Printing and Displaying Codes

4.6.1 Print

♦ Print(C) (function)

Print prints information about C. This is the same as typing the identifier C at the GAP-prompt.
If the argument is an unrestricted code, information in the form

a (n,M,d)r ... code over GF(q)

is printed, where n is the word length, M the number of elements of the code, d the minimum distance
and r the covering radius.

If the argument is a linear code, information in the form

GUAVA 39

a linear [n,k,d]r ... code over GF(q)

is printed, where n is the word length, k the dimension of the code, d the minimum distance and r the
covering radius.

Except for codes produced by RandomLinearCode, if d is not yet known, it is displayed in the
form

lowerbound..upperbound

and if r is not yet known, it is displayed in the same way. For certain ranges of n, the values of
lowerbound and upperbound are obtained from tables.

The function Display gives more information. See Display (4.6.3).
Example

gap> C1 := ExtendedCode(HammingCode(3, GF(2)));
a linear [8,4,4]2 extended code
gap> Print("This is ", NordstromRobinsonCode(), ". \n");
This is a (16,256,6)4 Nordstrom-Robinson code over GF(2).

4.6.2 String

♦ String(C) (function)

String returns information about C in a string. This function is used by Print.
Example

gap> x:= Indeterminate(GF(3));; pol:= xˆ2+1;
x_1ˆ2+Z(3)ˆ0
gap> Factors(pol);
[x_1ˆ2+Z(3)ˆ0]
gap> H := GeneratorPolCode(pol, 8, GF(3));
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> String(H);
"a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)"

4.6.3 Display

♦ Display(C) (function)

Display prints the method of construction of code C. With this history, in most cases an equal or
equivalent code can be reconstructed. If C is an unmanipulated code, the result is equal to output of
the function Print (see Print (4.6.1)).

Example
gap> Display(RepetitionCode(6, GF(3)));
a cyclic [6,1,6]4 repetition code over GF(3)
gap> C1 := ExtendedCode(HammingCode(2));;
gap> C2 := PuncturedCode(ReedMullerCode(2, 3));;
gap> Display(LengthenedCode(UUVCode(C1, C2)));
a linear [12,8,2]2..4 code, lengthened with 1 column(s) of
a linear [11,8,1]1..2 U U+V construction code of
U: a linear [4,1,4]2 extended code of

a linear [3,1,3]1 Hamming (2,2) code over GF(2)
V: a linear [7,7,1]0 punctured code of

a cyclic [8,7,2]1 Reed-Muller (2,3) code over GF(2)

GUAVA 40

4.6.4 DisplayBoundsInfo

♦ DisplayBoundsInfo(bds) (function)

DisplayBoundsInfo prints the method of construction of the code C indicated in bds:=
BoundsMinimumDistance(n, k, GF(q)).

Example
gap> bounds := BoundsMinimumDistance(20, 17, GF(4));
gap> DisplayBoundsInfo(bounds);
an optimal linear [20,17,d] code over GF(4) has d=3
--
Lb(20,17)=3, by shortening of:
Lb(21,18)=3, by applying contruction B to a [81,77,3] code
Lb(81,77)=3, by shortening of:
Lb(85,81)=3, reference: Ham
--
Ub(20,17)=3, by considering shortening to:
Ub(7,4)=3, by considering puncturing to:
Ub(6,4)=2, by construction B applied to:
Ub(2,1)=2, repetition code
--
Reference Ham:
%T this reference is unknown, for more info
%T contact A.E. Brouwer (aeb@cwi.nl)

4.7 Generating (Check) Matrices and Polynomials

4.7.1 GeneratorMat

♦ GeneratorMat(C) (function)

GeneratorMat returns a generator matrix of C. The code consists of all linear combinations of
the rows of this matrix.

If until now no generator matrix of C was determined, it is computed from either the parity check
matrix, the generator polynomial, the check polynomial or the elements (if possible), whichever is
available.

If C is a non-linear code, the function returns an error.
Example

gap> GeneratorMat(HammingCode(3, GF(2)));
[[an immutable GF2 vector of length 7],
[an immutable GF2 vector of length 7],
[an immutable GF2 vector of length 7],
[an immutable GF2 vector of length 7]]

gap> Display(last);
1 1 1
1 . . 1 1 . .
. 1 . 1 . 1 .
1 1 . 1 . . 1
gap> GeneratorMat(RepetitionCode(5, GF(25)));
[[Z(5)ˆ0, Z(5)ˆ0, Z(5)ˆ0, Z(5)ˆ0, Z(5)ˆ0]]

GUAVA 41

gap> GeneratorMat(NullCode(14, GF(4)));
[]

4.7.2 CheckMat

♦ CheckMat(C) (function)

CheckMat returns a parity check matrix of C. The code consists of all words orthogonal to each
of the rows of this matrix. The transpose of the matrix is a right inverse of the generator matrix. The
parity check matrix is computed from either the generator matrix, the generator polynomial, the check
polynomial or the elements of C (if possible), whichever is available.

If C is a non-linear code, the function returns an error.
Example

gap> CheckMat(HammingCode(3, GF(2)));
[[0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0],
[0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0],
[Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0]]

gap> Display(last);
. . . 1 1 1 1
. 1 1 . . 1 1
1 . 1 . 1 . 1
gap> CheckMat(RepetitionCode(5, GF(25)));
[[Z(5)ˆ0, Z(5)ˆ2, 0*Z(5), 0*Z(5), 0*Z(5)],
[0*Z(5), Z(5)ˆ0, Z(5)ˆ2, 0*Z(5), 0*Z(5)],
[0*Z(5), 0*Z(5), Z(5)ˆ0, Z(5)ˆ2, 0*Z(5)],
[0*Z(5), 0*Z(5), 0*Z(5), Z(5)ˆ0, Z(5)ˆ2]]

gap> CheckMat(WholeSpaceCode(12, GF(4)));
[]

4.7.3 GeneratorPol

♦ GeneratorPol(C) (function)

GeneratorPol returns the generator polynomial of C. The code consists of all multiples of the
generator polynomial modulo xn − 1, where n is the word length of C. The generator polynomial is
determined from either the check polynomial, the generator or check matrix or the elements of C (if
possible), whichever is available.

If C is not a cyclic code, the function returns ‘false’.
Example

gap> GeneratorPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)ˆ0+x_1
gap> GeneratorPol(WholeSpaceCode(4, GF(2)));
Z(2)ˆ0
gap> GeneratorPol(NullCode(7, GF(3)));
-Z(3)ˆ0+x_1ˆ7

GUAVA 42

4.7.4 CheckPol

♦ CheckPol(C) (function)

CheckPol returns the check polynomial of C. The code consists of all polynomials f with

f ·h ≡ 0 (mod xn−1),

where h is the check polynomial, and n is the word length of C. The check polynomial is computed
from the generator polynomial, the generator or parity check matrix or the elements of C (if possible),
whichever is available.

If C if not a cyclic code, the function returns an error.
Example

gap> CheckPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)ˆ0+x_1+x_1ˆ2
gap> CheckPol(WholeSpaceCode(4, GF(2)));
Z(2)ˆ0+x_1ˆ4
gap> CheckPol(NullCode(7,GF(3)));
Z(3)ˆ0

4.7.5 RootsOfCode

♦ RootsOfCode(C) (function)

RootsOfCode returns a list of all zeros of the generator polynomial of a cyclic code C. These are
finite field elements in the splitting field of the generator polynomial, GF(qm), m is the multiplicative
order of the size of the base field of the code, modulo the word length.

The reverse process, constructing a code from a set of roots, can be carried out by the function
RootsCode (see RootsCode (5.5.3)).

Example
gap> C1 := ReedSolomonCode(16, 5);
a cyclic [16,12,5]3..4 Reed-Solomon code over GF(17)
gap> RootsOfCode(C1);
[Z(17), Z(17)ˆ2, Z(17)ˆ3, Z(17)ˆ4]
gap> C2 := RootsCode(16, last);
a cyclic [16,12,5]3..4 code defined by roots over GF(17)
gap> C1 = C2;
true

4.8 Parameters of Codes

4.8.1 WordLength

♦ WordLength(C) (function)

WordLength returns the parameter n of C, the word length of the elements. Elements of cyclic
codes are polynomials of maximum degree n−1, as calculations are carried out modulo xn−1.

GUAVA 43

Example
gap> WordLength(NordstromRobinsonCode());
16
gap> WordLength(PuncturedCode(WholeSpaceCode(7)));
6
gap> WordLength(UUVCode(WholeSpaceCode(7), RepetitionCode(7)));
14

4.8.2 Redundancy

♦ Redundancy(C) (function)

Redundancy returns the redundancy r of C, which is equal to the number of check symbols in each
element. If C is not a linear code the redundancy is not defined and Redundancy returns an error.

If a linear code C has dimension k and word length n, it has redundancy r = n− k.
Example

gap> C := TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> Redundancy(C);
5
gap> Redundancy(DualCode(C));
6

4.8.3 MinimumDistance

♦ MinimumDistance(C) (function)

MinimumDistance returns the minimum distance of C, the largest integer d with the property that
every element of C has at least a Hamming distance d (see DistanceCodeword (3.6.2)) to any other
element of C. For linear codes, the minimum distance is equal to the minimum weight. This means
that d is also the smallest positive value with w[d + 1] 6= 0, where w = (w[1],w[2], ...,w[n]) is the
weight distribution of C (see WeightDistribution (4.9.2)). For unrestricted codes, d is the smallest
positive value with w[d + 1] 6= 0, where w is the inner distribution of C (see InnerDistribution
(4.9.3)).

For codes with only one element, the minimum distance is defined to be equal to the word length.
For linear codes C, the algorithm used is the following: After replacing C by a permutation equiva-

lent C’, one may assume the generator matrix has the following form G = (Ik |A), for some k×(n−k)
matrix A. If A = 0 then return d(C) = 1. Next, find the minimum distance of the code spanned by the
rows of A. Call this distance d(A). Note that d(A) is equal to the the Hamming distance d(v,0) where
v is some proper linear combination of i distinct rows of A. Return d(C) = d(A)+ i, where i is as in
the previous step.

This command may also be called using the syntax MinimumDistance(C, w). In this form,
MinimumDistance returns the minimum distance of a codeword w to the code C, also called the dis-
tance from w to C. This is the smallest value d for which there is an element c of the code C which is
at distance d from w. So d is also the minimum value for which D[d +1] 6= 0, where D is the distance
distribution of w to C (see DistancesDistribution (4.9.4)).

Note that w must be an element of the same vector space as the elements of C. w does not neces-
sarily belong to the code (if it does, the minimum distance is zero).

GUAVA 44

Example
gap> C := MOLSCode(7);; MinimumDistance(C);
3
gap> WeightDistribution(C);
[1, 0, 0, 24, 24]
gap> MinimumDistance(WholeSpaceCode(5, GF(3)));
1
gap> MinimumDistance(NullCode(4, GF(2)));
4
gap> C := ConferenceCode(9);; MinimumDistance(C);
4
gap> InnerDistribution(C);
[1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10]
gap> C := MOLSCode(7);; w := CodewordNr(C, 17);
[3 3 6 2]
gap> MinimumDistance(C, w);
0
gap> C := RemovedElementsCode(C, w);; MinimumDistance(C, w);
3 # so w no longer belongs to C

See also the GUAVA commands relating to bounds on the minimum distance in section 7.1.

4.8.4 MinimumDistanceLeon

♦ MinimumDistanceLeon(C) (function)

MinimumDistanceLeon returns the “probable” minimum distance dLeon of a linear binary code C,
using an implementation of Leon’s probabilistic polynomial time algorithm. Briefly: Let C be a linear
code of dimension k over GF(q) as above. The algorithm has input parameters s and ρ, where s is an
integer between 2 and n− k, and ρ is an integer between 2 and k.

• Find a generator matrix G of C.

• Randomly permute the columns of G.

• Perform Gaussian elimination on the permuted matrix to obtain a new matrix of the following
form:

G = (Ik |Z |B)

with Z a k× s matrix. If (Z,B) is the zero matrix then return 1 for the minimum distance. If
Z = 0 but not B then either choose another permutation of the rows of C or return ‘method fails’.

• Search Z for at most ρ rows that lead to codewords of weight less than ρ.

• For these codewords, compute the weight of the whole word in C. Return this weight.

(See for example J. S. Leon, [Leo88] for more details.) Sometimes (as is the case in GUAVA) this
probabilistic algorithm is repeated several times and the most commonly occurring value is taken.

Example
gap> C:=RandomLinearCode(50,22,GF(2));
a [50,22,?] randomly generated code over GF(2)
gap> MinimumDistanceLeon(C); time;

GUAVA 45

6
211
gap> MinimumDistance(C); time;
6
1204

4.8.5 DecreaseMinimumDistanceUpperBound

♦ DecreaseMinimumDistanceUpperBound(C, t, m) (function)

DecreaseMinimumDistanceUpperBound is an implementation of the algorithm for the minimum
distance of a linear binary code C by Leon [Leo88]. This algorithm tries to find codewords with small
minimum weights. The parameter t is at least 1 and less than the dimension of C. The best results are
obtained if it is close to the dimension of the code. The parameter m gives the number of runs that the
algorithm will perform.

The result returned is a record with two fields; the first, mindist, gives the lowest
weight found, and word gives the corresponding codeword. (This was implemented before
MinimumDistanceLeon but independently. The older manual had given the command incor-
rectly, so the command was only found after reading all the *.gi files in the GUAVA li-
brary. Though both MinimumDistance and MinimumDistanceLeon often run much faster than
DecreaseMinimumDistanceUpperBound, DecreaseMinimumDistanceUpperBound appears to be
more accurate than MinimumDistanceLeon.)

Example
gap> C:=RandomLinearCode(5,2,GF(2));
a [5,2,?] randomly generated code over GF(2)
gap> DecreaseMinimumDistanceUpperBound(C,1,4);
rec(mindist := 3, word := [0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0])
gap> MinimumDistance(C);
3
gap> C:=RandomLinearCode(8,4,GF(2));
a [8,4,?] randomly generated code over GF(2)
gap> DecreaseMinimumDistanceUpperBound(C,3,4);
rec(mindist := 2,
word := [Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0])

gap> MinimumDistance(C);
2

4.8.6 MinimumDistanceRandom

♦ MinimumDistanceRandom(C, num, s) (function)

MinimumDistanceRandom returns an upper bound for the minimum distance drandom of a linear
binary code C, using a probabilistic polynomial time algorithm. Briefly: Let C be a linear code of
dimension k over GF(q) as above. The algorithm has input parameters num and s, where s is an
integer between 2 and n−1, and num is an integer greater than or equal to 1.

• Find a generator matrix G of C.

• Randomly permute the columns of G, written Gp..

GUAVA 46

•

G = (A,B)

with A a k× s matrix. If A is the zero matrix then return ‘method fails’.

• Search A for at most 5 rows that lead to codewords, in the code CA with generator matrix A, of
minimum weight.

• For these codewords, use the associated linear combination to compute the weight of the whole
word in C. Return this weight and codeword.

This probabilistic algorithm is repeated num times (with different random permutations of the rows of
G each time) and the weight and codeword of the lowest occurring weight is taken.

Example
gap> C:=RandomLinearCode(60,20,GF(2));
a [60,20,?] randomly generated code over GF(2)
gap> #mindist(C);time;
gap> #mindistleon(C,10,30);time; #doesn’t work well
gap> a:=MinimumDistanceRandom(C,10,30);time; # done 10 times -with fastest time!!

This is a probabilistic algorithm which may return the wrong answer.
[12, [0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0]]
130
gap> a[2] in C;
true
gap> b:=DecreaseMinimumDistanceUpperBound(C,10,1); time; #only done once!
rec(mindist := 12, word := [0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2),

Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2),
0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2),
Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2),
0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2),
0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2),
0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2)])

649
gap> Codeword(b!.word) in C;
true
gap> MinimumDistance(C);time;
12
196
gap> c:=MinimumDistanceLeon(C);time;
12
66
gap> C:=RandomLinearCode(30,10,GF(3));
a [30,10,?] randomly generated code over GF(3)
gap> a:=MinimumDistanceRandom(C,10,10);time;

This is a probabilistic algorithm which may return the wrong answer.
[13, [0 0 0 1 0 0 0 0 0 0 1 0 2 2 1 1 0 2 2 0 1 0 2 1 0 0 0 1 0 2]]
229
gap> a[2] in C;
true

GUAVA 47

gap> MinimumDistance(C);time;
9
45
gap> c:=MinimumDistanceLeon(C);
Code must be binary. Quitting.
0
gap> a:=MinimumDistanceRandom(C,1,29);time;

This is a probabilistic algorithm which may return the wrong answer.
[10, [0 0 1 0 2 0 2 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 2 2 2 0]]
53

4.8.7 CoveringRadius

♦ CoveringRadius(C) (function)

CoveringRadius returns the covering radius of a linear code C. This is the smallest number r
with the property that each element v of the ambient vector space of C has at most a distance r to the
code C. So for each vector v there must be an element c of C with d(v,c) ≤ r. The smallest covering
radius of any [n,k] binary linear code is denoted t(n,k). A binary linear code with reasonable small
covering radius is called a covering code.

If C is a perfect code (see IsPerfectCode (4.3.6)), the covering radius is equal to t, the num-
ber of errors the code can correct, where d = 2t + 1, with d the minimum distance of C (see
MinimumDistance (4.8.3)).

If there exists a function called SpecialCoveringRadius in the ‘operations’ field of the code,
then this function will be called to compute the covering radius of the code. At the moment, no
code-specific functions are implemented.

If the length of BoundsCoveringRadius (see BoundsCoveringRadius (7.2.1)), is 1, then the
value in

C.boundsCoveringRadius

is returned. Otherwise, the function

C.operations.CoveringRadius

is executed, unless the redundancy of C is too large. In the last case, a warning is issued.
The algorithm used to compute the covering radius is the following. First, CosetLeadersMatFFE

is used to compute the list of coset leaders (which returns a codeword in each coset of GF(q)n/C of
minimum weight). Then WeightVecFFE is used to compute the weight of each of these coset leaders.
The program returns the maximum of these weights.

Example
gap> H := RandomLinearCode(10, 5, GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> CoveringRadius(H);
3
gap> H := HammingCode(4, GF(2));; IsPerfectCode(H);
true
gap> CoveringRadius(H);

GUAVA 48

1 # Hamming codes have minimum distance 3
gap> CoveringRadius(ReedSolomonCode(7,4));
3
gap> CoveringRadius(BCHCode(17, 3, GF(2)));
3
gap> CoveringRadius(HammingCode(5, GF(2)));
1
gap> C := ReedMullerCode(1, 9);;
gap> CoveringRadius(C);
CoveringRadius: warning, the covering radius of
this code cannot be computed straightforward.
Try to use IncreaseCoveringRadiusLowerBound(code).
(see the manual for more details).
The covering radius of code lies in the interval:
[240 .. 248]

See also the GUAVA commands relating to bounds on the minimum distance in section 7.2.

4.8.8 SetCoveringRadius

♦ SetCoveringRadius(C, intlist) (function)

SetCoveringRadius enables the user to set the covering radius herself, instead of letting GUAVA
compute it. If intlist is an integer, GUAVA will simply put it in the ‘boundsCoveringRadius’ field.
If it is a list of integers, however, it will intersect this list with the ‘boundsCoveringRadius’ field, thus
taking the best of both lists. If this would leave an empty list, the field is set to intlist. Because
some other computations use the covering radius of the code, it is important that the entered value is
not wrong, otherwise new results may be invalid.

Example
gap> C := BCHCode(17, 3, GF(2));;
gap> BoundsCoveringRadius(C);
[3 .. 4]
gap> SetCoveringRadius(C, [2 .. 3]);
gap> BoundsCoveringRadius(C);
[[2 .. 3]]

4.9 Distributions

4.9.1 MinimumWeightWords

♦ MinimumWeightWords(C) (function)

MinimumWeightWords returns the list of minimum weight codewords of C.
This algorithm is written in GAP is slow, so is only suitable for small codes.

Example
gap> C:=HammingCode(3,GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> MinimumWeightWords(C);
[[1 0 0 0 0 1 1], [0 1 0 1 0 1 0], [0 1 0 0 1 0 1], [1 0 0 1 1 0 0], [0 0 1 0 1 1 0],

GUAVA 49

[0 0 1 1 0 0 1], [1 1 1 0 0 0 0]]

4.9.2 WeightDistribution

♦ WeightDistribution(C) (function)

WeightDistribution returns the weight distribution of C, as a vector. The ith element of this
vector contains the number of elements of C with weight i−1. For linear codes, the weight distribution
is equal to the inner distribution (see InnerDistribution (4.9.3)). If w is the weight distribution of
a linear code C, it must have the zero codeword, so w[1] = 1 (one word of weight 0).

Some codes, such as the Hamming codes, have precomputed weight distributions. For others, the
program WeightDistribution calls the GAP program DistancesDistributionMatFFEVecFFE, which
is written in C. See also CodeWeightEnumerator.

Example
gap> WeightDistribution(ConferenceCode(9));
[1, 0, 0, 0, 0, 18, 0, 0, 0, 1]
gap> WeightDistribution(RepetitionCode(7, GF(4)));
[1, 0, 0, 0, 0, 0, 0, 3]
gap> WeightDistribution(WholeSpaceCode(5, GF(2)));
[1, 5, 10, 10, 5, 1]

4.9.3 InnerDistribution

♦ InnerDistribution(C) (function)

InnerDistribution returns the inner distribution of C. The ith element of the vector contains
the average number of elements of C at distance i− 1 to an element of C. For linear codes, the inner
distribution is equal to the weight distribution (see WeightDistribution (4.9.2)).

Suppose w is the inner distribution of C. Then w[1] = 1, because each element of C has exactly
one element at distance zero (the element itself). The minimum distance of C is the smallest value
d > 0 with w[d +1] 6= 0, because a distance between zero and d never occurs. See MinimumDistance
(4.8.3).

Example
gap> InnerDistribution(ConferenceCode(9));
[1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10]
gap> InnerDistribution(RepetitionCode(7, GF(4)));
[1, 0, 0, 0, 0, 0, 0, 3]

4.9.4 DistancesDistribution

♦ DistancesDistribution(C, w) (function)

DistancesDistribution returns the distribution of the distances of all elements of C to a code-
word w in the same vector space. The ith element of the distance distribution is the number of code-
words of C that have distance i− 1 to w. The smallest value d with w[d + 1] 6= 0, is defined as the
distance to C (see MinimumDistance (4.8.3)).

GUAVA 50

Example
gap> H := HadamardCode(20);
a (20,40,10)6..8 Hadamard code of order 20 over GF(2)
gap> c := Codeword("10110101101010010101", H);
[1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1]
gap> DistancesDistribution(H, c);
[0, 0, 0, 0, 0, 1, 0, 7, 0, 12, 0, 12, 0, 7, 0, 1, 0, 0, 0, 0, 0]
gap> MinimumDistance(H, c);
5 # distance to H

4.9.5 OuterDistribution

♦ OuterDistribution(C) (function)

The function OuterDistribution returns a list of length qn, where q is the size of the base field
of C and n is the word length. The elements of the list consist of pairs, the first coordinate being
an element of GF(q)n (this is a codeword type) and the second coordinate being a distribution of
distances to the code (a list of integers). This table is very large, and for n > 20 it will not fit in the
memory of most computers. The function DistancesDistribution (see DistancesDistribution
(4.9.4)) can be used to calculate one entry of the list.

Example
gap> C := RepetitionCode(3, GF(2));
a cyclic [3,1,3]1 repetition code over GF(2)
gap> OD := OuterDistribution(C);
[[[0 0 0], [1, 0, 0, 1]], [[1 1 1], [1, 0, 0, 1]],
[[0 0 1], [0, 1, 1, 0]], [[1 1 0], [0, 1, 1, 0]],
[[1 0 0], [0, 1, 1, 0]], [[0 1 1], [0, 1, 1, 0]],
[[0 1 0], [0, 1, 1, 0]], [[1 0 1], [0, 1, 1, 0]]]

gap> WeightDistribution(C) = OD[1][2];
true
gap> DistancesDistribution(C, Codeword("110")) = OD[4][2];
true

4.10 Decoding Functions

4.10.1 Decode

♦ Decode(C, r) (function)

Decode decodes r (a ’received word’) with respect to code C and returns the ‘message word’ (i.e.,
the information digits associated to the codeword c∈C closest to r). Here r can be a GUAVA codeword
or a list of codewords. First, possible errors in r are corrected, then the codeword is decoded to an
information codeword m (and not an element of C). If the code record has a field ‘specialDecoder’,
this special algorithm is used to decode the vector. Hamming codes, BCH codes, cyclic codes, and
generalized Reed-Solomon have such a special algorithm. (The algorithm used for BCH codes is the
Sugiyama algorithm described, for example, in section 5.4.3 of [HP03]. A special decoder has also
being written for the generalized Reed-Solomon code using the interpolation algorithm. For cyclic
codes, the error-trapping algorithm is used.) If C is linear and no special decoder field has been set

GUAVA 51

then syndrome decoding is used. Otherwise (when C is non-linear), the nearest neighbor decoding
algorithm is used (which is very slow).

A special decoder can be created by defining a function

C!.SpecialDecoder := function(C, r) ... end;

The function uses the arguments C (the code record itself) and r (a vector of the codeword type) to
decode r to an information vector. A normal decoder would take a codeword r of the same word
length and field as C, and would return an information vector of length k, the dimension of C. The user
is not restricted to these normal demands though, and can for instance define a decoder for non-linear
codes.

Encoding is done by multiplying the information vector with the code (see 4.2).
Example

gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := "1010"*C; # encoding
[1 0 1 1 0 1 0]
gap> Decode(C, c); # decoding
[1 0 1 0]
gap> Decode(C, Codeword("0010101"));
[1 1 0 1] # one error corrected
gap> C!.SpecialDecoder := function(C, c)
> return NullWord(Dimension(C));
> end;
function (C, c) ... end
gap> Decode(C, c);
[0 0 0 0] # new decoder always returns null word

4.10.2 Decodeword

♦ Decodeword(C, r) (function)

Decodeword decodes r (a ’received word’) with respect to code C and returns the codeword c ∈C
closest to r. Here r can be a GUAVA codeword or a list of codewords. If the code record has a field
‘specialDecoder’, this special algorithm is used to decode the vector. Hamming codes, generalized
Reed-Solomon codes, and BCH codes have such a special algorithm. (The algorithm used for BCH
codes is the Sugiyama algorithm described, for example, in section 5.4.3 of [HP03]. The algorithm
used for generalized Reed-Solomon codes is the “interpolation algorithm” described for example in
chapter 5 of [JH04].) If C is linear and no special decoder field has been set then syndrome decoding is
used. Otherwise, when C is non-linear, the nearest neighbor algorithm has been implemented (which
should only be used for small-sized codes).

Example
gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := "1010"*C; # encoding
[1 0 1 1 0 1 0]
gap> Decodeword(C, c); # decoding
[1 0 1 1 0 1 0]
gap>
gap> R:=PolynomialRing(GF(11),["t"]);

GUAVA 52

GF(11)[t]
gap> P:=List([1,3,4,5,7],i->Z(11)ˆi);
[Z(11), Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ5, Z(11)ˆ7]
gap> C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2 generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3
gap> c:=Random(C);
[0 9 6 2 1]
gap> v:=Codeword("09620");
[0 9 6 2 0]
gap> GeneralizedReedSolomonDecoderGao(C,v);
[0 9 6 2 1]
gap> Decodeword(C,v); # calls the special interpolation decoder
[0 9 6 2 1]
gap> G:=GeneratorMat(C);
[[Z(11)ˆ0, 0*Z(11), 0*Z(11), Z(11)ˆ8, Z(11)ˆ9],
[0*Z(11), Z(11)ˆ0, 0*Z(11), Z(11)ˆ0, Z(11)ˆ8],
[0*Z(11), 0*Z(11), Z(11)ˆ0, Z(11)ˆ3, Z(11)ˆ8]]

gap> C1:=GeneratorMatCode(G,GF(11));
a linear [5,3,1..3]2 code defined by generator matrix over GF(11)
gap> Decodeword(C,v); # calls syndrome decoding
[0 9 6 2 1]

4.10.3 GeneralizedReedSolomonDecoderGao

♦ GeneralizedReedSolomonDecoderGao(C, r) (function)

GeneralizedReedSolomonDecoderGao decodes r (a ’received word’) to a codeword c ∈C in a
generalized Reed-Solomon code C (see GeneralizedReedSolomonCode (5.6.2)), closest to r. Here
r must be a GUAVA codeword. If the code record does not have name ‘generalized Reed-Solomon
code’ then an error is returned. Otherwise, the Gao decoder [Gao03] is used to compute c.

For long codes, this method is faster in practice than the interpolation method used in
Decodeword.

Example
gap> R:=PolynomialRing(GF(11),["t"]);
GF(11)[t]
gap> P:=List([1,3,4,5,7],i->Z(11)ˆi);
[Z(11), Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ5, Z(11)ˆ7]
gap> C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2 generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3
gap> c:=Random(C);
[0 9 6 2 1]
gap> v:=Codeword("09620");
[0 9 6 2 0]
gap> GeneralizedReedSolomonDecoderGao(C,v);
[0 9 6 2 1]

GUAVA 53

4.10.4 GeneralizedReedSolomonListDecoder

♦ GeneralizedReedSolomonListDecoder(C, r, tau) (function)

GeneralizedReedSolomonListDecoder implements Sudans list-decoding algorithm (see sec-
tion 12.1 of [JH04]) for “low rate” Reed-Solomon codes. It returns the list of all codewords in C which
are a distance of at most tau from r (a ’received word’). C must be a generalized Reed-Solomon code
C (see GeneralizedReedSolomonCode (5.6.2)) and r must be a GUAVA codeword.

Example
gap> F:=GF(16);
GF(2ˆ4)
gap>
gap> a:=PrimitiveRoot(F);; b:=aˆ7;; bˆ4+bˆ3+1;
0*Z(2)
gap> Pts:=List([0..14],i->bˆi);
[Z(2)ˆ0, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ14, Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ13, Z(2ˆ2), Z(2ˆ4)ˆ12, Z(2ˆ4)ˆ4,
Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ3, Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ9, Z(2ˆ4), Z(2ˆ4)ˆ8]

gap> x:=X(F);;
gap> R1:=PolynomialRing(F,[x]);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing(F,[x,y]);;
gap> C:=GeneralizedReedSolomonCode(Pts,3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
gap> MinimumDistance(C); ## 6 error correcting
13
gap> z:=Zero(F);;
gap> r:=[z,z,z,z,z,z,z,z,bˆ6,bˆ2,bˆ5,bˆ14,b,bˆ7,bˆ11];;
gap> r:=Codeword(r);
[0 0 0 0 0 0 0 0 aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2]
gap> cs:=GeneralizedReedSolomonListDecoder(C,r,2); time;
[[0 aˆ9 aˆ3 aˆ13 aˆ6 aˆ10 aˆ11 a aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2],
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]

250
gap> c1:=cs[1]; c1 in C;
[0 aˆ9 aˆ3 aˆ13 aˆ6 aˆ10 aˆ11 a aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2]
true
gap> c2:=cs[2]; c2 in C;
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
true
gap> WeightCodeword(c1-r);
7
gap> WeightCodeword(c2-r);
7

4.10.5 BitFlipDecoder

♦ BitFlipDecoder(C, r) (function)

The iterative decoding method BitFlipDecoder must only be applied to LDPC codes. These
have not been implemented in GUAVA (but see FerreroDesignCode for a code with similar proper-

GUAVA 54

ties). A binary low density parity check (LDPC) code of length n and redundancy r is defined in terms
of its check matrix H:

• Each row of H has exactly x 1’s.

• Each column has exactly y 1’s.

• The number of 1’s in common between any two columns is less than or equal to one.

• x/n and y/r are ’small’.

For these codes, BitFlipDecoder decodes very quickly. (Warning: it can give wildly wrong results
for arbitrary binary linear codes.) The bit flipping algorithm is described for example in chapter 13 of
[JH04].

Example
gap> C:=HammingCode(4,GF(2));
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> c:=Random(C);
[0 0 0 1 0 0 1 0 0 1 1 0 1 0 1]
gap> v:=List(c);
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2),
Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0]

gap> v[1]:=Z(2)+v[1]; # flip 1st bit of c to create an error
Z(2)ˆ0
gap> v:=Codeword(v);
[1 0 0 1 0 0 1 0 0 1 1 0 1 0 1]
gap> BitFlipDecoder(C,v);
[0 0 0 1 0 0 1 0 0 1 1 0 1 0 1]

4.10.6 NearestNeighborGRSDecodewords

♦ NearestNeighborGRSDecodewords(C, v, dist) (function)

NearestNeighborGRSDecodewords finds all generalized Reed-Solomon codewords within dis-
tance dist from v and the associated polynomial, using “brute force”. Input: v is a received vector (a
GUAVA codeword), C is a GRS code, dist ¿ 0 is the distance from v to search in C. Output: a list of
pairs [c, f (x)], where wt(c− v)≤ dist−1 and c = (f (x1), ..., f (xn)).

Example
gap> F:=GF(16);
GF(2ˆ4)
gap> a:=PrimitiveRoot(F);; b:=aˆ7; bˆ4+bˆ3+1;
Z(2ˆ4)ˆ7
0*Z(2)
gap> Pts:=List([0..14],i->bˆi);
[Z(2)ˆ0, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ14, Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ13, Z(2ˆ2), Z(2ˆ4)ˆ12,
Z(2ˆ4)ˆ4, Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ3, Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ9, Z(2ˆ4),
Z(2ˆ4)ˆ8]

gap> x:=X(F);;
gap> R1:=PolynomialRing(F,[x]);;

GUAVA 55

gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing(F,[x,y]);;
gap> C:=GeneralizedReedSolomonCode(Pts,3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
gap> MinimumDistance(C); # 6 error correcting
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=[z,z,z,z,z,z,z,z,bˆ6,bˆ2,bˆ5,bˆ14,b,bˆ7,bˆ11];; # 7 errors
gap> r:=Codeword(r);
[0 0 0 0 0 0 0 0 aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2]
gap> cs:=NearestNeighborGRSDecodewords(C,r,7);
[[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0], 0*Z(2)],
[[0 aˆ9 aˆ3 aˆ13 aˆ6 aˆ10 aˆ11 a aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2], x_1+Z(2)ˆ0]]

4.10.7 NearestNeighborDecodewords

♦ NearestNeighborDecodewords(C, v, dist) (function)

NearestNeighborDecodewords finds all codewords in a linear code C within distance dist from
v, using “brute force”. Input: v is a received vector (a GUAVA codeword), C is a linear code, dist ¿ 0
is the distance from v to search in C. Output: a list of c ∈C, where wt(c− v)≤ dist−1.

Example
gap> F:=GF(16);
GF(2ˆ4)
gap> a:=PrimitiveRoot(F);; b:=aˆ7; bˆ4+bˆ3+1;
Z(2ˆ4)ˆ7
0*Z(2)
gap> Pts:=List([0..14],i->bˆi);
[Z(2)ˆ0, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ14, Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ13, Z(2ˆ2), Z(2ˆ4)ˆ12,
Z(2ˆ4)ˆ4, Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ3, Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ9, Z(2ˆ4),
Z(2ˆ4)ˆ8]

gap> x:=X(F);;
gap> R1:=PolynomialRing(F,[x]);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing(F,[x,y]);;
gap> C:=GeneralizedReedSolomonCode(Pts,3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
gap> MinimumDistance(C);
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=[z,z,z,z,z,z,z,z,bˆ6,bˆ2,bˆ5,bˆ14,b,bˆ7,bˆ11];;
gap> r:=Codeword(r);
[0 0 0 0 0 0 0 0 aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2]
gap> cs:=NearestNeighborDecodewords(C,r,7);
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],
[0 aˆ9 aˆ3 aˆ13 aˆ6 aˆ10 aˆ11 a aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2]]

GUAVA 56

4.10.8 Syndrome

♦ Syndrome(C, v) (function)

Syndrome returns the syndrome of word v with respect to a linear code C. v is a codeword in the
ambient vector space of C. If v is an element of C, the syndrome is a zero vector. The syndrome can
be used for looking up an error vector in the syndrome table (see SyndromeTable (4.10.9)) that is
needed to correct an error in v.

A syndrome is not defined for non-linear codes. Syndrome then returns an error.
Example

gap> C := HammingCode(4);
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> v := CodewordNr(C, 7);
[1 1 0 0 0 0 0 0 0 0 0 0 1 1 0]
gap> Syndrome(C, v);
[0 0 0 0]
gap> Syndrome(C, Codeword("000000001100111"));
[1 1 1 1]
gap> Syndrome(C, Codeword("000000000000001"));
[1 1 1 1] # the same syndrome: both codewords are in the same

coset of C

4.10.9 SyndromeTable

♦ SyndromeTable(C) (function)

SyndromeTable returns a syndrome table of a linear code C, consisting of two columns. The
first column consists of the error vectors that correspond to the syndrome vectors in the second col-
umn. These vectors both are of the codeword type. After calculating the syndrome of a word v with
Syndrome (see Syndrome (4.10.8)), the error vector needed to correct v can be found in the syndrome
table. Subtracting this vector from v yields an element of C. To make the search for the syndrome as
fast as possible, the syndrome table is sorted according to the syndrome vectors.

Example
gap> H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> SyndromeTable(H);
[[[0 0 0], [0 0]], [[1 0 0], [0 1]],
[[0 1 0], [1 0]], [[0 0 1], [1 1]]]

gap> c := Codeword("101");
[1 0 1]
gap> c in H;
false # c is not an element of H
gap> Syndrome(H,c);
[1 0] # according to the syndrome table,

the error vector [0 1 0] belongs to this syndrome
gap> c - Codeword("010") in H;
true # so the corrected codeword is

[1 0 1] - [0 1 0] = [1 1 1],
this is an element of H

GUAVA 57

4.10.10 StandardArray

♦ StandardArray(C) (function)

StandardArray returns the standard array of a code C. This is a matrix with elements of the
codeword type. It has qr rows and qk columns, where q is the size of the base field of C, r = n− k is
the redundancy of C, and k is the dimension of C. The first row contains all the elements of C. Each
other row contains words that do not belong to the code, with in the first column their syndrome vector
(see Syndrome (4.10.8)).

A non-linear code does not have a standard array. StandardArray then returns an error.
Note that calculating a standard array can be very time- and memory- consuming.

Example
gap> StandardArray(RepetitionCode(3));
[[[0 0 0], [1 1 1]], [[0 0 1], [1 1 0]],
[[0 1 0], [1 0 1]], [[1 0 0], [0 1 1]]]

4.10.11 PermutationDecode

♦ PermutationDecode(C, v) (function)

PermutationDecode performs permutation decoding when possible and returns original vector
and prints ’fail’ when not possible.

This uses AutomorphismGroup in the binary case, and (the slower)
PermutationAutomorphismGroup otherwise, to compute the permutation automorphism group P
of C. The algorithm runs through the elements p of P checking if the weight of H(p · v) is less than
(d − 1)/2. If it is then the vector p · v is used to decode v: assuming C is in standard form then
c = p−1Em is the decoded word, where m is the information digits part of p · v. If no such p exists
then “fail” is returned. See, for example, section 10.2 of Huffman and Pless [HP03] for more details.

Example
gap> C0:=HammingCode(3,GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> G0:=GeneratorMat(C0);;
gap> G := List(G0, ShallowCopy);;
gap> PutStandardForm(G);
()
gap> Display(G);
1 1 1
. 1 . . 1 . 1
. . 1 . 1 1 .
. . . 1 1 1 1
gap> H0:=CheckMat(C0);;
gap> Display(H0);
. . . 1 1 1 1
. 1 1 . . 1 1
1 . 1 . 1 . 1
gap> c0:=Random(C0);
[0 0 0 1 1 1 1]
gap> v01:=c0[1]+Z(2)ˆ2;;
gap> v1:=List(c0, ShallowCopy);;
gap> v1[1]:=v01;;

GUAVA 58

gap> v1:=Codeword(v1);
[1 0 0 1 1 1 1]
gap> c1:=PermutationDecode(C0,v1);
[0 0 0 1 1 1 1]
gap> c1=c0;
true

4.10.12 PermutationDecodeNC

♦ PermutationDecodeNC(C, v, P) (function)

Same as PermutationDecode except that one may enter the permutation automorphism group P
in as an argument, saving time. Here P is a subgroup of the symmetric group on n letters, where n is
the word length of C.

Chapter 5

Generating Codes

In this chapter we describe functions for generating codes.
Section 5.1 describes functions for generating unrestricted codes.
Section 5.2 describes functions for generating linear codes.
Section 5.3 describes functions for constructing certain covering codes, such as the Gabidulin

codes.
Section 5.4 describes functions for constructing the Golay codes.
Section 5.5 describes functions for generating cyclic codes.
Section 5.6 describes functions for generating codes as the image of an evaluation map applied

to a space of functions. For example, generalized Reed-Solomon codes and toric codes are described
there.

5.1 Generating Unrestricted Codes

In this section we start with functions that creating code from user defined matrices or special matrices
(see ElementsCode (5.1.1), HadamardCode (5.1.2), ConferenceCode (5.1.3) and MOLSCode (5.1.4)).
These codes are unrestricted codes; they may later be discovered to be linear or cyclic.

The next functions generate random codes (see RandomCode (5.1.5)) and the Nordstrom-Robinson
code (see NordstromRobinsonCode (5.1.6)), respectively.

Finally, we describe two functions for generating Greedy codes. These are codes that contructed
by gathering codewords from a space (see GreedyCode (5.1.7) and LexiCode (5.1.8)).

5.1.1 ElementsCode

♦ ElementsCode(L[, name,] F) (function)

ElementsCode creates an unrestricted code of the list of elements L, in the field F. L must be a
list of vectors, strings, polynomials or codewords. name can contain a short description of the code.

If L contains a codeword more than once, it is removed from the list and a GAP set is returned.
Example

gap> M := Z(3)ˆ0 * [[1, 0, 1, 1], [2, 2, 0, 0], [0, 1, 2, 2]];;
gap> C := ElementsCode(M, "example code", GF(3));
a (4,3,1..4)2 example code over GF(3)
gap> MinimumDistance(C);
4

59

GUAVA 60

gap> AsSSortedList(C);
[[0 1 2 2], [1 0 1 1], [2 2 0 0]]

5.1.2 HadamardCode

♦ HadamardCode(H[, t]) (function)

The four forms this command can take are HadamardCode(H,t), HadamardCode(H),
HadamardCode(n,t), and HadamardCode(n).

In the case when the arguments H and t are both given, HadamardCode returns a Hadamard code
of the tth kind from the Hadamard matrix H In case only H is given, t = 3 is used.

By definition, a Hadamard matrix is a square matrix H with H ·HT = −n · In, where n is the size
of H. The entries of H are either 1 or -1.

The matrix H is first transformed into a binary matrix An by replacing the 1’s by 0’s and the −1’s
by 1s).

The Hadamard matrix of the first kind (t = 1) is created by using the rows of An as elements, after
deleting the first column. This is a (n−1,n,n/2) code. We use this code for creating the Hadamard
code of the second kind (t = 2), by adding all the complements of the already existing codewords. This
results in a (n−1,2n,n/2−1) code. The third kind (t = 3) is created by using the rows of An (without
cutting a column) and their complements as elements. This way, we have an (n,2n,n/2)-code. The
returned code is generally an unrestricted code, but for n = 2r, the code is linear.

The command HadamardCode(n,t) returns a Hadamard code with parameter n of the tth kind.
For the command HadamardCode(n), t = 3 is used.

When called in these forms, HadamardCode first creates a Hadamard matrix (see HadamardMat
(7.3.4)), of size n and then follows the same procedure as described above. Therefore the same
restrictions with respect to n as for Hadamard matrices hold.

Example
gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
gap> HadamardCode(H4, 1);
a (3,4,2)1 Hadamard code of order 4 over GF(2)
gap> HadamardCode(H4, 2);
a (3,8,1)0 Hadamard code of order 4 over GF(2)
gap> HadamardCode(H4);
a (4,8,2)1 Hadamard code of order 4 over GF(2)
gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
gap> C := HadamardCode(4);
a (4,8,2)1 Hadamard code of order 4 over GF(2)
gap> C = HadamardCode(H4);
true

5.1.3 ConferenceCode

♦ ConferenceCode(H) (function)

ConferenceCode returns a code of length n−1 constructed from a symmetric ’conference matrix’
H. A conference matrix H is a symmetric matrix of order n, which satisfies H ·HT = ((n−1) · I, with

GUAVA 61

n ≡ 2 (mod 4). The rows of 1
2(H + I + J), 1

2(−H + I + J), plus the zero and all-ones vectors form
the elements of a binary non-linear (n−1,2n,(n−2)/2) code.

GUAVA constructs a symmetric conference matrix of order n + 1 (n ≡ 1 (mod 4)) and uses the
rows of that matrix, plus the zero and all-ones vectors, to construct a binary non-linear (n,2(n +
1),(n−1)/2)-code.

Example
gap> H6 := [[0,1,1,1,1,1],[1,0,1,-1,-1,1],[1,1,0,1,-1,-1],
> [1,-1,1,0,1,-1],[1,-1,-1,1,0,1],[1,1,-1,-1,1,0]];;
gap> C1 := ConferenceCode(H6);
a (5,12,2)1..4 conference code over GF(2)
gap> IsLinearCode(C1);
false
gap> C2 := ConferenceCode(5);
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList(C2);
[[0 0 0 0 0], [0 0 1 1 1], [0 1 0 1 1], [0 1 1 0 1], [0 1 1 1 0],
[1 0 0 1 1], [1 0 1 0 1], [1 0 1 1 0], [1 1 0 0 1], [1 1 0 1 0],
[1 1 1 0 0], [1 1 1 1 1]]

5.1.4 MOLSCode

♦ MOLSCode([n,] q) (function)

MOLSCode returns an (n,q2,n− 1) code over GF(q). The code is created from n− 2 ’Mutually
Orthogonal Latin Squares’ (MOLS) of size q× q. The default for n is 4. GUAVA can construct a
MOLS code for n−2≤ q. Here q must be a prime power, q > 2. If there are no n−2 MOLS, an error
is signalled.

Since each of the n−2 MOLS is a q×q matrix, we can create a code of size q2 by listing in each
code element the entries that are in the same position in each of the MOLS. We precede each of these
lists with the two coordinates that specify this position, making the word length become n.

The MOLS codes are MDS codes (see IsMDSCode (4.3.7)).
Example

gap> C1 := MOLSCode(6, 5);
a (6,25,5)3..4 code generated by 4 MOLS of order 5 over GF(5)
gap> mols := List([1 .. WordLength(C1) - 2], function(nr)
> local ls, el;
> ls := NullMat(Size(LeftActingDomain(C1)), Size(LeftActingDomain(C1)));
> for el in VectorCodeword(AsSSortedList(C1)) do
> ls[IntFFE(el[1])+1][IntFFE(el[2])+1] := el[nr + 2];
> od;
> return ls;
> end);;
gap> AreMOLS(mols);
true
gap> C2 := MOLSCode(11);
a (4,121,3)2 code generated by 2 MOLS of order 11 over GF(11)

GUAVA 62

5.1.5 RandomCode

♦ RandomCode(n, M, F) (function)

RandomCode returns a random unrestricted code of size M with word length n over F. M must be
less than or equal to the number of elements in the space GF(q)n.

The function RandomLinearCode returns a random linear code (see RandomLinearCode
(5.2.12)).

Example
gap> C1 := RandomCode(6, 10, GF(8));
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> MinimumDistance(C1);
3
gap> C2 := RandomCode(6, 10, GF(8));
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> C1 = C2;
false

5.1.6 NordstromRobinsonCode

♦ NordstromRobinsonCode() (function)

NordstromRobinsonCode returns a Nordstrom-Robinson code, the best code with word length
n = 16 and minimum distance d = 6 over GF(2). This is a non-linear (16,256,6) code.

Example
gap> C := NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> OptimalityCode(C);
0

5.1.7 GreedyCode

♦ GreedyCode(L, d, F) (function)

GreedyCode returns a Greedy code with design distance d over the finite field F. The code is
constructed using the greedy algorithm on the list of vectors L. (The greedy algorithm checks each
vector in L and adds it to the code if its distance to the current code is greater than or equal to d. It is
obvious that the resulting code has a minimum distance of at least d.

Greedy codes are often linear codes.
The function LexiCode creates a greedy code from a basis instead of an enumerated list (see

LexiCode (5.1.8)).
Example

gap> C1 := GreedyCode(Tuples(AsSSortedList(GF(2)), 5), 3, GF(2));
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C2 := GreedyCode(Permuted(Tuples(AsSSortedList(GF(2)), 5),
> (1,4)), 3, GF(2));
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C1 = C2;
false

GUAVA 63

5.1.8 LexiCode

♦ LexiCode(n, d, F) (function)

In this format, Lexicode returns a lexicode with word length n, design distance d over F. The
code is constructed using the greedy algorithm on the lexicographically ordered list of all vectors of
length n over F. Every time a vector is found that has a distance to the current code of at least d, it is
added to the code. This results, obviously, in a code with minimum distance greater than or equal to
d.

Another syntax which one can use is LexiCode(B, d, F). When called in this format,
LexiCode uses the basis B instead of the standard basis. B is a matrix of vectors over F. The code is
constructed using the greedy algorithm on the list of vectors spanned by B, ordered lexicographically
with respect to B.

Note that binary lexicodes are always linear.
Example

gap> C := LexiCode(4, 3, GF(5));
a (4,17,3..4)2..4 lexicode over GF(5)
gap> B := [[Z(2)ˆ0, 0*Z(2), 0*Z(2)], [Z(2)ˆ0, Z(2)ˆ0, 0*Z(2)]];;
gap> C := LexiCode(B, 2, GF(2));
a linear [3,1,2]1..2 lexicode over GF(2)

The function GreedyCode creates a greedy code that is not restricted to a lexicographical order (see
GreedyCode (5.1.7)).

5.2 Generating Linear Codes

In this section we describe functions for constructing linear codes. A linear code always has a gener-
ator or check matrix.

The first two functions generate linear codes from the generator matrix (GeneratorMatCode
(5.2.1)) or check matrix (CheckMatCode (5.2.3)). All linear codes can be constructed with these
functions.

The next functions we describe generate some well-known codes, like Hamming codes
(HammingCode (5.2.4)), Reed-Muller codes (ReedMullerCode (5.2.5)) and the extended Golay codes
(ExtendedBinaryGolayCode (5.4.2) and ExtendedTernaryGolayCode (5.4.4)).

A large and powerful family of codes are alternant codes. They are obtained by a small modi-
fication of the parity check matrix of a BCH code (see AlternantCode (5.2.6), GoppaCode (5.2.7),
GeneralizedSrivastavaCode (5.2.8) and SrivastavaCode (5.2.9)).

Finally, we describe a function for generating random linear codes (see RandomLinearCode
(5.2.12)).

5.2.1 GeneratorMatCode

♦ GeneratorMatCode(G[, name,] F) (function)

GeneratorMatCode returns a linear code with generator matrix G. G must be a matrix over finite
field F. name can contain a short description of the code. The generator matrix is the basis of the

GUAVA 64

elements of the code. The resulting code has word length n, dimension k if G is a k× n-matrix. If
GF(q) is the field of the code, the size of the code will be qk.

If the generator matrix does not have full row rank, the linearly dependent rows are removed.
This is done by the GAP function BaseMat and results in an equal code. The generator matrix can be
retrieved with the function GeneratorMat (see GeneratorMat (4.7.1)).

Example
gap> G := Z(3)ˆ0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := GeneratorMatCode(G, GF(3));
a linear [5,3,1..2]1..2 code defined by generator matrix over GF(3)
gap> C2 := GeneratorMatCode(IdentityMat(5, GF(2)), GF(2));
a linear [5,5,1]0 code defined by generator matrix over GF(2)
gap> GeneratorMatCode(List(AsSSortedList(NordstromRobinsonCode()),
> x -> VectorCodeword(x)), GF(2));
a linear [16,11,1..4]2 code defined by generator matrix over GF(2)
This is the smallest linear code that contains the N-R code

5.2.2 CheckMatCodeMutable

♦ CheckMatCodeMutable(H[, name,] F) (function)

CheckMatCodeMutable is the same as CheckMatCode except that the check matrix and generator
matrix are mutable.

5.2.3 CheckMatCode

♦ CheckMatCode(H[, name,] F) (function)

CheckMatCode returns a linear code with check matrix H. H must be a matrix over Galois field
F. [name. can contain a short description of the code. The parity check matrix is the transposed of
the nullmatrix of the generator matrix of the code. Therefore, c ·HT = 0 where c is an element of the
code. If H is a r×n-matrix, the code has word length n, redundancy r and dimension n− r.

If the check matrix does not have full row rank, the linearly dependent rows are removed. This is
done by the GAP function BaseMat. and results in an equal code. The check matrix can be retrieved
with the function CheckMat (see CheckMat (4.7.2)).

Example
gap> G := Z(3)ˆ0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := CheckMatCode(G, GF(3));
a linear [5,2,1..2]2..3 code defined by check matrix over GF(3)
gap> CheckMat(C1);
[[Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3), 0*Z(3)],
[0*Z(3), Z(3)ˆ0, Z(3), Z(3)ˆ0, Z(3)ˆ0],
[0*Z(3), 0*Z(3), Z(3)ˆ0, Z(3), Z(3)ˆ0]]

gap> C2 := CheckMatCode(IdentityMat(5, GF(2)), GF(2));
a cyclic [5,0,5]5 code defined by check matrix over GF(2)

GUAVA 65

5.2.4 HammingCode

♦ HammingCode(r, F) (function)

HammingCode returns a Hamming code with redundancy r over F. A Hamming code is a single-
error-correcting code. The parity check matrix of a Hamming code has all nonzero vectors of length r
in its columns, except for a multiplication factor. The decoding algorithm of the Hamming code (see
Decode (4.10.1)) makes use of this property.

If q is the size of its field F, the returned Hamming code is a linear [(qr−1)/(q−1),(qr−1)/(q−
1)− r,3] code.

Example
gap> C1 := HammingCode(4, GF(2));
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := HammingCode(3, GF(9));
a linear [91,88,3]1 Hamming (3,9) code over GF(9)

5.2.5 ReedMullerCode

♦ ReedMullerCode(r, k) (function)

ReedMullerCode returns a binary ’Reed-Muller code’ R(r, k) with dimension k and order r.
This is a code with length 2k and minimum distance 2k−r (see for example, section 1.10 in [HP03]).
By definition, the rth order binary Reed-Muller code of length n = 2m, for 0 ≤ r ≤ m, is the set of all
vectors f , where f is a Boolean function which is a polynomial of degree at most r.

Example
gap> ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

See GeneralizedReedMuller (??) for a more general construction.

5.2.6 AlternantCode

♦ AlternantCode(r, Y[, alpha,] F) (function)

AlternantCode returns an ’alternant code’, with parameters r, Y and alpha (optional). F denotes
the (finite) base field. Here, r is the design redundancy of the code. Y and alpha are both vectors
of length n from which the parity check matrix is constructed. The check matrix has the form H =
([a j

i yi]), where 0 ≤ j ≤ r− 1, 1 ≤ i ≤ n, and where [...] is as in VerticalConversionFieldMat
(7.3.9)). If no alpha is specified, the vector [1,a,a2, ..,an−1] is used, where a is a primitive element
of a Galois field F.

Example
gap> Y := [1, 1, 1, 1, 1, 1, 1];; a := PrimitiveUnityRoot(2, 7);;
gap> alpha := List([0..6], i -> aˆi);;
gap> C := AlternantCode(2, Y, alpha, GF(8));
a linear [7,3,3..4]3..4 alternant code over GF(8)

GUAVA 66

5.2.7 GoppaCode

♦ GoppaCode(G, L) (function)

GoppaCode returns a Goppa code C from Goppa polynomial g, having coefficients in a Galois Field
GF(q). L must be a list of elements in GF(q), that are not roots of g. The word length of the code
is equal to the length of L. The parity check matrix has the form H = ([a j

i /G(ai)])0≤ j≤deg(g)−1, ai∈L,
where ai ∈ L and [...] is as in VerticalConversionFieldMat (7.3.9), so H has entries in GF(q),
q = pm. It is known that d(C)≥ deg(g)+1, with a better bound in the binary case provided g has no
multiple roots. See Huffman and Pless [HP03] section 13.2.2, and MacWilliams and Sloane [MS83]
section 12.3, for more details.

One can also call GoppaCode using the syntax GoppaCode(g,n). When called with parameter n,
GUAVA constructs a list L of length n, such that no element of L is a root of g.

This is a special case of an alternant code.
Example

gap> x:=Indeterminate(GF(8),"x");
x
gap> L:=Elements(GF(8));
[0*Z(2), Z(2)ˆ0, Z(2ˆ3), Z(2ˆ3)ˆ2, Z(2ˆ3)ˆ3, Z(2ˆ3)ˆ4, Z(2ˆ3)ˆ5, Z(2ˆ3)ˆ6]
gap> g:=xˆ2+x+1;
xˆ2+x+Z(2)ˆ0
gap> C:=GoppaCode(g,L);
a linear [8,2,5]3 Goppa code over GF(2)
gap> xx := Indeterminate(GF(2), "xx");;
gap> gg := xxˆ2 + xx + 1;; L := AsSSortedList(GF(8));;
gap> C1 := GoppaCode(gg, L);
a linear [8,2,5]3 Goppa code over GF(2)
gap> y := Indeterminate(GF(2), "y");;
gap> h := yˆ2 + y + 1;;
gap> C2 := GoppaCode(h, 8);
a linear [8,2,5]3 Goppa code over GF(2)
gap> C1=C2;
true
gap> C=C1;
true

5.2.8 GeneralizedSrivastavaCode

♦ GeneralizedSrivastavaCode(a, w, z[, t,] F) (function)

GeneralizedSrivastavaCode returns a generalized Srivastava code with parameters a, w, z,
t. a = {a1, ...,an} and w = {w1, ...,ws} are lists of n + s distinct elements of F = GF(qm), z is a
list of length n of nonzero elements of GF(qm). The parameter t determines the designed distance:
d ≥ st +1. The check matrix of this code is the form

H = ([
zi

(ai−w j)k]),

1 ≤ k ≤ t, where [...] is as in VerticalConversionFieldMat (7.3.9). We use this definition of H to
define the code. The default for t is 1. The original Srivastava codes (see SrivastavaCode (5.2.9))
are a special case t = 1, zi = aµ

i , for some µ.

GUAVA 67

Example
gap> a := Filtered(AsSSortedList(GF(2ˆ6)), e -> e in GF(2ˆ3));;
gap> w := [Z(2ˆ6)];; z := List([1..8], e -> 1);;
gap> C := GeneralizedSrivastavaCode(a, w, z, 1, GF(64));
a linear [8,2,2..5]3..4 generalized Srivastava code over GF(2)

5.2.9 SrivastavaCode

♦ SrivastavaCode(a, w[, mu,] F) (function)

SrivastavaCode returns a Srivastava code with parameters a, w (and optionally mu). a =
{a1, ...,an} and w = {w1, ...,ws} are lists of n + s distinct elements of F = GF(qm). The default
for mu is 1. The Srivastava code is a generalized Srivastava code, in which zi = amu

i for some mu and
t = 1.

J. N. Srivastava introduced this code in 1967, though his work was not published. See Helgert
[Hel72] for more details on the properties of this code. Related reference: G. Roelofsen, ON GOPPA

AND GENERALIZED SRIVASTAVA CODES PhD thesis, Dept. Math. and Comp. Sci., Eindhoven Univ.
of Technology, the Netherlands, 1982.

Example
gap> a := AsSSortedList(GF(11)){[2..8]};;
gap> w := AsSSortedList(GF(11)){[9..10]};;
gap> C := SrivastavaCode(a, w, 2, GF(11));
a linear [7,5,3]2 Srivastava code over GF(11)
gap> IsMDSCode(C);
true # Always true if F is a prime field

5.2.10 CordaroWagnerCode

♦ CordaroWagnerCode(n) (function)

CordaroWagnerCode returns a binary Cordaro-Wagner code. This is a code of length n and
dimension 2 having the best possible minimum distance d. This code is just a little bit less trivial than
RepetitionCode (see RepetitionCode (5.5.12)).

Example
gap> C := CordaroWagnerCode(11);
a linear [11,2,7]5 Cordaro-Wagner code over GF(2)
gap> AsSSortedList(C);
[[0 0 0 0 0 0 0 0 0 0 0], [0 0 0 0 1 1 1 1 1 1 1],
[1 1 1 1 0 0 0 1 1 1 1], [1 1 1 1 1 1 1 0 0 0 0]]

5.2.11 FerreroDesignCode

♦ FerreroDesignCode(P, m) (function)

Requires the GAP package SONATA
A group K together with a group of automorphism H of K such that the semidirect product KH is

a Frobenius group with complement H is called a Ferrero pair (K,H) in SONATA. Take a Frobenius

GUAVA 68

(G,+) group with kernel K and complement H. Consider the design D with point set K and block set
{aH +b | a,b ∈ K,a 6= 0}. Here aH denotes the orbit of a under conjugation by elements of H. Every
planar near-ring design of type ”*” can be obtained in this way from groups. These designs (from a
Frobenius kernel of order v and a Frobenius complement of order k) have v(v− 1)/k distinct blocks
and they are all of size k. Moreover each of the v points occurs in exactly v−1 distinct blocks. Hence
the rows and the columns of the incidence matrix M of the design are always of constant weight.

FerreroDesignCode constructs binary linear code arising from the incdence matrix of a design
associated to a ”Ferrero pair” arising from a fixed-point-free (fpf) automorphism groups and Frobenius
group.

INPUT: P is a list of prime powers describing an abelian group G. m > 0 is an integer such that G
admits a cyclic fpf automorphism group of size m. This means that for all q = pk ∈ P, OrderMod(p,
m) must divide q (see the SONATA documentation for FpfAutomorphismGroupsCyclic).

OUTPUT: The binary linear code whose generator matrix is the incidence matrix of a design as-
sociated to a ”Ferrero pair” arising from the fixed-point-free (fpf) automorphism group of G. The pair
(H,K) is called a Ferraro pair and the semidirect product KH is a Frobenius group with complement
H.

AUTHORS: Peter Mayr and David Joyner
Example

gap> G:=AbelianGroup([5,5]);
[pc group of size 25 with 2 generators]
gap> FpfAutomorphismGroupsMaxSize(G);
[24, 2]
gap> L:=FpfAutomorphismGroupsCyclic([5,5], 3);
[[[f1, f2] -> [f1*f2ˆ2, f1*f2ˆ3]],
[pc group of size 25 with 2 generators]]

gap> D := DesignFromFerreroPair(L[2], Group(L[1][1]), "*");
[a 2 - (25, 3, 2) nearring generated design]
gap> M:=IncidenceMat(D);; Length(M); Length(TransposedMat(M));
25
200
gap> C1:=GeneratorMatCode(M*Z(2),GF(2));
a linear [200,25,1..24]62..100 code defined by generator matrix over GF(2)
gap> MinimumDistance(C1);
24
gap> C2:=FerreroDesignCode([5,5],3);
a linear [200,25,1..24]62..100 code defined by generator matrix over GF(2)
gap> C1=C2;
true

5.2.12 RandomLinearCode

♦ RandomLinearCode(n, k, F) (function)

RandomLinearCode returns a random linear code with word length n, dimension k over field F.
The method used is to first construct a k×n matrix of the block form (I,A), where I is a k×k identity
matrix and A is a k× (n− k) matrix constructed using Random(F) repeatedly. Then the columns are
permuted using a randomly selected element of SymmetricGroup(n).

To create a random unrestricted code, use RandomCode (see RandomCode (5.1.5)).

GUAVA 69

Example
gap> C := RandomLinearCode(15, 4, GF(3));
a [15,4,?] randomly generated code over GF(3)
gap> Display(C);
a linear [15,4,1..6]6..10 random linear code over GF(3)

The method GUAVA chooses to output the result of a RandomLinearCode command is different than
other codes. For example, the bounds on the minimum distance is not displayed. Howeer, you can
use the Display command to print this information. This new display method was added in version
1.9 to speed up the command (if n is about 80 and k about 40, for example, the time it took to look up
and/or calculate the bounds on the minimum distance was too long).

5.2.13 OptimalityCode

♦ OptimalityCode(C) (function)

OptimalityCode returns the difference between the smallest known upper bound and the actual
size of the code. Note that the value of the function UpperBound is not always equal to the actual
upper bound A(n,d) thus the result may not be equal to 0 even if the code is optimal!

OptimalityLinearCode is similar but applies only to linear codes.

5.2.14 BestKnownLinearCode

♦ BestKnownLinearCode(n, k, F) (function)

BestKnownLinearCode returns the best known (as of 11 May 2006) linear code of length n,
dimension k over field F. The function uses the tables described in section BoundsMinimumDistance
(7.1.13) to construct this code.

This command can also be called using the syntax BestKnownLinearCode(rec), where rec
must be a record containing the fields ‘lowerBound’, ‘upperBound’ and ‘construction’. It uses the
information in this field to construct a code. This form is meant to be used together with the func-
tion BoundsMinimumDistance (see BoundsMinimumDistance (7.1.13)), if the bounds are already
calculated.

Example
gap> C1 := BestKnownLinearCode(23, 12, GF(2));
a linear [23,12,7]3 punctured code
gap> C1 = BinaryGolayCode();
false # it’s constructed differently
gap> C1 := BestKnownLinearCode(23, 12, GF(2));
a linear [23,12,7]3 punctured code
gap> G1 := MutableCopyMat(GeneratorMat(C1));;
gap> PutStandardForm(G1);
()
gap> Display(G1);
1 1 . 1 . 1 1 1 . . . 1
. 1 1 1 1 1 1 . . 1 . . .
. . 1 1 1 . 1 . . 1 . 1 . 1
. . . 1 1 1 . . . 1 1 1 . 1 .
. . . . 1 1 1 . . 1 1 . 1 1 . 1

GUAVA 70

. 1 1 1 . . 1 1 . 1 1 1

. 1 1 1 . . 1 1 . 1 1

. 1 1 . 1 1 . 1 1 1 1 . .

. 1 1 . 1 1 . 1 1 1 1 .

. 1 1 . 1 1 . 1 1 1 .

. 1 . 1 . 1 1 1 . . . 1 1 1

. 1 . 1 . 1 1 1 . . . 1 1
gap> C2 := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> G2 := MutableCopyMat(GeneratorMat(C2));;
gap> PutStandardForm(G2);
()
gap> Display(G2);
1 1 . 1 . 1 1 1 . . . 1
. 1 1 1 1 1 1 . . 1 . . 1
. . 1 1 1 . 1 . . 1 . 1 . 1
. . . 1 1 1 . . . 1 1 1 . 1 1
. . . . 1 1 1 . . 1 1 . 1 1 . .
. 1 1 1 . . 1 1 . 1 1 .
. 1 1 1 . . 1 1 . 1 1
. 1 1 . 1 1 . 1 1 1 1 . .
. 1 1 . 1 1 . 1 1 1 1 .
. 1 1 . 1 1 . 1 1 1 1
. 1 . 1 . 1 1 1 . . . 1 1 .
. 1 . 1 . 1 1 1 . . . 1 1
Despite their generator matrices are different, they are equivalent codes, see below.
gap> IsEquivalent(C1,C2);
true
gap> CodeIsomorphism(C1,C2);
(4,14,6,12,5)(7,17,18,11,19)(8,22,13,21,16)(10,23,15,20)
gap> Display(BestKnownLinearCode(81, 77, GF(4)));
a linear [81,77,3]2..3 shortened code of
a linear [85,81,3]1 Hamming (4,4) code over GF(4)
gap> C:=BestKnownLinearCode(174,72);
a linear [174,72,31..36]26..87 code defined by generator matrix over GF(2)
gap> bounds := BoundsMinimumDistance(81, 77, GF(4));
rec(n := 81, k := 77, q := 4,
references := rec(Ham := ["%T this reference is unknown, for more info",

"%T contact A.E. Brouwer (aeb@cwi.nl)"],
cap := ["%T this reference is unknown, for more info",

"%T contact A.E. Brouwer (aeb@cwi.nl)"]),
construction := [(Operation "ShortenedCode"),

[[(Operation "HammingCode"), [4, 4]], [1, 2, 3, 4]]],
lowerBound := 3,
lowerBoundExplanation := ["Lb(81,77)=3, by shortening of:",

"Lb(85,81)=3, reference: Ham"], upperBound := 3,
upperBoundExplanation := ["Ub(81,77)=3, by considering shortening to:",

"Ub(18,14)=3, reference: cap"])
gap> C := BestKnownLinearCode(bounds);
a linear [81,77,3]2..3 shortened code
gap> C = BestKnownLinearCode(81, 77, GF(4));
true

GUAVA 71

5.3 Gabidulin Codes

These five binary, linear codes are derived from an article by Gabidulin, Davydov and Tombak
[GDT91]. All these codes are defined by check matrices. Exact definitions can be found in the
article. The Gabidulin code, the enlarged Gabidulin code, the Davydov code, the Tombak code, and
the enlarged Tombak code, correspond with theorem 1, 2, 3, 4, and 5, respectively in the article.

Like the Hamming codes, these codes have fixed minimum distance and covering radius, but can
be arbitrarily long.

5.3.1 GabidulinCode

♦ GabidulinCode(m, w1, w2) (function)

GabidulinCode yields a code of length 5 . 2m−2 − 1, redundancy 2m− 1, minimum distance 3
and covering radius 2. w1 and w2 should be elements of GF(2m−2).

5.3.2 EnlargedGabidulinCode

♦ EnlargedGabidulinCode(m, w1, w2, e) (function)

EnlargedGabidulinCode yields a code of length 7. 2m−2−2, redundancy 2m, minimum distance
3 and covering radius 2. w1 and w2 are elements of GF(2m−2). e is an element of GF(2m).

5.3.3 DavydovCode

♦ DavydovCode(r, v, ei, ej) (function)

DavydovCode yields a code of length 2v +2r−v−3, redundancy r, minimum distance 4 and cov-
ering radius 2. v is an integer between 2 and r−2. ei and ej are elements of GF(2v) and GF(2r−v),
respectively.

5.3.4 TombakCode

♦ TombakCode(m, e, beta, gamma, w1, w2) (function)

TombakCode yields a code of length 15 ·2m−3−3, redundancy 2m, minimum distance 4 and cov-
ering radius 2. e is an element of GF(2m). beta and gamma are elements of GF(2m−1). w1 and w2 are
elements of GF(2m−3).

5.3.5 EnlargedTombakCode

♦ EnlargedTombakCode(m, e, beta, gamma, w1, w2, u) (function)

EnlargedTombakCode yields a code of length 23 · 2m−4 − 3, redundancy 2m− 1, minimum dis-
tance 4 and covering radius 2. The parameters m, e, beta, gamma, w1 and w2 are defined as in
TombakCode. u is an element of GF(2m−1).

GUAVA 72

Example
gap> GabidulinCode(4, Z(4)ˆ0, Z(4)ˆ1);
a linear [19,12,3]2 Gabidulin code (m=4) over GF(2)
gap> EnlargedGabidulinCode(4, Z(4)ˆ0, Z(4)ˆ1, Z(16)ˆ11);
a linear [26,18,3]2 enlarged Gabidulin code (m=4) over GF(2)
gap> DavydovCode(6, 3, Z(8)ˆ1, Z(8)ˆ5);
a linear [13,7,4]2 Davydov code (r=6, v=3) over GF(2)
gap> TombakCode(5, Z(32)ˆ6, Z(16)ˆ14, Z(16)ˆ10, Z(4)ˆ0, Z(4)ˆ1);
a linear [57,47,4]2 Tombak code (m=5) over GF(2)
gap> EnlargedTombakCode(6, Z(32)ˆ6, Z(16)ˆ14, Z(16)ˆ10,
> Z(4)ˆ0, Z(4)ˆ0, Z(32)ˆ23);
a linear [89,78,4]2 enlarged Tombak code (m=6) over GF(2)

5.4 Golay Codes

“ The Golay code is probably the most important of all codes for both practical and theoretical reasons.
” ([MS83], pg. 64). Though born in Switzerland, M. J. E. Golay (1902-1989) worked for the US
Army Labs for most of his career. For more information on his life, see his obit in the June 1990 IEEE
Information Society Newsletter.

5.4.1 BinaryGolayCode

♦ BinaryGolayCode() (function)

BinaryGolayCode returns a binary Golay code. This is a perfect [23,12,7] code. It is also cyclic,
and has generator polynomial g(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11. Extending it results in an
extended Golay code (see ExtendedBinaryGolayCode (5.4.2)). There’s also the ternary Golay code
(see TernaryGolayCode (5.4.3)).

Example
gap> C:=BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> ExtendedBinaryGolayCode() = ExtendedCode(BinaryGolayCode());
true
gap> IsPerfectCode(C);
true
gap> IsCyclicCode(C);
true

5.4.2 ExtendedBinaryGolayCode

♦ ExtendedBinaryGolayCode() (function)

ExtendedBinaryGolayCode returns an extended binary Golay code. This is a [24,12,8] code.
Puncturing in the last position results in a perfect binary Golay code (see BinaryGolayCode (5.4.1)).
The code is self-dual.

Example
gap> C := ExtendedBinaryGolayCode();
a linear [24,12,8]4 extended binary Golay code over GF(2)
gap> IsSelfDualCode(C);

GUAVA 73

true
gap> P := PuncturedCode(C);
a linear [23,12,7]3 punctured code
gap> P = BinaryGolayCode();
true
gap> IsCyclicCode(C);
false

5.4.3 TernaryGolayCode

♦ TernaryGolayCode() (function)

TernaryGolayCode returns a ternary Golay code. This is a perfect [11,6,5] code. It is also
cyclic, and has generator polynomial g(x) = 2+x2 +2x3 +x4 +x5. Extending it results in an extended
Golay code (see ExtendedTernaryGolayCode (5.4.4)). There’s also the binary Golay code (see
BinaryGolayCode (5.4.1)).

Example
gap> C:=TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> ExtendedTernaryGolayCode() = ExtendedCode(TernaryGolayCode());
true
gap> IsCyclicCode(C);
true

5.4.4 ExtendedTernaryGolayCode

♦ ExtendedTernaryGolayCode() (function)

ExtendedTernaryGolayCode returns an extended ternary Golay code. This is a [12,6,6] code.
Puncturing this code results in a perfect ternary Golay code (see TernaryGolayCode (5.4.3)). The
code is self-dual.

Example
gap> C := ExtendedTernaryGolayCode();
a linear [12,6,6]3 extended ternary Golay code over GF(3)
gap> IsSelfDualCode(C);
true
gap> P := PuncturedCode(C);
a linear [11,6,5]2 punctured code
gap> P = TernaryGolayCode();
true
gap> IsCyclicCode(C);
false

5.5 Generating Cyclic Codes

The elements of a cyclic code C are all multiples of a (’generator’) polynomial g(x), where calculations
are carried out modulo xn − 1. Therefore, as polynomials in x, the elements always have degree less

GUAVA 74

than n. A cyclic code is an ideal in the ring F [x]/(xn−1) of polynomials modulo xn−1. The unique
monic polynomial of least degree that generates C is called the generator polynomial of C. It is a
divisor of the polynomial xn−1.

The check polynomial is the polynomial h(x) with g(x)h(x) = xn−1. Therefore it is also a divisor
of xn−1. The check polynomial has the property that

c(x)h(x)≡ 0 (mod xn−1),

for every codeword c(x) ∈C.
The first two functions described below generate cyclic codes from a given generator or check

polynomial. All cyclic codes can be constructed using these functions.
Two of the Golay codes already described are cyclic (see BinaryGolayCode (5.4.1) and

TernaryGolayCode (5.4.3)). For example, the GUAVA record for a binary Golay code contains the
generator polynomial:

Example
gap> C := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> NamesOfComponents(C);
["LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",
"GeneratorMat", "GeneratorPol", "Dimension", "Redundancy", "Size", "name",
"lowerBoundMinimumDistance", "upperBoundMinimumDistance", "WeightDistribution",
"boundsCoveringRadius", "MinimumWeightOfGenerators",
"UpperBoundOptimalMinimumDistance"]

gap> C!.GeneratorPol;
x_1ˆ11+x_1ˆ10+x_1ˆ6+x_1ˆ5+x_1ˆ4+x_1ˆ2+Z(2)ˆ0

Then functions that generate cyclic codes from a prescribed set of roots of the generator polynomial
are described, including the BCH codes (see RootsCode (5.5.3), BCHCode (5.5.4), ReedSolomonCode
(5.5.5) and QRCode (5.5.6)).

Finally we describe the trivial codes (see WholeSpaceCode (5.5.10), NullCode (5.5.11),
RepetitionCode (5.5.12)), and the command CyclicCodes which lists all cyclic codes
(CyclicCodes (5.5.13)).

5.5.1 GeneratorPolCode

♦ GeneratorPolCode(g, n[, name,] F) (function)

GeneratorPolCode creates a cyclic code with a generator polynomial g, word length n, over F.
name can contain a short description of the code.

If g is not a divisor of xn−1, it cannot be a generator polynomial. In that case, a code is created
with generator polynomial gcd(g,xn−1), i.e. the greatest common divisor of g and xn−1. This is a
valid generator polynomial that generates the ideal (g). See Generating Cyclic Codes (5.5).

Example
gap> x:= Indeterminate(GF(2));; P:= xˆ2+1;
Z(2)ˆ0+xˆ2
gap> C1 := GeneratorPolCode(P, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol(C1);
Z(2)ˆ0+x
gap> C2 := GeneratorPolCode(x+1, 7, GF(2));

GUAVA 75

a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol(C2);
Z(2)ˆ0+x

5.5.2 CheckPolCode

♦ CheckPolCode(h, n[, name,] F) (function)

CheckPolCode creates a cyclic code with a check polynomial h, word length n, over F. name can
contain a short description of the code (as a string).

If h is not a divisor of xn−1, it cannot be a check polynomial. In that case, a code is created with
check polynomial gcd(h,xn − 1), i.e. the greatest common divisor of h and xn − 1. This is a valid
check polynomial that yields the same elements as the ideal (h). See 5.5.

Example
gap> x:= Indeterminate(GF(3));; P:= xˆ2+2;
-Z(3)ˆ0+x_1ˆ2
gap> H := CheckPolCode(P, 7, GF(3));
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> CheckPol(H);
-Z(3)ˆ0+x_1
gap> Gcd(P, X(GF(3))ˆ7-1);
-Z(3)ˆ0+x_1

5.5.3 RootsCode

♦ RootsCode(n, list) (function)

This is the generalization of the BCH, Reed-Solomon and quadratic residue codes (see BCHCode
(5.5.4), ReedSolomonCode (5.5.5) and QRCode (5.5.6)). The user can give a length of the code n and
a prescribed set of zeros. The argument list must be a valid list of primitive nth roots of unity in a
splitting field GF(qm). The resulting code will be over the field GF(q). The function will return the
largest possible cyclic code for which the list list is a subset of the roots of the code. From this list,
GUAVA calculates the entire set of roots.

This command can also be called with the syntax RootsCode(n, list, q). In this second
form, the second argument is a list of integers, ranging from 0 to n− 1. The resulting code will be
over a field GF(q). GUAVA calculates a primitive nth root of unity, α, in the extension field of GF(q).
It uses the set of the powers of α in the list as a prescribed set of zeros.

Example
gap> a := PrimitiveUnityRoot(3, 14);
Z(3ˆ6)ˆ52
gap> C1 := RootsCode(14, [aˆ0, a, aˆ3]);
a cyclic [14,7,3..6]3..7 code defined by roots over GF(3)
gap> MinimumDistance(C1);
4
gap> b := PrimitiveUnityRoot(2, 15);
Z(2ˆ4)
gap> C2 := RootsCode(15, [b, bˆ2, bˆ3, bˆ4]);
a cyclic [15,7,5]3..5 code defined by roots over GF(2)
gap> C2 = BCHCode(15, 5, GF(2));

GUAVA 76

true
C3 := RootsCode(4, [1, 2], 5);
RootsOfCode(C3);
C3 = ReedSolomonCode(4, 3);

5.5.4 BCHCode

♦ BCHCode(n[, b,] delta, F) (function)

The function BCHCode returns a ’Bose-Chaudhuri-Hockenghem code’ (or BCH code for short).
This is the largest possible cyclic code of length n over field F, whose generator polynomial has zeros

ab,ab+1, ...,ab+delta−2,

where a is a primitive nth root of unity in the splitting field GF(qm), b is an integer 0≤ b≤ n−delta+
1 and m is the multiplicative order of q modulo n. (The integers {b, ...,b+delta−2} typically lie in
the range {1, ...,n−1}.) Default value for b is 1, though the algorithm allows b = 0. The length n of
the code and the size q of the field must be relatively prime. The generator polynomial is equal to the
least common multiple of the minimal polynomials of

ab,ab+1, ...,ab+delta−2.

The set of zeroes of the generator polynomial is equal to the union of the sets

{ax | x ∈Ck},

where Ck is the kth cyclotomic coset of q modulo n and b≤ k≤ b+delta−2 (see CyclotomicCosets
(7.5.12)).

Special cases are b = 1 (resulting codes are called ’narrow-sense’ BCH codes), and n = qm − 1
(known as ’primitive’ BCH codes). GUAVA calculates the largest value of d for which the BCH code
with designed distance d coincides with the BCH code with designed distance delta. This distance
d is called the Bose distance of the code. The true minimum distance of the code is greater than or
equal to the Bose distance.

Printed are the designed distance (to be precise, the Bose distance) d, and the starting power b.
The Sugiyama decoding algorithm has been implemented for this code (see Decode (4.10.1)).

Example
gap> C1 := BCHCode(15, 3, 5, GF(2));
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> DesignedDistance(C1);
7
gap> C2 := BCHCode(23, 2, GF(2));
a cyclic [23,12,5..7]3 BCH code, delta=5, b=1 over GF(2)
gap> DesignedDistance(C2);
5
gap> MinimumDistance(C2);
7

See RootsCode (5.5.3) for a more general construction.

GUAVA 77

5.5.5 ReedSolomonCode

♦ ReedSolomonCode(n, d) (function)

ReedSolomonCode returns a ’Reed-Solomon code’ of length n, designed distance d. This code
is a primitive narrow-sense BCH code over the field GF(q), where q = n + 1. The dimension of an
RS code is n− d + 1. According to the Singleton bound (see UpperBoundSingleton (7.1.1)) the
dimension cannot be greater than this, so the true minimum distance of an RS code is equal to d and
the code is maximum distance separable (see IsMDSCode (4.3.7)).

Example
gap> C1 := ReedSolomonCode(3, 2);
a cyclic [3,2,2]1 Reed-Solomon code over GF(4)
gap> IsCyclicCode(C1);
true
gap> C2 := ReedSolomonCode(4, 3);
a cyclic [4,2,3]2 Reed-Solomon code over GF(5)
gap> RootsOfCode(C2);
[Z(5), Z(5)ˆ2]
gap> IsMDSCode(C2);
true

See GeneralizedReedSolomonCode (5.6.2) for a more general construction.

5.5.6 QRCode

♦ QRCode(n, F) (function)

QRCode returns a quadratic residue code. If F is a field GF(q), then q must be a quadratic residue
modulo n. That is, an x exists with x2 ≡ q (mod n). Both n and q must be primes. Its generator
polynomial is the product of the polynomials x− ai. a is a primitive nth root of unity, and i is an
integer in the set of quadratic residues modulo n.

Example
gap> C1 := QRCode(7, GF(2));
a cyclic [7,4,3]1 quadratic residue code over GF(2)
gap> IsEquivalent(C1, HammingCode(3, GF(2)));
true
gap> IsCyclicCode(C1);
true
gap> IsCyclicCode(HammingCode(3, GF(2)));
false
gap> C2 := QRCode(11, GF(3));
a cyclic [11,6,4..5]2 quadratic residue code over GF(3)
gap> C2 = TernaryGolayCode();
true
gap> Q1 := QRCode(7, GF(2));
a cyclic [7,4,3]1 quadratic residue code over GF(2)
gap> P1:=AutomorphismGroup(Q1); IdGroup(P1);
Group([(1,2)(5,7), (2,3)(4,7), (2,4)(5,6), (3,5)(6,7), (3,7)(5,6)])
[168, 42]

GUAVA 78

5.5.7 QQRCodeNC

♦ QQRCodeNC(p) (function)

QQRCodeNC is the same as QQRCode, except that it uses GeneratorMatCodeNC instead of
GeneratorMatCode.

5.5.8 QQRCode

♦ QQRCode(p) (function)

QQRCode returns a quasi-quadratic residue code, as defined by Proposition 2.2 in Bazzi-Mittel
[BMIT]. The parameter p must be a prime. Its generator matrix has the block form G = (Q,N). Here
Q is a p× circulant matrix whose top row is (0,x1, ...,xp−1), where xi = 1 if and only if i is a quadratic
residue mod p, and N is a p× circulant matrix whose top row is (0,y1, ...,yp−1), where xi + yi = 1 for
all i. (In fact, this matrix can be recovered as the component DoublyCirculant of the code.)

Example
gap> C1 := QQRCode(7);
a linear [14,7,1..4]3..5 code defined by generator matrix over GF(2)
gap> G1:=GeneratorMat(C1);;
gap> Display(G1);
. 1 1 . 1 1 . 1 1
1 . 1 1 1 1 1 1 . 1
. . . 1 1 . 1 . 1 1 . . . 1
. . 1 . 1 1 1 1 . 1 . . 1 1
. 1 . . 1 1 1 .
. 1 1 1 . 1
. 1 . . 1 1 1
gap> Display(C1!.DoublyCirculant);
. 1 1 . 1 1 . 1 1
1 1 . 1 1 . 1 1 .
1 . 1 . . . 1 . 1 . 1 1 . .
. 1 . . . 1 1 1 . 1 1 . . .
1 . . . 1 1 . . 1 1 . . . 1
. . . 1 1 . 1 1 1 . . . 1 .
. . 1 1 . 1 . 1 . . . 1 . 1
gap> MinimumDistance(C1);
4
gap> C2 := QQRCode(29); MinimumDistance(C2);
a linear [58,28,1..14]8..29 code defined by generator matrix over GF(2)
12
gap> Aut2:=AutomorphismGroup(C2); IdGroup(Aut2);
[permutation group of size 812 with 4 generators]
[812, 7]

5.5.9 FireCode

♦ FireCode(g, b) (function)

GUAVA 79

FireCode constructs a (binary) Fire code. g is a primitive polynomial of degree m, and a factor
of xr −1. b an integer 0 ≤ b ≤ m not divisible by r, that determines the burst length of a single error
burst that can be corrected. The argument g can be a polynomial with base ring GF(2), or a list
of coefficients in GF(2). The generator polynomial of the code is defined as the product of g and
x2b−1 +1.

Here is the general definition of ’Fire code’, named after P. Fire, who introduced these codes
in 1959 in order to correct burst errors. First, a definition. If F = GF(q) and f ∈ F [x] then we
say f has order e if f (x)|(xe − 1). A Fire code is a cyclic code over F with generator polynomial
g(x) = (x2t−1−1)p(x), where p(x) does not divide x2t−1−1 and satisfies deg(p(x))≥ t. The length
of such a code is the order of g(x). Non-binary Fire codes have not been implemented.

.
Example

gap> x:= Indeterminate(GF(2));; G:= xˆ3+xˆ2+1;
Z(2)ˆ0+xˆ2+xˆ3
gap> Factors(G);
[Z(2)ˆ0+xˆ2+xˆ3]
gap> C := FireCode(G, 3);
a cyclic [35,27,1..4]2..6 3 burst error correcting fire code over GF(2)
gap> MinimumDistance(C);
4 # Still it can correct bursts of length 3

5.5.10 WholeSpaceCode

♦ WholeSpaceCode(n, F) (function)

WholeSpaceCode returns the cyclic whole space code of length n over F. This code consists of all
polynomials of degree less than n and coefficients in F.

Example
gap> C := WholeSpaceCode(5, GF(3));
a cyclic [5,5,1]0 whole space code over GF(3)

5.5.11 NullCode

♦ NullCode(n, F) (function)

NullCode returns the zero-dimensional nullcode with length n over F. This code has only one
word: the all zero word. It is cyclic though!

Example
gap> C := NullCode(5, GF(3));
a cyclic [5,0,5]5 nullcode over GF(3)
gap> AsSSortedList(C);
[[0 0 0 0 0]]

5.5.12 RepetitionCode

♦ RepetitionCode(n, F) (function)

RepetitionCode returns the cyclic repetition code of length n over F. The code has as many
elements as F, because each codeword consists of a repetition of one of these elements.

GUAVA 80

Example
gap> C := RepetitionCode(3, GF(5));
a cyclic [3,1,3]2 repetition code over GF(5)
gap> AsSSortedList(C);
[[0 0 0], [1 1 1], [2 2 2], [4 4 4], [3 3 3]]
gap> IsPerfectCode(C);
false
gap> IsMDSCode(C);
true

5.5.13 CyclicCodes

♦ CyclicCodes(n, F) (function)

CyclicCodes returns a list of all cyclic codes of length n over F. It constructs all possible gen-
erator polynomials from the factors of xn − 1. Each combination of these factors yields a generator
polynomial after multiplication.

Example
gap> CyclicCodes(3,GF(3));
[a cyclic [3,3,1]0 enumerated code over GF(3),
a cyclic [3,2,1..2]1 enumerated code over GF(3),
a cyclic [3,1,3]2 enumerated code over GF(3),
a cyclic [3,0,3]3 enumerated code over GF(3)]

5.5.14 NrCyclicCodes

♦ NrCyclicCodes(n, F) (function)

The function NrCyclicCodes calculates the number of cyclic codes of length n over field F.
Example

gap> NrCyclicCodes(23, GF(2));
8
gap> codelist := CyclicCodes(23, GF(2));
[a cyclic [23,23,1]0 enumerated code over GF(2),
a cyclic [23,22,1..2]1 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,0,23]23 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2),
a cyclic [23,1,23]11 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2)]

gap> BinaryGolayCode() in codelist;
true
gap> RepetitionCode(23, GF(2)) in codelist;
true
gap> CordaroWagnerCode(23) in codelist;
false # This code is not cyclic

GUAVA 81

5.6 Evaluation Codes

5.6.1 EvaluationCode

♦ EvaluationCode(P, L, R) (function)

Input: F is a finite field, L is a list of rational functions in R = F [x1, ...,xr], P is a list of n points in
Fr at which all of the functions in L are defined.
Output: The ’evaluation code’ C, which is the image of the evalation map

EvalP : span(L)→ Fn,

given by f 7−→ (f (p1), ..., f (pn)), where P = {p1, ..., pn} and f ∈ L. The generator matrix of C is
G = (fi(p j)) fi∈L,p j∈P.

This command returns a ”record” object C with several extra components (type
NamesOfComponents(C) to see them all): C!.EvaluationMat (not the same as the generator
matrix in general), C!.points (namely P), C!.basis (namely L), and C!.ring (namely R).

Example
gap> F:=GF(11);
GF(11)
gap> R := PolynomialRing(F,2);;
gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1];; y:=indets[2];;
gap> L:=[xˆ2*y,x*y,xˆ5,xˆ4,xˆ3,xˆ2,x,xˆ0];;
gap> Pts:=[[Z(11)ˆ9, Z(11)], [Z(11)ˆ8, Z(11)], [Z(11)ˆ7, 0*Z(11)],

[Z(11)ˆ6, 0*Z(11)], [Z(11)ˆ5, 0*Z(11)], [Z(11)ˆ4, 0*Z(11)],
[Z(11)ˆ3, Z(11)], [Z(11)ˆ2, 0*Z(11)], [Z(11), 0*Z(11)],
[Z(11)ˆ0, 0*Z(11)], [0*Z(11), Z(11)]];;

gap> C:=EvaluationCode(Pts,L,R);
a linear [11,8,1..3]2..3 evaluation code over GF(11)
gap> MinimumDistance(C);
3

5.6.2 GeneralizedReedSolomonCode

♦ GeneralizedReedSolomonCode(P, k, R) (function)

Input: R=F[x], where F is a finite field, k is a positive integer, P is a list of n points in F .
Output: The C which is the image of the evaluation map

EvalP : F [x]k → Fn,

given by f 7−→ (f (p1), ..., f (pn)), where P = {p1, ..., pn} ⊂ F and f ranges over the space F [x]k of
all polynomials of degree less than k.

This command returns a ”record” object C with several extra components (type
NamesOfComponents(C) to see them all): C!.points (namely P), C!.degree (namely k),
and C!.ring (namely R).

This code can be decoded using Decodeword, which applies the special decoder method (the
interpolation method), or using GeneralizedReedSolomonDecoderGao which applies an algorithm

GUAVA 82

of S. Gao (see GeneralizedReedSolomonDecoderGao (4.10.3)). This code has a special decoder
record which implements the interpolation algorithm described in section 5.2 of Justesen and Hoholdt
[JH04]. See Decode (4.10.1) and Decodeword (4.10.2) for more details.

The weighted version has implemented with the option
GeneralizedReedSolomonCode(P,k,R,wts), where wts = [v1, ...,vn] is a sequence of n non-
zero elements from the base field F of R. See also the generalized Reed–Solomon code GRSk(P,V)
described in [MS83], p.303.

The list-decoding algorithm of Sudan-Guraswami (described in section 12.1 of [JH04]) has been
implemented for generalized Reed-Solomon codes. See GeneralizedReedSolomonListDecoder
(4.10.4).

Example
gap> R:=PolynomialRing(GF(11),["t"]);
GF(11)[t]
gap> P:=List([1,3,4,5,7],i->Z(11)ˆi);
[Z(11), Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ5, Z(11)ˆ7]
gap> C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2 generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3
gap> V:=[Z(11)ˆ0,Z(11)ˆ0,Z(11)ˆ0,Z(11)ˆ0,Z(11)];
[Z(11)ˆ0, Z(11)ˆ0, Z(11)ˆ0, Z(11)ˆ0, Z(11)]
gap> C:=GeneralizedReedSolomonCode(P,3,R,V);
a linear [5,3,1..3]2 weighted generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3

See EvaluationCode (5.6.1) for a more general construction.

5.6.3 GeneralizedReedMullerCode

♦ GeneralizedReedMullerCode(Pts, r, F) (function)

GeneralizedReedMullerCode returns a ’Reed-Muller code’ C with length |Pts| and order r.
One considers (a) a basis of monomials for the vector space over F = GF(q) of all polynomials in
F [x1, ...,xd] of degree at most r, and (b) a set Pts of points in Fd . The generator matrix of the asso-
ciated Reed-Muller code C is G = (f (p)) f∈B,p∈Pts. This code C is constructed using the command
GeneralizedReedMullerCode(Pts,r,F). When Pts is the set of all qd points in Fd then the com-
mand GeneralizedReedMuller(d,r,F) yields the code. When Pts is the set of all (q− 1)d points
with no coordinate equal to 0 then this is can be constructed using the ToricCode command (as a
special case).

This command returns a ”record” object C with several extra components (type
NamesOfComponents(C) to see them all): C!.points (namely Pts) and C!.degree (namely
r).

Example
gap> Pts:=ToricPoints(2,GF(5));
[[Z(5)ˆ0, Z(5)ˆ0], [Z(5)ˆ0, Z(5)], [Z(5)ˆ0, Z(5)ˆ2], [Z(5)ˆ0, Z(5)ˆ3],
[Z(5), Z(5)ˆ0], [Z(5), Z(5)], [Z(5), Z(5)ˆ2], [Z(5), Z(5)ˆ3],
[Z(5)ˆ2, Z(5)ˆ0], [Z(5)ˆ2, Z(5)], [Z(5)ˆ2, Z(5)ˆ2], [Z(5)ˆ2, Z(5)ˆ3],
[Z(5)ˆ3, Z(5)ˆ0], [Z(5)ˆ3, Z(5)], [Z(5)ˆ3, Z(5)ˆ2], [Z(5)ˆ3, Z(5)ˆ3]]

GUAVA 83

gap> C:=GeneralizedReedMullerCode(Pts,2,GF(5));
a linear [16,6,1..11]6..10 generalized Reed-Muller code over GF(5)

See EvaluationCode (5.6.1) for a more general construction.

5.6.4 ToricPoints

♦ ToricPoints(n, F) (function)

ToricPoints(n,F) returns the points in (F×)n.
Example

gap> ToricPoints(2,GF(5));
[[Z(5)ˆ0, Z(5)ˆ0], [Z(5)ˆ0, Z(5)], [Z(5)ˆ0, Z(5)ˆ2],
[Z(5)ˆ0, Z(5)ˆ3], [Z(5), Z(5)ˆ0], [Z(5), Z(5)], [Z(5), Z(5)ˆ2],
[Z(5), Z(5)ˆ3], [Z(5)ˆ2, Z(5)ˆ0], [Z(5)ˆ2, Z(5)], [Z(5)ˆ2, Z(5)ˆ2],
[Z(5)ˆ2, Z(5)ˆ3], [Z(5)ˆ3, Z(5)ˆ0], [Z(5)ˆ3, Z(5)],
[Z(5)ˆ3, Z(5)ˆ2], [Z(5)ˆ3, Z(5)ˆ3]]

5.6.5 ToricCode

♦ ToricCode(L, F) (function)

This function returns the toric codes as in D. Joyner [Joy04] (see also J. P. Hansen [Han99]). This
is a truncated (generalized) Reed-Muller code. Here L is a list of integral vectors and F is the finite
field. The size of F must be different from 2.

This command returns a record object C with an extra component (type NamesOfComponents(C)
to see them all): C!.exponents (namely L).

Example
gap> C:=ToricCode([[1,0],[3,4]],GF(3));
a linear [4,1,4]2 toric code over GF(3)
gap> Display(GeneratorMat(C));
1 1 2 2
gap> Elements(C);
[[0 0 0 0], [1 1 2 2], [2 2 1 1]]

See EvaluationCode (5.6.1) for a more general construction.

5.7 Algebraic geometric codes

Certain GUAVA functions related to algebraic geometric codes are described in this section.

5.7.1 AffineCurve

♦ AffineCurve(poly, ring) (function)

This function simply defines the data structure of an affine plane curve. In GUAVA, an affine curve
is a record crv having two components: a polynomial poly, accessed in GUAVA by crv.polynomial,

GUAVA 84

and a polynomial ring over a field F in two variables ring, accessed in GUAVA by crv.ring, con-
taining poly. You use this function to define a curve in GUAVA.

For example, for the ring, one could take Q[x,y], and for the polynomial one could take f (x,y) =
x2 + y2−1. For the affine line, simply taking Q[x,y] for the ring and f (x,y) = y for the polynomial.

(Not sure if F neeeds to be a field in fact ...)
To compute its degree, simply use the DegreeMultivariatePolynomial (7.6.2) command.

Example
gap>
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [x_1, x_2])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> poly:=y;; crvP1:=AffineCurve(poly,R2);
rec(ring := PolynomialRing(..., [x_1, x_2]), polynomial := x_2)
gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
1
gap> poly:=yˆ2-x*(xˆ2-1);; ell_crv:=AffineCurve(poly,R2);
rec(ring := PolynomialRing(..., [x_1, x_2]), polynomial := -x_1ˆ3+x_2ˆ2+x_1)
gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
3
gap> poly:=xˆ2+yˆ2-1;; circle:=AffineCurve(poly,R2);
rec(ring := PolynomialRing(..., [x_1, x_2]), polynomial := x_1ˆ2+x_2ˆ2-Z(11)ˆ0)
gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
2
gap> q:=3;;
gap> F:=GF(qˆ2);;
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);
[x_1, x_2]
gap> x:=vars[1];
x_1
gap> y:=vars[2];
x_2
gap> crv:=AffineCurve(yˆq+y-xˆ(q+1),R);
rec(ring := PolynomialRing(..., [x_1, x_2]), polynomial := -x_1ˆ4+x_2ˆ3+x_2)
gap>

In GAP, a point on a curve defined by f (x,y) = 0 is simply a list [a,b] of elements of F satisfying
this polynomial equation.

5.7.2 AffinePointsOnCurve

♦ AffinePointsOnCurve(f, R, E) (function)

AffinePointsOnCurve(f,R,E) returns the points (x,y)∈ E2 satisying f (x,y) = 0, where f is an
element of R = F [x,y].

Example
gap> F:=GF(11);;
gap> R := PolynomialRing(F,["x","y"]);
PolynomialRing(..., [x, y])

GUAVA 85

gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1];; y:=indets[2];;
gap> P:=AffinePointsOnCurve(yˆ2-xˆ11+x,R,F);
[[Z(11)ˆ9, 0*Z(11)], [Z(11)ˆ8, 0*Z(11)], [Z(11)ˆ7, 0*Z(11)],
[Z(11)ˆ6, 0*Z(11)], [Z(11)ˆ5, 0*Z(11)], [Z(11)ˆ4, 0*Z(11)],
[Z(11)ˆ3, 0*Z(11)], [Z(11)ˆ2, 0*Z(11)], [Z(11), 0*Z(11)],
[Z(11)ˆ0, 0*Z(11)], [0*Z(11), 0*Z(11)]]

5.7.3 GenusCurve

♦ GenusCurve(crv) (function)

If crv represents f (x,y) = 0, where f is a polynomial of degree d, then this function simply
returns (d−1)(d−2)/2. At the present, the function does not check if the curve is singular (in which
case the result may be false).

Example
gap> q:=4;;
gap> F:=GF(qˆ2);;
gap> a:=X(F);;
gap> R1:=PolynomialRing(F,[a]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);;
gap> b:=X(F);;
gap> R2:=PolynomialRing(F,[a,b]);;
gap> var2:=IndeterminatesOfPolynomialRing(R2);;
gap> crv:=AffineCurve(bˆq+b-aˆ(q+1),R2);;
gap> crv:=AffineCurve(bˆq+b-aˆ(q+1),R2);
rec(ring := PolynomialRing(..., [x_1, x_1]), polynomial := x_1ˆ5+x_1ˆ4+x_1)
gap> GenusCurve(crv);
36

5.7.4 GOrbitPoint

♦ GOrbitPoint (G, P) (function)

P must be a point in projective space Pn(F), G must be a finite subgroup of GL(n + 1,F), This
function returns all (representatives of projective) points in the orbit G ·P.

The example below computes the orbit of the automorphism group on the Klein quartic over the
field GF(43) on the “point at infinity”.

Example
gap> R:= PolynomialRing(GF(43), 3);;
gap> vars:= IndeterminatesOfPolynomialRing(R);;
gap> x:= vars[1];; y:= vars[2];; z:= vars[3];;
gap> zz:=Z(43)ˆ6;
Z(43)ˆ6
gap> zzz:=Z(43);
Z(43)
gap> rho1:=zzˆ0*[[zzˆ4,0,0],[0,zzˆ2,0],[0,0,zz]];
[[Z(43)ˆ24, 0*Z(43), 0*Z(43)],
[0*Z(43), Z(43)ˆ12, 0*Z(43)],

GUAVA 86

[0*Z(43), 0*Z(43), Z(43)ˆ6]]
gap> rho2:=zzˆ0*[[0,1,0],[0,0,1],[1,0,0]];
[[0*Z(43), Z(43)ˆ0, 0*Z(43)],
[0*Z(43), 0*Z(43), Z(43)ˆ0],
[Z(43)ˆ0, 0*Z(43), 0*Z(43)]]
gap> rho3:=(-1)*[[(zz-zzˆ6)/zzzˆ7,(zzˆ2-zzˆ5)/ zzzˆ7, (zzˆ4-zzˆ3)/ zzzˆ7],
> [(zzˆ2-zzˆ5)/ zzzˆ7, (zzˆ4-zzˆ3)/ zzzˆ7, (zz-zzˆ6)/ zzzˆ7],
> [(zzˆ4-zzˆ3)/ zzzˆ7, (zz-zzˆ6)/ zzzˆ7, (zzˆ2-zzˆ5)/ zzzˆ7]];
[[Z(43)ˆ9, Z(43)ˆ28, Z(43)ˆ12],
[Z(43)ˆ28, Z(43)ˆ12, Z(43)ˆ9],
[Z(43)ˆ12, Z(43)ˆ9, Z(43)ˆ28]]
gap> G:=Group([rho1,rho2,rho3]);; #PSL(2,7)
gap> Size(G);
168
gap> P:=[1,0,0]*zzzˆ0;
[Z(43)ˆ0, 0*Z(43), 0*Z(43)]
gap> O:=GOrbitPoint(G,P);
[[Z(43)ˆ0, 0*Z(43), 0*Z(43)], [0*Z(43), Z(43)ˆ0, 0*Z(43)],
[0*Z(43), 0*Z(43), Z(43)ˆ0], [Z(43)ˆ0, Z(43)ˆ39, Z(43)ˆ16],
[Z(43)ˆ0, Z(43)ˆ33, Z(43)ˆ28], [Z(43)ˆ0, Z(43)ˆ27, Z(43)ˆ40],
[Z(43)ˆ0, Z(43)ˆ21, Z(43)ˆ10], [Z(43)ˆ0, Z(43)ˆ15, Z(43)ˆ22],
[Z(43)ˆ0, Z(43)ˆ9, Z(43)ˆ34], [Z(43)ˆ0, Z(43)ˆ3, Z(43)ˆ4],
[Z(43)ˆ3, Z(43)ˆ22, Z(43)ˆ6], [Z(43)ˆ3, Z(43)ˆ16, Z(43)ˆ18],
[Z(43)ˆ3, Z(43)ˆ10, Z(43)ˆ30], [Z(43)ˆ3, Z(43)ˆ4, Z(43)ˆ0],
[Z(43)ˆ3, Z(43)ˆ40, Z(43)ˆ12], [Z(43)ˆ3, Z(43)ˆ34, Z(43)ˆ24],
[Z(43)ˆ3, Z(43)ˆ28, Z(43)ˆ36], [Z(43)ˆ4, Z(43)ˆ30, Z(43)ˆ27],
[Z(43)ˆ4, Z(43)ˆ24, Z(43)ˆ39], [Z(43)ˆ4, Z(43)ˆ18, Z(43)ˆ9],
[Z(43)ˆ4, Z(43)ˆ12, Z(43)ˆ21], [Z(43)ˆ4, Z(43)ˆ6, Z(43)ˆ33],
[Z(43)ˆ4, Z(43)ˆ0, Z(43)ˆ3], [Z(43)ˆ4, Z(43)ˆ36, Z(43)ˆ15]]
gap> Length(O);
24

Informally, a divisor on a curve is a formal integer linear combination of points on the curve, D =
m1P1 + ... + mkPk, where the mi are integers (the “multiplicity” of Pi in D) and Pi are (F-rational)
points on the affine plane curve. In other words, a divisor is an element of the free abelian group
generated by the F-rational affine points on the curve. The support of a divisor D is simply the set
of points which occurs in the sum defining D with non-zero “multiplicity”. The data structure for a
divisor on an affine plane curve is a record having the following components:

• the coefficients (the integer weights of the points in the support),

• the support,

• the curve, itself a record which has components: polynomial and polynomial ring.

5.7.5 DivisorOnAffineCurve

♦ DivisorOnAffineCurve(cdiv, sdiv, crv) (function)

GUAVA 87

This is the command you use to define a divisor in GUAVA. Of course, crv is the curve on which
the divisor lives, cdiv is the list of coefficients (or “multiplicities”), sdiv is the list of points on crv
in the support.

Example
gap> q:=5;
5
gap> F:=GF(q);
GF(5)
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);
[x_1, x_2]
gap> x:=vars[1];
x_1
gap> y:=vars[2];
x_2
gap> crv:=AffineCurve(yˆ3-xˆ3-x-1,R);
rec(ring := PolynomialRing(..., [x_1, x_2]),

polynomial := -x_1ˆ3+x_2ˆ3-x_1-Z(5)ˆ0)
gap> Pts:=AffinePointsOnCurve(crv,R,F);;
gap> supp:=[Pts[1],Pts[2]];
[[0*Z(5), Z(5)ˆ0], [Z(5)ˆ0, Z(5)]]
gap> D:=DivisorOnAffineCurve([1,-1],supp,crv);
rec(coeffs := [1, -1],

support := [[0*Z(5), Z(5)ˆ0], [Z(5)ˆ0, Z(5)]],
curve := rec(ring := PolynomialRing(..., [x_1, x_2]),

polynomial := -x_1ˆ3+x_2ˆ3-x_1-Z(5)ˆ0))

5.7.6 DivisorAddition

♦ DivisorAddition (D1, D2) (function)

If D1 = m1P1 + ...+ mkPk and D2 = n1P1 + ...+ nkPk are divisors then D1 + D2 = (m1 + n1)P1 +
...+(mk +nk)Pk.

5.7.7 DivisorDegree

♦ DivisorDegree (D) (function)

If D = m1P1 + ...+mkPk is a divisor then the degree is m1 + ...+mk.

5.7.8 DivisorNegate

♦ DivisorNegate (D) (function)

Self-explanatory.

5.7.9 DivisorIsZero

♦ DivisorIsZero (D) (function)

GUAVA 88

Self-explanatory.

5.7.10 DivisorsEqual

♦ DivisorsEqual (D1, D2) (function)

Self-explanatory.

5.7.11 DivisorGCD

♦ DivisorGCD (D1, D2) (function)

If m = pe1
1 ...pek

k and n = p f1
1 ...p fk

k are two integers then their greatest common divisor is
GCD(m,n) = pmin(e1, f1)

1 ...pmin(ek, fk)
k . A similar definition works for two divisors on a curve. If

D1 = e1P1 + ...+ekPk and D2n = f1P1 + ...+ fkPk are two divisors on a curve then their greatest com-
mon divisor is GCD(m,n) = min(e1, f1)P1 + ...+min(ek, fk)Pk. This function computes this quantity.

5.7.12 DivisorLCM

♦ DivisorLCM (D1, D2) (function)

If m = pe1
1 ...pek

k and n = p f1
1 ...p fk

k are two integers then their least common multiple is LCM(m,n)=
pmax(e1, f1)

1 ...pmax(ek, fk)
k . A similar definition works for two divisors on a curve. If D1 = e1P1 + ...+ekPk

and D2 = f1P1 + ...+ fkPk are two divisors on a curve then their least common multiple is LCM(m,n) =
max(e1, f1)P1 + ...+max(ek, fk)Pk. This function computes this quantity.

Example
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[a, b]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [a, b])
gap> crvP1:=AffineCurve(b,R2);
rec(ring := PolynomialRing(..., [a, b]), polynomial := b)
gap> div1:=DivisorOnAffineCurve([1,2,3,4],[Z(11)ˆ2,Z(11)ˆ3,Z(11)ˆ7,Z(11)],crvP1);
rec(coeffs := [1, 2, 3, 4],

support := [Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ7, Z(11)],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> DivisorDegree(div1);
10
gap> div2:=DivisorOnAffineCurve([1,2,3,4],[Z(11),Z(11)ˆ2,Z(11)ˆ3,Z(11)ˆ4],crvP1);
rec(coeffs := [1, 2, 3, 4],

support := [Z(11), Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ4],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> DivisorDegree(div2);
10

GUAVA 89

gap> div3:=DivisorAddition(div1,div2);
rec(coeffs := [5, 3, 5, 4, 3],

support := [Z(11), Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ7],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> DivisorDegree(div3);
20
gap> DivisorIsEffective(div1);
true
gap> DivisorIsEffective(div2);
true
gap>
gap> ndiv1:=DivisorNegate(div1);
rec(coeffs := [-1, -2, -3, -4],

support := [Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ7, Z(11)],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> zdiv:=DivisorAddition(div1,ndiv1);
rec(coeffs := [0, 0, 0, 0],

support := [Z(11), Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ7],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> DivisorIsZero(zdiv);
true
gap> div_gcd:=DivisorGCD(div1,div2);
rec(coeffs := [1, 1, 2, 0, 0],

support := [Z(11), Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ7],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> div_lcm:=DivisorLCM(div1,div2);
rec(coeffs := [4, 2, 3, 4, 3],

support := [Z(11), Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ7],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> DivisorDegree(div_gcd);
4
gap> DivisorDegree(div_lcm);
16
gap> DivisorEqual(div3,DivisorAddition(div_gcd,div_lcm));
true

Let G denote a finite subgroup of PGL(2,F) and let D denote a divisor on the projective line
P1(F). If G leaves D unchanged (it may permute the points in the support of D but must preserve
their sum in D) then the Riemann-Roch space L(D) is a G-module. The commands in this section
help explore the G-module structure of L(D) in the case then the ground field F is finite.

5.7.13 RiemannRochSpaceBasisFunctionP1

♦ RiemannRochSpaceBasisFunctionP1 (P, k, R2) (function)

Input: R2 is a polynomial ring in two variables, say F [x,y]; P is an element of the base field, say
F ; k is an integer. Output: 1/(x−P)k

GUAVA 90

5.7.14 DivisorOfRationalFunctionP1

♦ DivisorOfRationalFunctionP1 (f, R) (function)

Here R = F [x,y] is a polynomial ring in the variables x,y and f is a rational function of x. Simply
returns the principal divisor on P1 associated to f .

Example

gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[a, b]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [a, b])
gap> pt:=Z(11);
Z(11)
gap> f:=RiemannRochSpaceBasisFunctionP1(pt,2,R2);
(Z(11)ˆ0)/(aˆ2+Z(11)ˆ7*a+Z(11)ˆ2)
gap> Df:=DivisorOfRationalFunctionP1(f,R2);
rec(coeffs := [-2], support := [Z(11)],

curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := a)
)

gap> Df.support;
[Z(11)]
gap> F:=GF(11);;
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);;
gap> a:=vars[1];;
gap> b:=vars[2];;
gap> f:=(aˆ4+Z(11)ˆ6*aˆ3-aˆ2+Z(11)ˆ7*a+Z(11)ˆ0)/(aˆ4+Z(11)*aˆ2+Z(11)ˆ7*a+Z(11));;
gap> divf:=DivisorOfRationalFunctionP1(f,R);
rec(coeffs := [3, 1], support := [Z(11), Z(11)ˆ7],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := a))

gap> denf:=DenominatorOfRationalFunction(f); RootsOfUPol(denf);
aˆ4+Z(11)*aˆ2+Z(11)ˆ7*a+Z(11)
[]
gap> numf:=NumeratorOfRationalFunction(f); RootsOfUPol(numf);
aˆ4+Z(11)ˆ6*aˆ3-aˆ2+Z(11)ˆ7*a+Z(11)ˆ0
[Z(11)ˆ7, Z(11), Z(11), Z(11)]

5.7.15 RiemannRochSpaceBasisP1

♦ RiemannRochSpaceBasisP1 (D) (function)

This returns the basis of the Riemann-Roch space L(D) associated to the divisor D on the projective
line P1.

GUAVA 91

Example
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[a, b]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [a, b])
gap> crvP1:=AffineCurve(b,R2);
rec(ring := PolynomialRing(..., [a, b]), polynomial := b)
gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)ˆ2,Z(11)ˆ3,Z(11)ˆ7,Z(11)],crvP1);
rec(coeffs := [1, 2, 3, 4],

support := [Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ7, Z(11)],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> B:=RiemannRochSpaceBasisP1(D);
[Z(11)ˆ0, (Z(11)ˆ0)/(a+Z(11)ˆ7), (Z(11)ˆ0)/(a+Z(11)ˆ8),
(Z(11)ˆ0)/(aˆ2+Z(11)ˆ9*a+Z(11)ˆ6), (Z(11)ˆ0)/(a+Z(11)ˆ2),
(Z(11)ˆ0)/(aˆ2+Z(11)ˆ3*a+Z(11)ˆ4), (Z(11)ˆ0)/(aˆ3+aˆ2+Z(11)ˆ2*a+Z(11)ˆ6),
(Z(11)ˆ0)/(a+Z(11)ˆ6), (Z(11)ˆ0)/(aˆ2+Z(11)ˆ7*a+Z(11)ˆ2),

(Z(11)ˆ0)/(aˆ3+Z(11)ˆ4*aˆ2+a+Z(11)ˆ8),
(Z(11)ˆ0)/(aˆ4+Z(11)ˆ8*aˆ3+Z(11)*aˆ2+a+Z(11)ˆ4)]
gap> DivisorOfRationalFunctionP1(B[1],R2).support;
[]
gap> DivisorOfRationalFunctionP1(B[2],R2).support;
[Z(11)ˆ2]
gap> DivisorOfRationalFunctionP1(B[3],R2).support;
[Z(11)ˆ3]
gap> DivisorOfRationalFunctionP1(B[4],R2).support;
[Z(11)ˆ3]
gap> DivisorOfRationalFunctionP1(B[5],R2).support;
[Z(11)ˆ7]
gap> DivisorOfRationalFunctionP1(B[6],R2).support;
[Z(11)ˆ7]
gap> DivisorOfRationalFunctionP1(B[7],R2).support;
[Z(11)ˆ7]
gap> DivisorOfRationalFunctionP1(B[8],R2).support;
[Z(11)]
gap> DivisorOfRationalFunctionP1(B[9],R2).support;
[Z(11)]
gap> DivisorOfRationalFunctionP1(B[10],R2).support;
[Z(11)]
gap> DivisorOfRationalFunctionP1(B[11],R2).support;
[Z(11)]

5.7.16 MoebiusTransformation

♦ MoebiusTransformation (A, R) (function)

GUAVA 92

The arguments are a 2× 2 matrix A with entries in a field F and a polynomial ring Rof one
variable, say F [x]. This function returns the linear fractional transformatio associated to A. These
transformations can be composed with each other using GAP’s Value command.

5.7.17 ActionMoebiusTransformationOnFunction

♦ ActionMoebiusTransformationOnFunction (A, f, R2) (function)

The arguments are a 2×2 matrix A with entries in a field F , a rational function f of one variable,
say in F(x), and a polynomial ring R2, say F [x,y]. This function simply returns the composition of
the function f with the Möbius transformation of A.

5.7.18 ActionMoebiusTransformationOnDivisorP1

♦ ActionMoebiusTransformationOnDivisorP1 (A, D) (function)

A Möbius transformation may be regarded as an automorphism of the projective line P1. This
function simply returns the image of the divisor D under the Möbius transformation defined by A,
provided that IsActionMoebiusTransformationOnDivisorDefinedP1(A,D) returns true.

5.7.19 IsActionMoebiusTransformationOnDivisorDefinedP1

♦ IsActionMoebiusTransformationOnDivisorDefinedP1 (A, D) (function)

Returns true of none of the points in the support of the divisor D is the pole of the Möbius trans-
formation.

Example
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[a, b]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [a, b])
gap> crvP1:=AffineCurve(b,R2);
rec(ring := PolynomialRing(..., [a, b]), polynomial := b)
gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)ˆ2,Z(11)ˆ3,Z(11)ˆ7,Z(11)],crvP1);
rec(coeffs := [1, 2, 3, 4],

support := [Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ7, Z(11)],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> A:=Z(11)ˆ0*[[1,2],[1,4]];
[[Z(11)ˆ0, Z(11)], [Z(11)ˆ0, Z(11)ˆ2]]
gap> ActionMoebiusTransformationOnDivisorDefinedP1(A,D);
false
gap> A:=Z(11)ˆ0*[[1,2],[3,4]];
[[Z(11)ˆ0, Z(11)], [Z(11)ˆ8, Z(11)ˆ2]]
gap> ActionMoebiusTransformationOnDivisorDefinedP1(A,D);
true

GUAVA 93

gap> ActionMoebiusTransformationOnDivisorP1(A,D);
rec(coeffs := [1, 2, 3, 4],

support := [Z(11)ˆ5, Z(11)ˆ6, Z(11)ˆ8, Z(11)ˆ7],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> f:=MoebiusTransformation(A,R1);
(a+Z(11))/(Z(11)ˆ8*a+Z(11)ˆ2)
gap> ActionMoebiusTransformationOnFunction(A,f,R1);
-Z(11)ˆ0+Z(11)ˆ3*aˆ-1

5.7.20 DivisorAutomorphismGroupP1

♦ DivisorAutomorphismGroupP1 (D) (function)

Input: A divisor D on P1(F), where F is a finite field. Output: A subgroup Aut(D) ⊂ Aut(P1)
preserving D.

Very slow.
Example

gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[a, b]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [a, b])
gap> crvP1:=AffineCurve(b,R2);
rec(ring := PolynomialRing(..., [a, b]), polynomial := b)
gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)ˆ2,Z(11)ˆ3,Z(11)ˆ7,Z(11)],crvP1);
rec(coeffs := [1, 2, 3, 4],

support := [Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ7, Z(11)],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> agp:=DivisorAutomorphismGroupP1(D);; time;
7305
gap> IdGroup(agp);
[10, 2]

5.7.21 MatrixRepresentationOnRiemannRochSpaceP1

♦ MatrixRepresentationOnRiemannRochSpaceP1 (g, D) (function)

Input: An element g in G, a subgroup of Aut(D)⊂ Aut(P1), and a divisor D on P1(F), where F is
a finite field. Output: a d×d matrix, where d = dimL(D), representing the action of g on L(D).

Note: g sends L(D) to r ·L(D), where r is a polynomial of degree 1 depending on g and D.
Also very slow.
The GAP command BrauerCharacterValue can be used to “lift” the eigenvalues of this matrix

to the complex numbers.

GUAVA 94

Example
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[a, b]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [a, b])
gap> crvP1:=AffineCurve(b,R2);
rec(ring := PolynomialRing(..., [a, b]), polynomial := b)
gap> D:=DivisorOnAffineCurve([1,1,1,4],[Z(11)ˆ2,Z(11)ˆ3,Z(11)ˆ7,Z(11)],crvP1);
rec(coeffs := [1, 1, 1, 4],

support := [Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ7, Z(11)],
curve := rec(ring := PolynomialRing(..., [a, b]), polynomial := b))

gap> agp:=DivisorAutomorphismGroupP1(D);; time;
7198
gap> IdGroup(agp);
[20, 5]
gap> g:=Random(agp);
[[Z(11)ˆ4, Z(11)ˆ9], [Z(11)ˆ0, Z(11)ˆ9]]
gap> rho:=MatrixRepresentationOnRiemannRochSpaceP1(g,D);
[[Z(11)ˆ0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11)],
[Z(11)ˆ0, 0*Z(11), 0*Z(11), Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11)],
[Z(11)ˆ7, 0*Z(11), Z(11)ˆ5, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11)],

[Z(11)ˆ4, Z(11)ˆ9, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11)],
[Z(11)ˆ2, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)ˆ5, 0*Z(11), 0*Z(11), 0*Z(11)],

[Z(11)ˆ4, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)ˆ8, Z(11)ˆ0, 0*Z(11), 0*Z(11)],
[Z(11)ˆ6, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)ˆ7, Z(11)ˆ0, Z(11)ˆ5, 0*Z(11)],

[Z(11)ˆ8, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)ˆ3, Z(11)ˆ3, Z(11)ˆ9, Z(11)ˆ0]]
gap> Display(rho);
1
1 . . 2
7 . 10
5 6
4 . . . 10 . . .
5 . . . 3 1 . .
9 . . . 7 1 10 .
3 . . . 8 8 6 1

5.7.22 GoppaCodeClassical

♦ GoppaCodeClassical(div, pts) (function)

Input: A divisor div on the projective line P1(F) over a finite field F and a list pts of points
{P1, ...,Pn} ⊂ F disjoint from the support of div.
Output: The classical (evaluation) Goppa code associated to this data. This is the code

C = {(f (P1), ..., f (Pn)) | f ∈ L(D)F}.

GUAVA 95

Example
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> a:=vars[1];;b:=vars[2];;
gap> cdiv:=[1, 2, -1, -2];
[1, 2, -1, -2]
gap> sdiv:=[Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ6, Z(11)ˆ9];
[Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ6, Z(11)ˆ9]
gap> crv:=rec(polynomial:=b,ring:=R2);
rec(polynomial := x_2, ring := PolynomialRing(..., [x_1, x_2]))
gap> div:=DivisorOnAffineCurve(cdiv,sdiv,crv);
rec(coeffs := [1, 2, -1, -2], support := [Z(11)ˆ2, Z(11)ˆ3, Z(11)ˆ6, Z(11)ˆ9],
curve := rec(polynomial := x_2, ring := PolynomialRing(..., [x_1, x_2])))

gap> pts:=Difference(Elements(GF(11)),div.support);
[0*Z(11), Z(11)ˆ0, Z(11), Z(11)ˆ4, Z(11)ˆ5, Z(11)ˆ7, Z(11)ˆ8]
gap> C:=GoppaCodeClassical(div,pts);
a linear [7,2,1..6]4..5 code defined by generator matrix over GF(11)
gap> MinimumDistance(C);
6

5.7.23 EvaluationBivariateCode

♦ EvaluationBivariateCode(pts, L, crv) (function)

Input: pts is a set of affine points on crv, L is a list of rational functions on crv.
Output: The evaluation code associated to the points in pts and functions in L, but specifically for
affine plane curves and this function checks if points are “bad” (if so removes them from the list pts
automatically). A point is “bad” if either it does not lie on the set of non-singular F-rational points
(places of degree 1) on the curve.

Very similar to EvaluationCode (see EvaluationCode (5.6.1) for a more general construction).

5.7.24 EvaluationBivariateCodeNC

♦ EvaluationBivariateCodeNC(pts, L, crv) (function)

As in EvaluationBivariateCode but does not check if the points are “bad”.
Input: pts is a set of affine points on crv, L is a list of rational functions on crv.

Output: The evaluation code associated to the points in pts and functions in L.
Example

gap> q:=4;;
gap> F:=GF(qˆ2);;
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);;
gap> x:=vars[1];;
gap> y:=vars[2];;
gap> crv:=AffineCurve(yˆq+y-xˆ(q+1),R);
rec(ring := PolynomialRing(..., [x_1, x_2]), polynomial := x_1ˆ5+x_2ˆ4+x_2)
gap> L:=[xˆ0, x, xˆ2*yˆ-1];

GUAVA 96

[Z(2)ˆ0, x_1, x_1ˆ2/x_2]
gap> Pts:=AffinePointsOnCurve(crv.polynomial,crv.ring,F);;
gap> C1:=EvaluationBivariateCode(Pts,L,crv); time;

Automatically removed the following ’bad’ points (either a pole or not
on the curve):
[[0*Z(2), 0*Z(2)]]

a linear [63,3,1..60]51..59 evaluation code over GF(16)
52
gap> P:=Difference(Pts,[[0*Z(2ˆ4)ˆ0, 0*Z(2)ˆ0]]);;
gap> C2:=EvaluationBivariateCodeNC(P,L,crv); time;
a linear [63,3,1..60]51..59 evaluation code over GF(16)
48
gap> C3:=EvaluationCode(P,L,R); time;
a linear [63,3,1..56]51..59 evaluation code over GF(16)
58
gap> MinimumDistance(C1);
56
gap> MinimumDistance(C2);
56
gap> MinimumDistance(C3);
56
gap>

5.7.25 OnePointAGCode

♦ OnePointAGCode(f, P, m, R) (function)

Input: f is a polynomial in R=F[x,y], where F is a finite field, m is a positive integer (the multiplic-
ity of the ‘point at infinity’ ∞ on the curve f (x,y) = 0), P is a list of n points on the curve over F .
Output: The C which is the image of the evaluation map

EvalP : L(m ·∞)→ Fn,

given by f 7−→ (f (p1), ..., f (pn)), where pi ∈ P. Here L(m ·∞) denotes the Riemann-Roch space of
the divisor m ·∞ on the curve. This has a basis consisting of monomials xiy j, where (i, j) range over
a polygon depending on m and f (x,y). For more details on the Riemann-Roch space of the divisor
m ·∞ see Proposition III.10.5 in Stichtenoth [Sti93].

This command returns a ”record” object C with several extra components (type
NamesOfComponents(C) to see them all): C!.points (namely P), C!.multiplicity (namely
m), C!.curve (namely f) and C!.ring (namely R).

Example
gap> F:=GF(11);
GF(11)
gap> R := PolynomialRing(F,["x","y"]);
PolynomialRing(..., [x, y])
gap> indets := IndeterminatesOfPolynomialRing(R);
[x, y]
gap> x:=indets[1]; y:=indets[2];

GUAVA 97

x
y
gap> P:=AffinePointsOnCurve(yˆ2-xˆ11+x,R,F);;
gap> C:=OnePointAGCode(yˆ2-xˆ11+x,P,15,R);
a linear [11,8,1..0]2..3 one-point AG code over GF(11)
gap> MinimumDistance(C);
4
gap> Pts:=List([1,2,4,6,7,8,9,10,11],i->P[i]);;
gap> C:=OnePointAGCode(yˆ2-xˆ11+x,PT,10,R);
a linear [9,6,1..4]2..3 one-point AG code over GF(11)
gap> MinimumDistance(C);
4

See EvaluationCode (5.6.1) for a more general construction.

Chapter 6

Manipulating Codes

In this chapter we describe several functions GUAVA uses to manipulate codes. Some of the best codes
are obtained by starting with for example a BCH code, and manipulating it.

In some cases, it is faster to perform calculations with a manipulated code than to use the original
code. For example, if the dimension of the code is larger than half the word length, it is generally
faster to compute the weight distribution by first calculating the weight distribution of the dual code
than by directly calculating the weight distribution of the original code. The size of the dual code is
smaller in these cases.

Because GUAVA keeps all information in a code record, in some cases the information can be
preserved after manipulations. Therefore, computations do not always have to start from scratch.

In Section 6.1, we describe functions that take a code with certain parameters, modify it
in some way and return a different code (see ExtendedCode (6.1.1), PuncturedCode (6.1.2),
EvenWeightSubcode (6.1.3), PermutedCode (6.1.4), ExpurgatedCode (6.1.5), AugmentedCode
(6.1.6), RemovedElementsCode (6.1.7), AddedElementsCode (6.1.8), ShortenedCode (6.1.9),
LengthenedCode (6.1.10), ResidueCode (6.1.11), ConstructionBCode (6.1.12), DualCode
(6.1.13), ConversionFieldCode (6.1.14), ConstantWeightSubcode (6.1.17), StandardFormCode
(6.1.18) and CosetCode (6.1.16)). In Section 6.2, we describe functions that generate a new
code out of two codes (see DirectSumCode (6.2.1), UUVCode (6.2.2), DirectProductCode (6.2.3),
IntersectionCode (6.2.4) and UnionCode (6.2.5)).

6.1 Functions that Generate a New Code from a Given Code

6.1.1 ExtendedCode

♦ ExtendedCode(C[, i]) (function)

ExtendedCode extends the code C i times and returns the result. i is equal to 1 by default. Ex-
tending is done by adding a parity check bit after the last coordinate. The coordinates of all codewords
now add up to zero. In the binary case, each codeword has even weight.

The word length increases by i. The size of the code remains the same. In the binary case, the
minimum distance increases by one if it was odd. In other cases, that is not always true.

A cyclic code in general is no longer cyclic after extending.
Example

gap> C1 := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)

98

GUAVA 99

gap> C2 := ExtendedCode(C1);
a linear [8,4,4]2 extended code
gap> IsEquivalent(C2, ReedMullerCode(1, 3));
true
gap> List(AsSSortedList(C2), WeightCodeword);
[0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8]
gap> C3 := EvenWeightSubcode(C1);
a linear [7,3,4]2..3 even weight subcode

To undo extending, call PuncturedCode (see PuncturedCode (6.1.2)). The function
EvenWeightSubcode (see EvenWeightSubcode (6.1.3)) also returns a related code with only even
weights, but without changing its word length.

6.1.2 PuncturedCode

♦ PuncturedCode(C) (function)

PuncturedCode punctures C in the last column, and returns the result. Puncturing is done simply
by cutting off the last column from each codeword. This means the word length decreases by one.
The minimum distance in general also decrease by one.

This command can also be called with the syntax PuncturedCode(C, L). In this case,
PuncturedCode punctures C in the columns specified by L, a list of integers. All columns speci-
fied by L are omitted from each codeword. If l is the length of L (so the number of removed columns),
the word length decreases by l. The minimum distance can also decrease by l or less.

Puncturing a cyclic code in general results in a non-cyclic code. If the code is punctured in all
the columns where a word of minimal weight is unequal to zero, the dimension of the resulting code
decreases.

Example
gap> C1 := BCHCode(15, 5, GF(2));
a cyclic [15,7,5]3..5 BCH code, delta=5, b=1 over GF(2)
gap> C2 := PuncturedCode(C1);
a linear [14,7,4]3..5 punctured code
gap> ExtendedCode(C2) = C1;
false
gap> PuncturedCode(C1, [1,2,3,4,5,6,7]);
a linear [8,7,1]1 punctured code
gap> PuncturedCode(WholeSpaceCode(4, GF(5)));
a linear [3,3,1]0 punctured code # The dimension decreased from 4 to 3

ExtendedCode extends the code again (see ExtendedCode (6.1.1)), although in general this does not
result in the old code.

6.1.3 EvenWeightSubcode

♦ EvenWeightSubcode(C) (function)

EvenWeightSubcode returns the even weight subcode of C, consisting of all codewords of C with
even weight. If C is a linear code and contains words of odd weight, the resulting code has a dimension
of one less. The minimum distance always increases with one if it was odd. If C is a binary cyclic

GUAVA 100

code, and g(x) is its generator polynomial, the even weight subcode either has generator polynomial
g(x) (if g(x) is divisible by x−1) or g(x) · (x−1) (if no factor x−1 was present in g(x)). So the even
weight subcode is again cyclic.

Of course, if all codewords of C are already of even weight, the returned code is equal to C.
Example

gap> C1 := EvenWeightSubcode(BCHCode(8, 4, GF(3)));
an (8,33,4..8)3..8 even weight subcode
gap> List(AsSSortedList(C1), WeightCodeword);
[0, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4, 6, 4, 4, 8, 6, 4, 6, 8, 4, 4,
4, 6, 4, 6, 8, 4, 6, 8]

gap> EvenWeightSubcode(ReedMullerCode(1, 3));
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

ExtendedCode also returns a related code of only even weights, but without reducing its dimension
(see ExtendedCode (6.1.1)).

6.1.4 PermutedCode

♦ PermutedCode(C, L) (function)

PermutedCode returns C after column permutations. L (in GAP disjoint cycle notation) is the
permutation to be executed on the columns of C. If C is cyclic, the result in general is no longer
cyclic. If a permutation results in the same code as C, this permutation belongs to the automorphism
group of C (see AutomorphismGroup (4.4.3)). In any case, the returned code is equivalent to C (see
IsEquivalent (4.4.1)).

Example
gap> C1 := PuncturedCode(ReedMullerCode(1, 4));
a linear [15,5,7]5 punctured code
gap> C2 := BCHCode(15, 7, GF(2));
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 = C1;
false
gap> p := CodeIsomorphism(C1, C2);
(2, 4,14, 9,13, 7,11,10, 6, 8,12, 5)
gap> C3 := PermutedCode(C1, p);
a linear [15,5,7]5 permuted code
gap> C2 = C3;
true

6.1.5 ExpurgatedCode

♦ ExpurgatedCode(C, L) (function)

ExpurgatedCode expurgates the code C¿ by throwing away codewords in list L. C must be a linear
code. L must be a list of codeword input. The generator matrix of the new code no longer is a basis
for the codewords specified by L. Since the returned code is still linear, it is very likely that, besides
the words of L, more codewords of C are no longer in the new code.

GUAVA 101

Example
gap> C1 := HammingCode(4);; WeightDistribution(C1);
[1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
gap> L := Filtered(AsSSortedList(C1), i -> WeightCodeword(i) = 3);;
gap> C2 := ExpurgatedCode(C1, L);
a linear [15,4,3..4]5..11 code, expurgated with 7 word(s)
gap> WeightDistribution(C2);
[1, 0, 0, 0, 14, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

This function does not work on non-linear codes. For removing words from a non-linear code, use
RemovedElementsCode (see RemovedElementsCode (6.1.7)). For expurgating a code of all words of
odd weight, use ‘EvenWeightSubcode’ (see EvenWeightSubcode (6.1.3)).

6.1.6 AugmentedCode

♦ AugmentedCode(C, L) (function)

AugmentedCode returns C after augmenting. C must be a linear code, L must be a list of codeword
inputs. The generator matrix of the new code is a basis for the codewords specified by L as well as the
words that were already in code C. Note that the new code in general will consist of more words than
only the codewords of C and the words L. The returned code is also a linear code.

This command can also be called with the syntax AugmentedCode(C). When called without a list
of codewords, AugmentedCode returns C after adding the all-ones vector to the generator matrix. C
must be a linear code. If the all-ones vector was already in the code, nothing happens and a copy of the
argument is returned. If C is a binary code which does not contain the all-ones vector, the complement
of all codewords is added.

Example
gap> C31 := ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> C32 := AugmentedCode(C31,["00000011","00000101","00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)
gap> C32 = ReedMullerCode(2, 3);
true
gap> C1 := CordaroWagnerCode(6);
a linear [6,2,4]2..3 Cordaro-Wagner code over GF(2)
gap> Codeword([0,0,1,1,1,1]) in C1;
true
gap> C2 := AugmentedCode(C1);
a linear [6,3,1..2]2..3 code, augmented with 1 word(s)
gap> Codeword([1,1,0,0,0,0]) in C2;
true

The function AddedElementsCode adds elements to the codewords instead of adding them to the
basis (see AddedElementsCode (6.1.8)).

6.1.7 RemovedElementsCode

♦ RemovedElementsCode(C, L) (function)

GUAVA 102

RemovedElementsCode returns code C after removing a list of codewords L from its elements. L
must be a list of codeword input. The result is an unrestricted code.

Example
gap> C1 := HammingCode(4);; WeightDistribution(C1);
[1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
gap> L := Filtered(AsSSortedList(C1), i -> WeightCodeword(i) = 3);;
gap> C2 := RemovedElementsCode(C1, L);
a (15,2013,3..15)2..15 code with 35 word(s) removed
gap> WeightDistribution(C2);
[1, 0, 0, 0, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
gap> MinimumDistance(C2);
3 # C2 is not linear, so the minimum weight does not have to

be equal to the minimum distance

Adding elements to a code is done by the function AddedElementsCode (see AddedElementsCode
(6.1.8)). To remove codewords from the base of a linear code, use ExpurgatedCode (see
ExpurgatedCode (6.1.5)).

6.1.8 AddedElementsCode

♦ AddedElementsCode(C, L) (function)

AddedElementsCode returns code C after adding a list of codewords L to its elements. L must be
a list of codeword input. The result is an unrestricted code.

Example
gap> C1 := NullCode(6, GF(2));
a cyclic [6,0,6]6 nullcode over GF(2)
gap> C2 := AddedElementsCode(C1, ["111111"]);
a (6,2,1..6)3 code with 1 word(s) added
gap> IsCyclicCode(C2);
true
gap> C3 := AddedElementsCode(C2, ["101010", "010101"]);
a (6,4,1..6)2 code with 2 word(s) added
gap> IsCyclicCode(C3);
true

To remove elements from a code, use RemovedElementsCode (see RemovedElementsCode (6.1.7)).
To add elements to the base of a linear code, use AugmentedCode (see AugmentedCode (6.1.6)).

6.1.9 ShortenedCode

♦ ShortenedCode(C[, L]) (function)

ShortenedCode(C) returns the code C shortened by taking a cross section. If C is a linear code,
this is done by removing all codewords that start with a non-zero entry, after which the first column is
cut off. If C was a [n,k,d] code, the shortened code generally is a [n−1,k−1,d] code. It is possible
that the dimension remains the same; it is also possible that the minimum distance increases.

If C is a non-linear code, ShortenedCode first checks which finite field element occurs most often
in the first column of the codewords. The codewords not starting with this element are removed from

GUAVA 103

the code, after which the first column is cut off. The resulting shortened code has at least the same
minimum distance as C.

This command can also be called using the syntax ShortenedCode(C,L). When called in this
format, ShortenedCode repeats the shortening process on each of the columns specified by L. L
therefore is a list of integers. The column numbers in L are the numbers as they are before the
shortening process. If L has l entries, the returned code has a word length of l positions shorter than
C.

Example
gap> C1 := HammingCode(4);
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := ShortenedCode(C1);
a linear [14,10,3]2 shortened code
gap> C3 := ElementsCode(["1000", "1101", "0011"], GF(2));
a (4,3,1..4)2 user defined unrestricted code over GF(2)
gap> MinimumDistance(C3);
2
gap> C4 := ShortenedCode(C3);
a (3,2,2..3)1..2 shortened code
gap> AsSSortedList(C4);
[[0 0 0], [1 0 1]]
gap> C5 := HammingCode(5, GF(2));
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
gap> C6 := ShortenedCode(C5, [1, 2, 3]);
a linear [28,23,3]2 shortened code
gap> OptimalityLinearCode(C6);
0

The function LengthenedCode lengthens the code again (only for linear codes), see LengthenedCode
(6.1.10). In general, this is not exactly the inverse function.

6.1.10 LengthenedCode

♦ LengthenedCode(C[, i]) (function)

LengthenedCode(C) returns the code C lengthened. C must be a linear code. First, the all-ones
vector is added to the generator matrix (see AugmentedCode (6.1.6)). If the all-ones vector was already
a codeword, nothing happens to the code. Then, the code is extended i times (see ExtendedCode
(6.1.1)). i is equal to 1 by default. If C was an [n,k] code, the new code generally is a [n + i,k + 1]
code.

Example
gap> C1 := CordaroWagnerCode(5);
a linear [5,2,3]2 Cordaro-Wagner code over GF(2)
gap> C2 := LengthenedCode(C1);
a linear [6,3,2]2..3 code, lengthened with 1 column(s)

ShortenedCode’ shortens the code, see ShortenedCode (6.1.9). In general, this is not exactly the
inverse function.

GUAVA 104

6.1.11 ResidueCode

♦ ResidueCode(C[, c]) (function)

The function ResidueCode takes a codeword c of C (if c is omitted, a codeword of minimal weight
is used). It removes this word and all its linear combinations from the code and then punctures the code
in the coordinates where c is unequal to zero. The resulting code is an [n−w,k−1,d−bw∗(q−1)/qc]
code. C must be a linear code and c must be non-zero. If c is not in then no change is made to C.

Example
gap> C1 := BCHCode(15, 7);
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 := ResidueCode(C1);
a linear [8,4,4]2 residue code
gap> c := Codeword([0,0,0,1,0,0,1,1,0,1,0,1,1,1,1], C1);;
gap> C3 := ResidueCode(C1, c);
a linear [7,4,3]1 residue code

6.1.12 ConstructionBCode

♦ ConstructionBCode(C) (function)

The function ConstructionBCode takes a binary linear code C and calculates the minimum dis-
tance of the dual of C (see DualCode (6.1.13)). It then removes the columns of the parity check matrix
of C where a codeword of the dual code of minimal weight has coordinates unequal to zero. The re-
sulting matrix is a parity check matrix for an [n−dd,k−dd +1,≥ d] code, where dd is the minimum
distance of the dual of C.

Example
gap> C1 := ReedMullerCode(2, 5);
a linear [32,16,8]6 Reed-Muller (2,5) code over GF(2)
gap> C2 := ConstructionBCode(C1);
a linear [24,9,8]5..10 Construction B (8 coordinates)
gap> BoundsMinimumDistance(24, 9, GF(2));
rec(n := 24, k := 9, q := 2, references := rec(),
construction := [[Operation "UUVCode"],

[[[Operation "UUVCode"], [[[Operation "DualCode"],
[[[Operation "RepetitionCode"], [6, 2]]]],

[[Operation "CordaroWagnerCode"], [6]]]],
[[Operation "CordaroWagnerCode"], [12]]]], lowerBound := 8,

lowerBoundExplanation := ["Lb(24,9)=8, u u+v construction of C1 and C2:",
"Lb(12,7)=4, u u+v construction of C1 and C2:",
"Lb(6,5)=2, dual of the repetition code",
"Lb(6,2)=4, Cordaro-Wagner code", "Lb(12,2)=8, Cordaro-Wagner code"],

upperBound := 8,
upperBoundExplanation := ["Ub(24,9)=8, otherwise construction B would

contradict:", "Ub(18,4)=8, Griesmer bound"])
so C2 is optimal

6.1.13 DualCode

♦ DualCode(C) (function)

GUAVA 105

DualCode returns the dual code of C. The dual code consists of all codewords that are orthogonal
to the codewords of C. If C is a linear code with generator matrix G, the dual code has parity check
matrix G (or if C has parity check matrix H, the dual code has generator matrix H). So if C is a linear
[n,k] code, the dual code of C is a linear [n,n−k] code. If C is a cyclic code with generator polynomial
g(x), the dual code has the reciprocal polynomial of g(x) as check polynomial.

The dual code is always a linear code, even if C is non-linear.
If a code C is equal to its dual code, it is called self-dual.

Example
gap> R := ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> RD := DualCode(R);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> R = RD;
true
gap> N := WholeSpaceCode(7, GF(4));
a cyclic [7,7,1]0 whole space code over GF(4)
gap> DualCode(N) = NullCode(7, GF(4));
true

6.1.14 ConversionFieldCode

♦ ConversionFieldCode(C) (function)

ConversionFieldCode returns the code obtained from C after converting its field. If the field
of C is GF(qm), the returned code has field GF(q). Each symbol of every codeword is replaced by a
concatenation of m symbols from GF(q). If C is an (n,M,d1) code, the returned code is a (n ·m,M,d2)
code, where d2 > d1.

See also HorizontalConversionFieldMat (7.3.10).
Example

gap> R := RepetitionCode(4, GF(4));
a cyclic [4,1,4]3 repetition code over GF(4)
gap> R2 := ConversionFieldCode(R);
a linear [8,2,4]3..4 code, converted to basefield GF(2)
gap> Size(R) = Size(R2);
true
gap> GeneratorMat(R);
[[Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0]]
gap> GeneratorMat(R2);
[[Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2)],
[0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0]]

6.1.15 TraceCode

♦ TraceCode(C) (function)

Input: C is a linear code defined over an extension E of F (F is the “base field”)
Output: The linear code generated by TrE/F(c), for all c ∈C.

GUAVA 106

TraceCode returns the image of the code C under the trace map. If the field of C is GF(qm), the
returned code has field GF(q).

Very slow. It does not seem to be easy to related the parameters of the trace code to the original
except in the “Galois closed” case.

Example
gap> C:=RandomLinearCode(10,4,GF(4)); MinimumDistance(C);
a [10,4,?] randomly generated code over GF(4)
5
gap> trC:=TraceCode(C,GF(2)); MinimumDistance(trC);
a linear [10,7,1]1..3 user defined unrestricted code over GF(2)
1

6.1.16 CosetCode

♦ CosetCode(C, w) (function)

CosetCode returns the coset of a code C with respect to word w. w must be of the codeword type.
Then, w is added to each codeword of C, yielding the elements of the new code. If C is linear and w is
an element of C, the new code is equal to C, otherwise the new code is an unrestricted code.

Generating a coset is also possible by simply adding the word w to C. See 4.2.
Example

gap> H := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := Codeword("1011011");; c in H;
false
gap> C := CosetCode(H, c);
a (7,16,3)1 coset code
gap> List(AsSSortedList(C), el-> Syndrome(H, el));
[[1 1 1], [1 1 1], [1 1 1], [1 1 1], [1 1 1], [1 1 1],
[1 1 1], [1 1 1], [1 1 1], [1 1 1], [1 1 1], [1 1 1],
[1 1 1], [1 1 1], [1 1 1], [1 1 1]]

All elements of the coset have the same syndrome in H

6.1.17 ConstantWeightSubcode

♦ ConstantWeightSubcode(C, w) (function)

ConstantWeightSubcode returns the subcode of C that only has codewords of weight w. The
resulting code is a non-linear code, because it does not contain the all-zero vector.

This command also can be called with the syntax ConstantWeightSubcode(C) In this format,
ConstantWeightSubcode returns the subcode of C consisting of all minimum weight codewords of
C.

ConstantWeightSubcode first checks if Leon’s binary wtdist exists on your computer (in the
default directory). If it does, then this program is called. Otherwise, the constant weight subcode is
computed using a GAP program which checks each codeword in C to see if it is of the desired weight.

Example
gap> N := NordstromRobinsonCode();; WeightDistribution(N);
[1, 0, 0, 0, 0, 0, 112, 0, 30, 0, 112, 0, 0, 0, 0, 0, 1]

GUAVA 107

gap> C := ConstantWeightSubcode(N, 8);
a (16,30,6..16)5..8 code with codewords of weight 8
gap> WeightDistribution(C);
[0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0]
gap> eg := ExtendedTernaryGolayCode();; WeightDistribution(eg);
[1, 0, 0, 0, 0, 0, 264, 0, 0, 440, 0, 0, 24]
gap> C := ConstantWeightSubcode(eg);
a (12,264,6..12)3..6 code with codewords of weight 6
gap> WeightDistribution(C);
[0, 0, 0, 0, 0, 0, 264, 0, 0, 0, 0, 0, 0]

6.1.18 StandardFormCode

♦ StandardFormCode(C) (function)

StandardFormCode returns C after putting it in standard form. If C is a non-linear code, this means
the elements are organized using lexicographical order. This means they form a legal GAP ‘Set’.

If C is a linear code, the generator matrix and parity check matrix are put in standard form. The
generator matrix then has an identity matrix in its left part, the parity check matrix has an identity
matrix in its right part. Although GUAVA always puts both matrices in a standard form using BaseMat,
this never alters the code. StandardFormCode even applies column permutations if unavoidable, and
thereby changes the code. The column permutations are recorded in the construction history of the
new code (see Display (4.6.3)). C and the new code are of course equivalent.

If C is a cyclic code, its generator matrix cannot be put in the usual upper triangular form, because
then it would be inconsistent with the generator polynomial. The reason is that generating the elements
from the generator matrix would result in a different order than generating the elements from the
generator polynomial. This is an unwanted effect, and therefore StandardFormCode just returns a
copy of C for cyclic codes.

Example
gap> G := GeneratorMatCode(Z(2) * [[0,1,1,0], [0,1,0,1], [0,0,1,1]],

"random form code", GF(2));
a linear [4,2,1..2]1..2 random form code over GF(2)
gap> Codeword(GeneratorMat(G));
[[0 1 0 1], [0 0 1 1]]
gap> Codeword(GeneratorMat(StandardFormCode(G)));
[[1 0 0 1], [0 1 0 1]]

6.1.19 PiecewiseConstantCode

♦ PiecewiseConstantCode(part, wts[, F]) (function)

PiecewiseConstantCode returns a code with length n = ∑ni, where part=[n1, . . . ,nk]. wts is a
list of constraints w = (w1, ...,wk), each of length k, where 0≤ wi ≤ ni. The default field is GF(2).

A constraint is a list of integers, and a word c = (c1, . . . ,ck) (according to part, i.e., each ci is a
subword of length ni) is in the resulting code if and only if, for some constraint w ∈ wts, ‖ci‖ = wi

for all 1 ≤ i ≤ k, where ‖...‖ denotes the Hamming weight.
An example might make things clearer:

GUAVA 108

Example
gap> PiecewiseConstantCode([2, 3],

[[0, 0], [0, 3], [1, 0], [2, 2]],GF(2));
the C code programs are compiled, so using Leon’s binary....
the C code programs are compiled, so using Leon’s binary....
the C code programs are compiled, so using Leon’s binary....
the C code programs are compiled, so using Leon’s binary....
a (5,7,1..5)1..5 piecewise constant code over GF(2)
gap> AsSSortedList(last);
[[0 0 0 0 0], [0 0 1 1 1], [0 1 0 0 0], [1 0 0 0 0],
[1 1 0 1 1], [1 1 1 0 1], [1 1 1 1 0]]

gap>

The first constraint is satisfied by codeword 1, the second by codeword 2, the third by codewords 3
and 4, and the fourth by codewords 5, 6 and 7.

6.2 Functions that Generate a New Code from Two Given Codes

6.2.1 DirectSumCode

♦ DirectSumCode(C1, C2) (function)

DirectSumCode returns the direct sum of codes C1 and C2. The direct sum code consists of every
codeword of C1 concatenated by every codeword of C2. Therefore, if Ci was a (ni,Mi,di) code, the
result is a (n1 +n2,M1 ∗M2,min(d1,d2)) code.

If both C1 and C2 are linear codes, the result is also a linear code. If one of them is non-linear, the
direct sum is non-linear too. In general, a direct sum code is not cyclic.

Performing a direct sum can also be done by adding two codes (see Section 4.2). Another often
used method is the ‘u, u+v’-construction, described in UUVCode (6.2.2).

Example
gap> C1 := ElementsCode([[1,0], [4,5]], GF(7));;
gap> C2 := ElementsCode([[0,0,0], [3,3,3]], GF(7));;
gap> D := DirectSumCode(C1, C2);;
gap> AsSSortedList(D);
[[1 0 0 0 0], [1 0 3 3 3], [4 5 0 0 0], [4 5 3 3 3]]
gap> D = C1 + C2; # addition = direct sum
true

6.2.2 UUVCode

♦ UUVCode(C1, C2) (function)

UUVCode returns the so-called (u‖u + v) construction applied to C1 and C2. The resulting code
consists of every codeword u of C1 concatenated by the sum of u and every codeword v of C2. If C1
and C2 have different word lengths, sufficient zeros are added to the shorter code to make this sum
possible. If Ci is a (ni,Mi,di) code, the result is an (n1 +max(n1,n2),M1 ·M2,min(2 ·d1,d2)) code.

If both C1 and C2 are linear codes, the result is also a linear code. If one of them is non-linear, the
UUV sum is non-linear too. In general, a UUV sum code is not cyclic.

GUAVA 109

The function DirectSumCode returns another sum of codes (see DirectSumCode (6.2.1)).
Example

gap> C1 := EvenWeightSubcode(WholeSpaceCode(4, GF(2)));
a cyclic [4,3,2]1 even weight subcode
gap> C2 := RepetitionCode(4, GF(2));
a cyclic [4,1,4]2 repetition code over GF(2)
gap> R := UUVCode(C1, C2);
a linear [8,4,4]2 U U+V construction code
gap> R = ReedMullerCode(1,3);
true

6.2.3 DirectProductCode

♦ DirectProductCode(C1, C2) (function)

DirectProductCode returns the direct product of codes C1 and C2. Both must be linear codes.
Suppose Ci has generator matrix Gi. The direct product of C1 and C2 then has the Kronecker product
of G1 and G2 as the generator matrix (see the GAP command KroneckerProduct).

If Ci is a [ni,ki,di] code, the direct product then is an [n1 ·n2,k1 · k2,d1 ·d2] code.
Example

gap> L1 := LexiCode(10, 4, GF(2));
a linear [10,5,4]2..4 lexicode over GF(2)
gap> L2 := LexiCode(8, 3, GF(2));
a linear [8,4,3]2..3 lexicode over GF(2)
gap> D := DirectProductCode(L1, L2);
a linear [80,20,12]20..45 direct product code

6.2.4 IntersectionCode

♦ IntersectionCode(C1, C2) (function)

IntersectionCode returns the intersection of codes C1 and C2. This code consists of all code-
words that are both in C1 and C2. If both codes are linear, the result is also linear. If both are cyclic,
the result is also cyclic.

Example
gap> C := CyclicCodes(7, GF(2));
[a cyclic [7,7,1]0 enumerated code over GF(2),
a cyclic [7,6,1..2]1 enumerated code over GF(2),
a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,0,7]7 enumerated code over GF(2),
a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2),
a cyclic [7,1,7]3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2)]

gap> IntersectionCode(C[6], C[8]) = C[7];
true

The hull of a linear code is the intersection of the code with its dual code. In other words, the hull of
C is IntersectionCode(C, DualCode(C)).

GUAVA 110

6.2.5 UnionCode

♦ UnionCode(C1, C2) (function)

UnionCode returns the union of codes C1 and C2. This code consists of the union of all codewords
of C1 and C2 and all linear combinations. Therefore this function works only for linear codes. The
function AddedElementsCode can be used for non-linear codes, or if the resulting code should not
include linear combinations. See AddedElementsCode (6.1.8). If both arguments are cyclic, the result
is also cyclic.

Example
gap> G := GeneratorMatCode([[1,0,1],[0,1,1]]*Z(2)ˆ0, GF(2));
a linear [3,2,1..2]1 code defined by generator matrix over GF(2)
gap> H := GeneratorMatCode([[1,1,1]]*Z(2)ˆ0, GF(2));
a linear [3,1,3]1 code defined by generator matrix over GF(2)
gap> U := UnionCode(G, H);
a linear [3,3,1]0 union code
gap> c := Codeword("010");; c in G;
false
gap> c in H;
false
gap> c in U;
true

6.2.6 ExtendedDirectSumCode

♦ ExtendedDirectSumCode(L, B, m) (function)

The extended direct sum construction is described in section V of Graham and Sloane [GS85].
The resulting code consists of m copies of L, extended by repeating the codewords of B m times.

Suppose L is an [nL,kL]rL code, and B is an [nL,kB]rB code (non-linear codes are also permitted).
The length of B must be equal to the length of L. The length of the new code is n = mnL, the dimension
(in the case of linear codes) is k ≤ mkL + kB, and the covering radius is r ≤ bmΨ(L,B)c, with

Ψ(L,B) = max
u∈FnL

2

1
2kB ∑

v∈B
d(L,v+u).

However, this computation will not be executed, because it may be too time consuming for large
codes.

If L ⊆ B, and L and B are linear codes, the last copy of L is omitted. In this case the dimension is
k = mkL +(kB− kL).

Example
gap> c := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := WholeSpaceCode(7, GF(2));
a cyclic [7,7,1]0 whole space code over GF(2)
gap> e := ExtendedDirectSumCode(c, d, 3);
a linear [21,15,1..3]2 3-fold extended direct sum code

GUAVA 111

6.2.7 AmalgamatedDirectSumCode

♦ AmalgamatedDirectSumCode(c1, c2[, check]) (function)

AmalgamatedDirectSumCode returns the amalgamated direct sum of the codes c1 and c2. The
amalgamated direct sum code consists of all codewords of the form (u‖0‖v) if (u‖0) ∈ c1 and
(0‖v) ∈ c2 and all codewords of the form (u‖1‖v) if (u‖1) ∈ c1 and (1‖v) ∈ c2. The result is a
code with length n = n1 +n2−1 and size M ≤ M1 ·M2/2.

If both codes are linear, they will first be standardized, with information symbols in the last and
first coordinates of the first and second code, respectively.

If c1 is a normal code (see IsNormalCode (7.4.5)) with the last coordinate acceptable (see
IsCoordinateAcceptable (7.4.3)), and c2 is a normal code with the first coordinate acceptable,
then the covering radius of the new code is r ≤ r1 + r2. However, checking whether a code is normal
or not is a lot of work, and almost all codes seem to be normal. Therefore, an option check can be
supplied. If check is true, then the codes will be checked for normality. If check is false or omitted,
then the codes will not be checked. In this case it is assumed that they are normal. Acceptability of
the last and first coordinate of the first and second code, respectively, is in the last case also assumed
to be done by the user.

Example
gap> c := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := ReedMullerCode(1, 4);
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> e := DirectSumCode(c, d);
a linear [23,9,3]7 direct sum code
gap> f := AmalgamatedDirectSumCode(c, d);;
gap> MinimumDistance(f);;
gap> CoveringRadius(f);;
gap> f;
a linear [22,8,3]7 amalgamated direct sum code

6.2.8 BlockwiseDirectSumCode

♦ BlockwiseDirectSumCode(C1, L1, C2, L2) (function)

BlockwiseDirectSumCode returns a subcode of the direct sum of C1 and C2. The fields of C1
and C2 must be same. The lists L1 and L2 are two equally long with elements from the ambient vector
spaces of C1 and C2, respectively, or L1 and L2 are two equally long lists containing codes. The union
of the codes in L1 and L2 must be C1 and C2, respectively.

In the first case, the blockwise direct sum code is defined as

bds =
[

1≤i≤`

(C1 +(L1)i)⊕ (C2 +(L2)i),

where ` is the length of L1 and L2, and ⊕ is the direct sum.
In the second case, it is defined as

bds =
[

1≤i≤`

((L1)i⊕ (L2)i).

The length of the new code is n = n1 +n2.

GUAVA 112

Example
gap> C1 := HammingCode(3, GF(2));;
gap> C2 := EvenWeightSubcode(WholeSpaceCode(6, GF(2)));;
gap> BlockwiseDirectSumCode(C1, [[0,0,0,0,0,0,0],[1,0,1,0,1,0,0]],
> C2, [[0,0,0,0,0,0],[1,0,1,0,1,0]]);
a (13,1024,1..13)1..2 blockwise direct sum code

Chapter 7

Bounds on codes, special matrices and
miscellaneous functions

In this chapter we describe functions that determine bounds on the size and minimum distance of
codes (Section 7.1), functions that determine bounds on the size and covering radius of codes (Section
7.2), functions that work with special matrices GUAVA needs for several codes (see Section 7.3), and
constructing codes or performing calculations with codes (see Section 7.5).

7.1 Distance bounds on codes

This section describes the functions that calculate estimates for upper bounds on the size and minimum
distance of codes. Several algorithms are known to compute a largest number of words a code can
have with given length and minimum distance. It is important however to understand that in some
cases the true upper bound is unknown. A code which has a size equalto the calculated upper bound
may not have been found. However, codes that have a larger size do not exist.

A second way to obtain bounds is a table. In GUAVA, an extensive table is implemented for linear
codes over GF(2), GF(3) and GF(4). It contains bounds on the minimum distance for given word
length and dimension. It contains entries for word lengths less than or equal to 257, 243 and 256
for codes over GF(2), GF(3) and GF(4) respectively. These entries were obtained from Brouwer’s
tables as of 11 May 2006. For the latest information, please see A. E. Brouwer’s tables [Bro06] on
the internet.

Firstly, we describe functions that compute specific upper bounds on the code size
(see UpperBoundSingleton (7.1.1), UpperBoundHamming (7.1.2), UpperBoundJohnson (7.1.3),
UpperBoundPlotkin (7.1.4), UpperBoundElias (7.1.5) and UpperBoundGriesmer (7.1.6)).

Next we describe a function that computes GUAVA’s best upper bound on the code size (see
UpperBound (7.1.8)).

Then we describe two functions that compute a lower and upper bound on the minimum distance
of a code (see LowerBoundMinimumDistance (7.1.9) and UpperBoundMinimumDistance (7.1.12)).

Finally, we describe a function that returns a lower and upper bound on the minimum distance with
given parameters and a description of how the bounds were obtained (see BoundsMinimumDistance
(7.1.13)).

113

GUAVA 114

7.1.1 UpperBoundSingleton

♦ UpperBoundSingleton(n, d, q) (function)

UpperBoundSingleton returns the Singleton bound for a code of length n, minimum distance d
over a field of size q. This bound is based on the shortening of codes. By shortening an (n,M,d) code
d−1 times, an (n−d +1,M,1) code results, with M ≤ qn−d+1 (see ShortenedCode (6.1.9)). Thus

M ≤ qn−d+1.

Codes that meet this bound are called maximum distance separable (see IsMDSCode (4.3.7)).
Example

gap> UpperBoundSingleton(4, 3, 5);
25
gap> C := ReedSolomonCode(4,3);; Size(C);
25
gap> IsMDSCode(C);
true

7.1.2 UpperBoundHamming

♦ UpperBoundHamming(n, d, q) (function)

The Hamming bound (also known as the sphere packing bound) returns an upper bound on the
size of a code of length n, minimum distance d, over a field of size q. The Hamming bound is obtained
by dividing the contents of the entire space GF(q)n by the contents of a ball with radius b(d−1)/2c.
As all these balls are disjoint, they can never contain more than the whole vector space.

M ≤ qn

V (n,e)
,

where M is the maxmimum number of codewords and V (n,e) is equal to the contents of a ball of
radius e (see SphereContent (7.5.5)). This bound is useful for small values of d. Codes for which
equality holds are called perfect (see IsPerfectCode (4.3.6)).

Example
gap> UpperBoundHamming(15, 3, 2);
2048
gap> C := HammingCode(4, GF(2));
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size(C);
2048

7.1.3 UpperBoundJohnson

♦ UpperBoundJohnson(n, d) (function)

The Johnson bound is an improved version of the Hamming bound (see UpperBoundHamming
(7.1.2)). In addition to the Hamming bound, it takes into account the elements of the space outside the
balls of radius e around the elements of the code. The Johnson bound only works for binary codes.

GUAVA 115

Example
gap> UpperBoundJohnson(13, 5);
77
gap> UpperBoundHamming(13, 5, 2);
89 # in this case the Johnson bound is better

7.1.4 UpperBoundPlotkin

♦ UpperBoundPlotkin(n, d, q) (function)

The function UpperBoundPlotkin calculates the sum of the distances of all ordered pairs of
different codewords. It is based on the fact that the minimum distance is at most equal to the average
distance. It is a good bound if the weights of the codewords do not differ much. It results in:

M ≤ d
d− (1−1/q)n

,

where M is the maximum number of codewords. In this case, d must be larger than (1−1/q)n, but by
shortening the code, the case d 〈 (1−1/q)n is covered.

Example
gap> UpperBoundPlotkin(15, 7, 2);
32
gap> C := BCHCode(15, 7, GF(2));
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> Size(C);
32
gap> WeightDistribution(C);
[1, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 1]

7.1.5 UpperBoundElias

♦ UpperBoundElias(n, d, q) (function)

The Elias bound is an improvement of the Plotkin bound (see UpperBoundPlotkin (7.1.4)) for
large codes. Subcodes are used to decrease the size of the code, in this case the subcode of all
codewords within a certain ball. This bound is useful for large codes with relatively small minimum
distances.

Example
gap> UpperBoundPlotkin(16, 3, 2);
12288
gap> UpperBoundElias(16, 3, 2);
10280
gap> UpperBoundElias(20, 10, 3);
16255

GUAVA 116

7.1.6 UpperBoundGriesmer

♦ UpperBoundGriesmer(n, d, q) (function)

The Griesmer bound is valid only for linear codes. It is obtained by counting the number of equal
symbols in each row of the generator matrix of the code. By omitting the coordinates in which all
rows have a zero, a smaller code results. The Griesmer bound is obtained by repeating this proces
until a trivial code is left in the end.

Example
gap> UpperBoundGriesmer(13, 5, 2);
64
gap> UpperBoundGriesmer(18, 9, 2);
8 # the maximum number of words for a linear code is 8
gap> Size(PuncturedCode(HadamardCode(20, 1)));
20 # this non-linear code has 20 elements

7.1.7 IsGriesmerCode

♦ IsGriesmerCode(C) (function)

IsGriesmerCode returns ‘true’ if a linear code C is a Griesmer code, and ‘false’ otherwise. A
code is called Griesmer if its length satisfies

n = g[k,d] =
k−1

∑
i=0
d d

qi e.

Example
gap> IsGriesmerCode(HammingCode(3, GF(2)));
true
gap> IsGriesmerCode(BCHCode(17, 2, GF(2)));
false

7.1.8 UpperBound

♦ UpperBound(n, d, q) (function)

UpperBound returns the best known upper bound A(n,d) for the size of a code of length n,
minimum distance d over a field of size q. The function UpperBound first checks for trivial cases
(like d = 1 or n = d), and if the value is in the built-in table. Then it calculates the minimum
value of the upper bound using the methods of Singleton (see UpperBoundSingleton (7.1.1)),
Hamming (see UpperBoundHamming (7.1.2)), Johnson (see UpperBoundJohnson (7.1.3)), Plotkin
(see UpperBoundPlotkin (7.1.4)) and Elias (see UpperBoundElias (7.1.5)). If the code is binary,
A(n,2 · `−1) = A(n+1,2 · `), so the UpperBound takes the minimum of the values obtained from all
methods for the parameters (n,2 · `−1) and (n+1,2 · `).

Example
gap> UpperBound(10, 3, 2);
85
gap> UpperBound(25, 9, 8);
1211778792827540

GUAVA 117

7.1.9 LowerBoundMinimumDistance

♦ LowerBoundMinimumDistance(C) (function)

In this form, LowerBoundMinimumDistance returns a lower bound for the minimum distance of
code C.

This command can also be called using the syntax LowerBoundMinimumDistance(n, k, F).
In this form, LowerBoundMinimumDistance returns a lower bound for the minimum distance of the
best known linear code of length n, dimension k over field F. It uses the mechanism explained in
section 7.1.13.

Example
gap> C := BCHCode(45, 7);
a cyclic [45,23,7..9]6..16 BCH code, delta=7, b=1 over GF(2)
gap> LowerBoundMinimumDistance(C);
7 # designed distance is lower bound for minimum distance
gap> LowerBoundMinimumDistance(45, 23, GF(2));
10

7.1.10 LowerBoundGilbertVarshamov

♦ LowerBoundGilbertVarshamov(n, d, q) (function)

This is the lower bound due (independently) to Gilbert and Varshamov. It says that for each
n and d, there exists a linear code having length n and minimum distance d at least of size
qn−1/SphereContent(n−1,d−2,GF(q)).

Example
gap> LowerBoundGilbertVarshamov(3,2,2);
4
gap> LowerBoundGilbertVarshamov(3,3,2);
1
gap> LowerBoundMinimumDistance(3,3,2);
1
gap> LowerBoundMinimumDistance(3,2,2);
2

7.1.11 LowerBoundSpherePacking

♦ LowerBoundSpherePacking(n, d, q) (function)

This is the lower bound due (independently) to Gilbert and Varshamov. It says that for each n and
r, there exists an unrestricted code at least of size qn/SphereContent(n,d,GF(q)) minimum distance
d.

Example
gap> LowerBoundSpherePacking(3,2,2);
2
gap> LowerBoundSpherePacking(3,3,2);
1

GUAVA 118

7.1.12 UpperBoundMinimumDistance

♦ UpperBoundMinimumDistance(C) (function)

In this form, UpperBoundMinimumDistance returns an upper bound for the minimum distance of
code C. For unrestricted codes, it just returns the word length. For linear codes, it takes the minimum
of the possibly known value from the method of construction, the weight of the generators, and the
value from the table (see 7.1.13).

This command can also be called using the syntax UpperBoundMinimumDistance(n, k, F).
In this form, UpperBoundMinimumDistance returns an upper bound for the minimum distance of the
best known linear code of length n, dimension k over field F. It uses the mechanism explained in
section 7.1.13.

Example
gap> C := BCHCode(45, 7);;
gap> UpperBoundMinimumDistance(C);
9
gap> UpperBoundMinimumDistance(45, 23, GF(2));
11

7.1.13 BoundsMinimumDistance

♦ BoundsMinimumDistance(n, k, F) (function)

The function BoundsMinimumDistance calculates a lower and upper bound for the minimum
distance of an optimal linear code with word length n, dimension k over field F. The function returns
a record with the two bounds and an explanation for each bound. The function Display can be used
to show the explanations.

The values for the lower and upper bound are obtained from a table. GUAVA has ta-
bles containing lower and upper bounds for q = 2(n ≤ 257),3(n ≤ 243),4(n ≤ 256). (Current
as of 11 May 2006.) These tables were derived from the table of Brouwer. (See [Bro06],
http://www.win.tue.nl/˜aeb/voorlincod.html for the most recent data.) For codes over other
fields and for larger word lengths, trivial bounds are used.

The resulting record can be used in the function BestKnownLinearCode (see
BestKnownLinearCode (5.2.14)) to construct a code with minimum distance equal to the lower
bound.

Example
gap> bounds := BoundsMinimumDistance(7, 3);; DisplayBoundsInfo(bounds);
an optimal linear [7,3,d] code over GF(2) has d=4
--
Lb(7,3)=4, by shortening of:
Lb(8,4)=4, u u+v construction of C1 and C2:
Lb(4,3)=2, dual of the repetition code
Lb(4,1)=4, repetition code
--
Ub(7,3)=4, Griesmer bound
The lower bound is equal to the upper bound, so a code with
these parameters is optimal.
gap> C := BestKnownLinearCode(bounds);; Display(C);
a linear [7,3,4]2..3 shortened code of

http://www.win.tue.nl/~aeb/voorlincod.html

GUAVA 119

a linear [8,4,4]2 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]2 repetition code over GF(2)
V: a cyclic [4,1,4]2 repetition code over GF(2)

7.2 Covering radius bounds on codes

7.2.1 BoundsCoveringRadius

♦ BoundsCoveringRadius(C) (function)

BoundsCoveringRadius returns a list of integers. The first entry of this list is the maximum of
some lower bounds for the covering radius of C, the last entry the minimum of some upper bounds of
C.

If the covering radius of C is known, a list of length 1 is returned.
BoundsCoveringRadius makes use of the functions GeneralLowerBoundCoveringRadius
and GeneralUpperBoundCoveringRadius.

Example
gap> BoundsCoveringRadius(BCHCode(17, 3, GF(2)));
[3 .. 4]
gap> BoundsCoveringRadius(HammingCode(5, GF(2)));
[1]

7.2.2 IncreaseCoveringRadiusLowerBound

♦ IncreaseCoveringRadiusLowerBound(C[, stopdist][,][startword]) (function)

IncreaseCoveringRadiusLowerBound tries to increase the lower bound of the covering radius
of C. It does this by means of a probabilistic algorithm. This algorithm takes a random word in GF(q)n

(or startword if it is specified), and, by changing random coordinates, tries to get as far from C as
possible. If changing a coordinate finds a word that has a larger distance to the code than the previous
one, the change is made permanent, and the algorithm starts all over again. If changing a coordinate
does not find a coset leader that is further away from the code, then the change is made permanent
with a chance of 1 in 100, if it gets the word closer to the code, or with a chance of 1 in 10, if the word
stays at the same distance. Otherwise, the algorithm starts again with the same word as before.

If the algorithm did not allow changes that decrease the distance to the code, it might get stuck in
a sub-optimal situation (the coset leader corresponding to such a situation - i.e. no coordinate of this
coset leader can be changed in such a way that we get at a larger distance from the code - is called an
orphan).

If the algorithm finds a word that has distance stopdist to the code, it ends and returns that word,
which can be used for further investigations.

The variable InfoCoveringRadius can be set to Print to print the maximum distance reached
so far every 1000 runs. The algorithm can be interrupted with CTRL-C, allowing the user to look at
the word that is currently being examined (called ‘current’), or to change the chances that the new
word is made permanent (these are called ‘staychance’ and ‘downchance’). If one of these variables
is i, then it corresponds with a i in 100 chance.

GUAVA 120

At the moment, the algorithm is only useful for codes with small dimension, where small means
that the elements of the code fit in the memory. It works with larger codes, however, but when you use
it for codes with large dimension, you should be very patient. If running the algorithm quits GAP (due
to memory problems), you can change the global variable CRMemSize to a lower value. This might
cause the algorithm to run slower, but without quitting GAP. The only way to find out the best value
of CRMemSize is by experimenting.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> IncreaseCoveringRadiusLowerBound(C,10);
Number of runs: 1000 best distance so far: 3
Number of runs: 2000 best distance so far: 3
Number of changes: 100
Number of runs: 3000 best distance so far: 3
Number of runs: 4000 best distance so far: 3
Number of runs: 5000 best distance so far: 3
Number of runs: 6000 best distance so far: 3
Number of runs: 7000 best distance so far: 3
Number of changes: 200
Number of runs: 8000 best distance so far: 3
Number of runs: 9000 best distance so far: 3
Number of runs: 10000 best distance so far: 3
Number of changes: 300
Number of runs: 11000 best distance so far: 3
Number of runs: 12000 best distance so far: 3
Number of runs: 13000 best distance so far: 3
Number of changes: 400
Number of runs: 14000 best distance so far: 3
user interrupt at...
#
used ctrl-c to break out of execution
#
... called from
IncreaseCoveringRadiusLowerBound(code, -1, current) called from
function(arguments) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> current;
[Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0]
brk>
gap> CoveringRadius(C);
3

7.2.3 ExhaustiveSearchCoveringRadius

♦ ExhaustiveSearchCoveringRadius(C) (function)

ExhaustiveSearchCoveringRadius does an exhaustive search to find the covering radius of C.
Every time a coset leader of a coset with weight w is found, the function tries to find a coset leader

GUAVA 121

of a coset with weight w + 1. It does this by enumerating all words of weight w + 1, and checking
whether a word is a coset leader. The start weight is the current known lower bound on the covering
radius.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> ExhaustiveSearchCoveringRadius(C);
Trying 3 ...
[3 .. 5]
gap> CoveringRadius(C);
3

7.2.4 GeneralLowerBoundCoveringRadius

♦ GeneralLowerBoundCoveringRadius(C) (function)

GeneralLowerBoundCoveringRadius returns a lower bound on the covering radius of C. It uses
as many functions which names start with LowerBoundCoveringRadius as possible to find the best
known lower bound (at least that GUAVA knows of) together with tables for the covering radius of
binary linear codes with length not greater than 64.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> GeneralLowerBoundCoveringRadius(C);
2
gap> CoveringRadius(C);
3

7.2.5 GeneralUpperBoundCoveringRadius

♦ GeneralUpperBoundCoveringRadius(C) (function)

GeneralUpperBoundCoveringRadius returns an upper bound on the covering radius of C. It
uses as many functions which names start with UpperBoundCoveringRadius as possible to find the
best known upper bound (at least that GUAVA knows of).

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> GeneralUpperBoundCoveringRadius(C);
4
gap> CoveringRadius(C);
3

GUAVA 122

7.2.6 LowerBoundCoveringRadiusSphereCovering

♦ LowerBoundCoveringRadiusSphereCovering(n, M[, F,] false) (function)

This command can also be called using the syntax LowerBoundCoveringRadiusSphereCovering(
n, r, [F,] true). If the last argument of LowerBoundCoveringRadiusSphereCovering is
false, then it returns a lower bound for the covering radius of a code of size M and length n.
Otherwise, it returns a lower bound for the size of a code of length n and covering radius r.

F is the field over which the code is defined. If F is omitted, it is assumed that the code is over
GF(2). The bound is computed according to the sphere covering bound:

M ·Vq(n,r)≥ qn

where Vq(n,r) is the size of a sphere of radius r in GF(q)n.
Example

gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusSphereCovering(10,32,GF(2),false);
2
gap> LowerBoundCoveringRadiusSphereCovering(10,3,GF(2),true);
6

7.2.7 LowerBoundCoveringRadiusVanWee1

♦ LowerBoundCoveringRadiusVanWee1(n, M[, F,] false) (function)

This command can also be called using the syntax LowerBoundCoveringRadiusVanWee1(n,
r, [F,] true). If the last argument of LowerBoundCoveringRadiusVanWee1 is false, then it
returns a lower bound for the covering radius of a code of size M and length n. Otherwise, it returns a
lower bound for the size of a code of length n and covering radius r.

F is the field over which the code is defined. If F is omitted, it is assumed that the code is over
GF(2).

The Van Wee bound is an improvement of the sphere covering bound:

M ·

{
Vq(n,r)−

(n
r

)
dn−r

r+1e

(⌈
n+1
r +1

⌉
− n+1

r +1

)}
≥ qn

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3

GUAVA 123

gap> LowerBoundCoveringRadiusVanWee1(10,32,GF(2),false);
2
gap> LowerBoundCoveringRadiusVanWee1(10,3,GF(2),true);
6

7.2.8 LowerBoundCoveringRadiusVanWee2

♦ LowerBoundCoveringRadiusVanWee2(n, M, false) (function)

This command can also be called using the syntax LowerBoundCoveringRadiusVanWee2(n, r
[,true]). If the last argument of LowerBoundCoveringRadiusVanWee2 is false, then it returns
a lower bound for the covering radius of a code of size M and length n. Otherwise, it returns a lower
bound for the size of a code of length n and covering radius r.

This bound only works for binary codes. It is based on the following inequality:

M ·
((

V2(n,2)− 1
2(r +2)(r−1)

)
V2(n,r)+ εV2(n,r−2)

)
(V2(n,2)− 1

2(r +2)(r−1)+ ε)
≥ 2n,

where

ε =
(

r +2
2

)⌈(
n− r +1

2

)
/

(
r +2

2

)⌉
−

(
n− r +1

2

)
.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusVanWee2(10,32,false);
2
gap> LowerBoundCoveringRadiusVanWee2(10,3,true);
7

7.2.9 LowerBoundCoveringRadiusCountingExcess

♦ LowerBoundCoveringRadiusCountingExcess(n, M, false) (function)

This command can also be called with LowerBoundCoveringRadiusCountingExcess(n, r
[,true]). If the last argument of LowerBoundCoveringRadiusCountingExcess is false, then it
returns a lower bound for the covering radius of a code of size M and length n. Otherwise, it returns a
lower bound for the size of a code of length n and covering radius r.

This bound only works for binary codes. It is based on the following inequality:

M · (ρV2(n,r)+ εV2(n,r−1))≥ (ρ+ ε)2n,

where

ε = (r +1)
⌈

n+1
r +1

⌉
− (n+1)

GUAVA 124

and

ρ =
{

n−3+ 2
n , if r = 2

n− r−1, if r ≥ 3.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusCountingExcess(10,32,false);
0
gap> LowerBoundCoveringRadiusCountingExcess(10,3,true);
7

7.2.10 LowerBoundCoveringRadiusEmbedded1

♦ LowerBoundCoveringRadiusEmbedded1(n, M, false) (function)

This command can also be called with LowerBoundCoveringRadiusEmbedded1(n, r
[,true]). If the last argument of LowerBoundCoveringRadiusEmbedded1 is ’false’, then it re-
turns a lower bound for the covering radius of a code of size M and length n. Otherwise, it returns a
lower bound for the size of a code of length n and covering radius r.

This bound only works for binary codes. It is based on the following inequality:

M ·
(

V2(n,r)−
(

2r
r

))
≥ 2n−A(n,2r +1)

(
2r
r

)
,

where A(n,d) denotes the maximal cardinality of a (binary) code of length n and minimum distance
d. The function UpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbedded1 is better than
LowerBoundCoveringRadiusEmbedded2, sometimes it is the other way around.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusEmbedded1(10,32,false);
2
gap> LowerBoundCoveringRadiusEmbedded1(10,3,true);
7

7.2.11 LowerBoundCoveringRadiusEmbedded2

♦ LowerBoundCoveringRadiusEmbedded2(n, M, false) (function)

GUAVA 125

This command can also be called with LowerBoundCoveringRadiusEmbedded2(n, r
[,true]). If the last argument of LowerBoundCoveringRadiusEmbedded2 is ’false’, then it re-
turns a lower bound for the covering radius of a code of size M and length n. Otherwise, it returns a
lower bound for the size of a code of length n and covering radius r.

This bound only works for binary codes. It is based on the following inequality:

M ·
(

V2(n,r)− 3
2

(
2r
r

))
≥ 2n−2A(n,2r +1)

(
2r
r

)
,

where A(n,d) denotes the maximal cardinality of a (binary) code of length n and minimum distance
d. The function UpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbedded1 is better than
LowerBoundCoveringRadiusEmbedded2, sometimes it is the other way around.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
6
gap> LowerBoundCoveringRadiusEmbedded2(10,32,false);
2
gap> LowerBoundCoveringRadiusEmbedded2(10,3,true);
7

7.2.12 LowerBoundCoveringRadiusInduction

♦ LowerBoundCoveringRadiusInduction(n, r) (function)

LowerBoundCoveringRadiusInduction returns a lower bound for the size of a code with length
n and covering radius r.

If n = 2r +2 and r ≥ 1, the returned value is 4.
If n = 2r +3 and r ≥ 1, the returned value is 7.
If n = 2r +4 and r ≥ 4, the returned value is 8.
Otherwise, 0 is returned.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> LowerBoundCoveringRadiusInduction(15,6);
7

7.2.13 UpperBoundCoveringRadiusRedundancy

♦ UpperBoundCoveringRadiusRedundancy(C) (function)

GUAVA 126

UpperBoundCoveringRadiusRedundancy returns the redundancy of C as an upper bound for the
covering radius of C. C must be a linear code.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusRedundancy(C);
10

7.2.14 UpperBoundCoveringRadiusDelsarte

♦ UpperBoundCoveringRadiusDelsarte(C) (function)

UpperBoundCoveringRadiusDelsarte returns an upper bound for the covering radius of C. This
upper bound is equal to the external distance of C, this is the minimum distance of the dual code, if C
is a linear code.

This is described in Theorem 11.3.3 of [HP03].
Example

gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusDelsarte(C);
13

7.2.15 UpperBoundCoveringRadiusStrength

♦ UpperBoundCoveringRadiusStrength(C) (function)

UpperBoundCoveringRadiusStrength returns an upper bound for the covering radius of C.
First the code is punctured at the zero coordinates (i.e. the coordinates where all codewords have

a zero). If the remaining code has strength 1 (i.e. each coordinate contains each element of the field
an equal number of times), then it returns q−1

q m+(n−m) (where q is the size of the field and m is the
length of punctured code), otherwise it returns n. This bound works for all codes.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusStrength(C);
7

7.2.16 UpperBoundCoveringRadiusGriesmerLike

♦ UpperBoundCoveringRadiusGriesmerLike(C) (function)

GUAVA 127

This function returns an upper bound for the covering radius of C, which must be linear, in a
Griesmer-like fashion. It returns

n−
k

∑
i=1

⌈
d
qi

⌉
Example

gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusGriesmerLike(C);
9

7.2.17 UpperBoundCoveringRadiusCyclicCode

♦ UpperBoundCoveringRadiusCyclicCode(C) (function)

This function returns an upper bound for the covering radius of C, which must be a cyclic code. It
returns

n− k +1−
⌈

w(g(x))
2

⌉
,

where g(x) is the generator polynomial of C.
Example

gap> C:=CyclicCodes(15,GF(2))[3];
a cyclic [15,12,1..2]1..3 enumerated code over GF(2)
gap> CoveringRadius(C);
3
gap> UpperBoundCoveringRadiusCyclicCode(C);
3

7.3 Special matrices in GUAVA

This section explains functions that work with special matrices GUAVA needs for several codes.
Firstly, we describe some matrix generating functions (see KrawtchoukMat (7.3.1), GrayMat

(7.3.2), SylvesterMat (7.3.3), HadamardMat (7.3.4) and MOLS (7.3.11)).
Next we describe two functions regarding a standard form of matrices (see PutStandardForm

(7.3.6) and IsInStandardForm (7.3.7)).
Then we describe functions that return a matrix after a manipulation (see PermutedCols (7.3.8),

VerticalConversionFieldMat (7.3.9) and HorizontalConversionFieldMat (7.3.10)).
Finally, we describe functions that do some tests on matrices (see IsLatinSquare (7.3.12) and

AreMOLS (7.3.13)).

GUAVA 128

7.3.1 KrawtchoukMat

♦ KrawtchoukMat(n, q) (function)

KrawtchoukMat returns the n+1 by n+1 matrix K = (ki j) defined by ki j = Ki(j) for i, j = 0, ...,n.
Ki(j) is the Krawtchouk number (see Krawtchouk (7.5.6)). n must be a positive integer and q a prime
power. The Krawtchouk matrix is used in the MacWilliams identities, defining the relation between
the weight distribution of a code of length n over a field of size q, and its dual code. Each call to
KrawtchoukMat returns a new matrix, so it is safe to modify the result.

Example
gap> PrintArray(KrawtchoukMat(3, 2));
[[1, 1, 1, 1],
[3, 1, -1, -3],
[3, -1, -1, 3],
[1, -1, 1, -1]]

gap> C := HammingCode(3);; a := WeightDistribution(C);
[1, 0, 0, 7, 7, 0, 0, 1]
gap> n := WordLength(C);; q := Size(LeftActingDomain(C));;
gap> k := Dimension(C);;
gap> qˆ(-k) * KrawtchoukMat(n, q) * a;
[1, 0, 0, 0, 7, 0, 0, 0]
gap> WeightDistribution(DualCode(C));
[1, 0, 0, 0, 7, 0, 0, 0]

7.3.2 GrayMat

♦ GrayMat(n, F) (function)

GrayMat returns a list of all different vectors (see GAP’s Vectors command) of length n over the
field F, using Gray ordering. n must be a positive integer. This order has the property that subsequent
vectors differ in exactly one coordinate. The first vector is always the null vector. Each call to GrayMat
returns a new matrix, so it is safe to modify the result.

Example
gap> GrayMat(3);
[[0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2), Z(2)ˆ0],
[0*Z(2), Z(2)ˆ0, Z(2)ˆ0], [0*Z(2), Z(2)ˆ0, 0*Z(2)],
[Z(2)ˆ0, Z(2)ˆ0, 0*Z(2)], [Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0],
[Z(2)ˆ0, 0*Z(2), Z(2)ˆ0], [Z(2)ˆ0, 0*Z(2), 0*Z(2)]]

gap> G := GrayMat(4, GF(4));; Length(G);
256 # the length of a GrayMat is always qˆn
gap> G[101] - G[100];
[0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2)]

7.3.3 SylvesterMat

♦ SylvesterMat(n) (function)

GUAVA 129

SylvesterMat returns the n×n Sylvester matrix of order n. This is a special case of the Hadamard
matrices (see HadamardMat (7.3.4)). For this construction, n must be a power of 2. Each call to
SylvesterMat returns a new matrix, so it is safe to modify the result.

Example
gap> PrintArray(SylvesterMat(2));
[[1, 1],
[1, -1]]

gap> PrintArray(SylvesterMat(4));
[[1, 1, 1, 1],
[1, -1, 1, -1],
[1, 1, -1, -1],
[1, -1, -1, 1]]

7.3.4 HadamardMat

♦ HadamardMat(n) (function)

HadamardMat returns a Hadamard matrix of order n. This is an n× n matrix with the property
that the matrix multiplied by its transpose returns n times the identity matrix. This is only possible
for n = 1,n = 2 or in cases where n is a multiple of 4. If the matrix does not exist or is not known (as
of 1998), HadamardMat returns an error. A large number of construction methods is known to create
these matrices for different orders. HadamardMat makes use of two construction methods (among
which the Sylvester construction – see SylvesterMat (7.3.3)). These methods cover most of the
possible Hadamard matrices, although some special algorithms have not been implemented yet. The
following orders less than 100 do not yet have an implementation for a Hadamard matrix in GUAVA:
28,36,52,76,92.

Example
gap> C := HadamardMat(8);; PrintArray(C);
[[1, 1, 1, 1, 1, 1, 1, 1],
[1, -1, 1, -1, 1, -1, 1, -1],
[1, 1, -1, -1, 1, 1, -1, -1],
[1, -1, -1, 1, 1, -1, -1, 1],
[1, 1, 1, 1, -1, -1, -1, -1],
[1, -1, 1, -1, -1, 1, -1, 1],
[1, 1, -1, -1, -1, -1, 1, 1],
[1, -1, -1, 1, -1, 1, 1, -1]]

gap> C * TransposedMat(C) = 8 * IdentityMat(8, 8);
true

7.3.5 VandermondeMat

♦ VandermondeMat(X, a) (function)

The function VandermondeMat returns the (a + 1)× n matrix of powers x j
i where X is a list of

elements of a field, X = {x1, ...,xn}, and a is a non-negative integer.
Example

gap> M:=VandermondeMat([Z(5),Z(5)ˆ2,Z(5)ˆ0,Z(5)ˆ3],2);
[[Z(5)ˆ0, Z(5), Z(5)ˆ2], [Z(5)ˆ0, Z(5)ˆ2, Z(5)ˆ0],

GUAVA 130

[Z(5)ˆ0, Z(5)ˆ0, Z(5)ˆ0], [Z(5)ˆ0, Z(5)ˆ3, Z(5)ˆ2]]
gap> Display(M);
1 2 4
1 4 1
1 1 1
1 3 4

7.3.6 PutStandardForm

♦ PutStandardForm(M[, idleft]) (function)

We say that a k× n matrix is in standard form if it is equal to the block matrix (I | A), for some
k× (n− k) matrix A and where I is the k× k identity matrix. It follows from a basis result in linear
algebra that, after a possible permutation of the columns, using elementary row operations, every
matrix can be reduced to standard form. PutStandardForm puts a matrix M in standard form, and
returns the permutation needed to do so. idleft is a boolean that sets the position of the identity
matrix in M. (The default for idleft is ‘true’.) If idleft is set to ‘true’, the identity matrix is put on
the left side of M. Otherwise, it is put at the right side. (This option is useful when putting a check
matrix of a code into standard form.) The function BaseMat also returns a similar standard form, but
does not apply column permutations. The rows of the matrix still span the same vector space after
BaseMat, but after calling PutStandardForm, this is not necessarily true.

Example
gap> M := Z(2)*[[1,0,0,1],[0,0,1,1]];; PrintArray(M);
[[Z(2), 0*Z(2), 0*Z(2), Z(2)],
[0*Z(2), 0*Z(2), Z(2), Z(2)]]

gap> PutStandardForm(M); # identity at the left side
(2,3)
gap> PrintArray(M);
[[Z(2), 0*Z(2), 0*Z(2), Z(2)],
[0*Z(2), Z(2), 0*Z(2), Z(2)]]

gap> PutStandardForm(M, false); # identity at the right side
(1,4,3)
gap> PrintArray(M);
[[0*Z(2), Z(2), Z(2), 0*Z(2)],
[0*Z(2), Z(2), 0*Z(2), Z(2)]]

gap> C := BestKnownLinearCode(23, 12, GF(2));
a linear [23,12,7]3 punctured code
gap> G:=MutableCopyMat(GeneratorMat(C));;
gap> PutStandardForm(G);
()
gap> Display(G);
1 1 . 1 . 1 1 1 . . . 1
. 1 1 1 1 1 1 . . 1 . . .
. . 1 1 1 . 1 . . 1 . 1 . 1
. . . 1 1 1 . . . 1 1 1 . 1 .
. . . . 1 1 1 . . 1 1 . 1 1 . 1
. 1 1 1 . . 1 1 . 1 1 1
. 1 1 1 . . 1 1 . 1 1
. 1 1 . 1 1 . 1 1 1 1 . .
. 1 1 . 1 1 . 1 1 1 1 .

GUAVA 131

. 1 1 . 1 1 . 1 1 1 .

. 1 . 1 . 1 1 1 . . . 1 1 1

. 1 . 1 . 1 1 1 . . . 1 1

7.3.7 IsInStandardForm

♦ IsInStandardForm(M[, idleft]) (function)

IsInStandardForm determines if M is in standard form. idleft is a boolean that indicates
the position of the identity matrix in M, as in PutStandardForm (see PutStandardForm (7.3.6)).
IsInStandardForm checks if the identity matrix is at the left side of M, otherwise if it is at the right
side. The elements of M may be elements of any field.

Example
gap> IsInStandardForm(IdentityMat(7, GF(2)));
true
gap> IsInStandardForm([[1, 1, 0], [1, 0, 1]], false);
true
gap> IsInStandardForm([[1, 3, 2, 7]]);
true
gap> IsInStandardForm(HadamardMat(4));
false

7.3.8 PermutedCols

♦ PermutedCols(M, P) (function)

PermutedCols returns a matrix M with a permutation P applied to its columns.
Example

gap> M := [[1,2,3,4],[1,2,3,4]];; PrintArray(M);
[[1, 2, 3, 4],
[1, 2, 3, 4]]

gap> PrintArray(PermutedCols(M, (1,2,3)));
[[3, 1, 2, 4],
[3, 1, 2, 4]]

7.3.9 VerticalConversionFieldMat

♦ VerticalConversionFieldMat(M, F) (function)

VerticalConversionFieldMat returns the matrix M with its elements converted from a field
F = GF(qm), q prime, to a field GF(q). Each element is replaced by its representation over the latter
field, placed vertically in the matrix, using the GF(p)-vector space isomorphism

[...] : GF(q)→ GF(p)m,

with q = pm.
If M is a k by n matrix, the result is a k ·m× n matrix, since each element of GF(qm) can be

represented in GF(q) using m elements.

GUAVA 132

Example
gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[[Z(3ˆ2), Z(3ˆ2)ˆ5],
[Z(3ˆ2)ˆ5, Z(3ˆ2)]]

gap> DefaultField(Flat(M));
GF(3ˆ2)
gap> VCFM := VerticalConversionFieldMat(M, GF(9));; PrintArray(VCFM);
[[0*Z(3), 0*Z(3)],
[Z(3)ˆ0, Z(3)],
[0*Z(3), 0*Z(3)],
[Z(3), Z(3)ˆ0]]

gap> DefaultField(Flat(VCFM));
GF(3)

A similar function is HorizontalConversionFieldMat (see HorizontalConversionFieldMat
(7.3.10)).

7.3.10 HorizontalConversionFieldMat

♦ HorizontalConversionFieldMat(M, F) (function)

HorizontalConversionFieldMat returns the matrix M with its elements converted from a field
F = GF(qm), q prime, to a field GF(q). Each element is replaced by its representation over the latter
field, placed horizontally in the matrix.

If M is a k×n matrix, the result is a k×m×n ·m matrix. The new word length of the resulting code
is equal to n ·m, because each element of GF(qm) can be represented in GF(q) using m elements. The
new dimension is equal to k×m because the new matrix should be a basis for the same number of
vectors as the old one.

ConversionFieldCode uses horizontal conversion to convert a code (see ConversionFieldCode
(6.1.14)).

Example
gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[[Z(3ˆ2), Z(3ˆ2)ˆ5],
[Z(3ˆ2)ˆ5, Z(3ˆ2)]]

gap> DefaultField(Flat(M));
GF(3ˆ2)
gap> HCFM := HorizontalConversionFieldMat(M, GF(9));; PrintArray(HCFM);
[[0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)],
[Z(3)ˆ0, Z(3)ˆ0, Z(3), Z(3)],
[0*Z(3), Z(3), 0*Z(3), Z(3)ˆ0],
[Z(3), Z(3), Z(3)ˆ0, Z(3)ˆ0]]

gap> DefaultField(Flat(HCFM));
GF(3)

A similar function is VerticalConversionFieldMat (see VerticalConversionFieldMat (7.3.9)).

7.3.11 MOLS

♦ MOLS(q[, n]) (function)

GUAVA 133

MOLS returns a list of n Mutually Orthogonal Latin Squares (MOLS). A Latin square of order q is
a q×q matrix whose entries are from a set Fq of q distinct symbols (GUAVA uses the integers from 0
to q) such that each row and each column of the matrix contains each symbol exactly once.

A set of Latin squares is a set of MOLS if and only if for each pair of Latin squares in this set,
every ordered pair of elements that are in the same position in these matrices occurs exactly once.

n must be less than q. If n is omitted, two MOLS are returned. If q is not a prime power, at most
2 MOLS can be created. For all values of q with q > 2 and q 6= 6, a list of MOLS can be constructed.
However, GUAVA does not yet construct MOLS for q ≡ 2 (mod 4). If it is not possible to construct
n MOLS, the function returns ‘false’.

MOLS are used to create q-ary codes (see MOLSCode (5.1.4)).
Example

gap> M := MOLS(4, 3);;PrintArray(M[1]);
[[0, 1, 2, 3],
[1, 0, 3, 2],
[2, 3, 0, 1],
[3, 2, 1, 0]]

gap> PrintArray(M[2]);
[[0, 2, 3, 1],
[1, 3, 2, 0],
[2, 0, 1, 3],
[3, 1, 0, 2]]

gap> PrintArray(M[3]);
[[0, 3, 1, 2],
[1, 2, 0, 3],
[2, 1, 3, 0],
[3, 0, 2, 1]]

gap> MOLS(12, 3);
false

7.3.12 IsLatinSquare

♦ IsLatinSquare(M) (function)

IsLatinSquare determines if a matrix M is a Latin square. For a Latin square of size n×n, each
row and each column contains all the integers 1, . . . ,n exactly once.

Example
gap> IsLatinSquare([[1,2],[2,1]]);
true
gap> IsLatinSquare([[1,2,3],[2,3,1],[1,3,2]]);
false

7.3.13 AreMOLS

♦ AreMOLS(L) (function)

AreMOLS determines if L is a list of mutually orthogonal Latin squares (MOLS). For each pair of
Latin squares in this list, the function checks if each ordered pair of elements that are in the same
position in these matrices occurs exactly once. The function MOLS creates MOLS (see MOLS (7.3.11)).

GUAVA 134

Example
gap> M := MOLS(4,2);
[[[0, 1, 2, 3], [1, 0, 3, 2], [2, 3, 0, 1], [3, 2, 1, 0]],
[[0, 2, 3, 1], [1, 3, 2, 0], [2, 0, 1, 3], [3, 1, 0, 2]]]

gap> AreMOLS(M);
true

7.4 Some functions related to the norm of a code

In this section, some functions that can be used to compute the norm of a code and to decide upon
its normality are discussed. Typically, these are applied to binary linear codes. The definitions of this
section were introduced in Graham and Sloane [GS85].

7.4.1 CoordinateNorm

♦ CoordinateNorm(C, coord) (function)

CoordinateNorm returns the norm of C with respect to coordinate coord. If Ca = {c∈C | ccoord =
a}, then the norm of C with respect to coord is defined as

max
v∈GF(q)n

q

∑
a=1

d(x,Ca),

with the convention that d(x,Ca) = n if Ca is empty.
Example

gap> CoordinateNorm(HammingCode(3, GF(2)), 3);
3

7.4.2 CodeNorm

♦ CodeNorm(C) (function)

CodeNorm returns the norm of C. The norm of a code is defined as the minimum of the norms for
the respective coordinates of the code. In effect, for each coordinate CoordinateNorm is called, and
the minimum of the calculated numbers is returned.

Example
gap> CodeNorm(HammingCode(3, GF(2)));
3

7.4.3 IsCoordinateAcceptable

♦ IsCoordinateAcceptable(C, coord) (function)

IsCoordinateAcceptable returns ‘true’ if coordinate coord of C is acceptable. A coordinate is
called acceptable if the norm of the code with respect to that coordinate is not more than two times
the covering radius of the code plus one.

GUAVA 135

Example
gap> IsCoordinateAcceptable(HammingCode(3, GF(2)), 3);
true

7.4.4 GeneralizedCodeNorm

♦ GeneralizedCodeNorm(C, subcode1, subscode2, ..., subcodek) (function)

GeneralizedCodeNorm returns the k-norm of C with respect to k subcodes.
Example

gap> c := RepetitionCode(7, GF(2));;
gap> ham := HammingCode(3, GF(2));;
gap> d := EvenWeightSubcode(ham);;
gap> e := ConstantWeightSubcode(ham, 3);;
gap> GeneralizedCodeNorm(ham, c, d, e);
4

7.4.5 IsNormalCode

♦ IsNormalCode(C) (function)

IsNormalCode returns ‘true’ if C is normal. A code is called normal if the norm of the code is not
more than two times the covering radius of the code plus one. Almost all codes are normal, however
some (non-linear) abnormal codes have been found.

Often, it is difficult to find out whether a code is normal, because it involves computing the cover-
ing radius. However, IsNormalCode uses much information from the literature (in particular, [GS85])
about normality for certain code parameters.

Example
gap> IsNormalCode(HammingCode(3, GF(2)));
true

7.5 Miscellaneous functions

In this section we describe several vector space functions GUAVA uses for constructing codes or per-
forming calculations with codes.

In this section, some new miscellaneous functions are described, including weight enumerators,
the MacWilliams-transform and affinity and almost affinity of codes.

7.5.1 CodeWeightEnumerator

♦ CodeWeightEnumerator(C) (function)

CodeWeightEnumerator returns a polynomial of the following form:

f (x) =
n

∑
i=0

Aixi,

GUAVA 136

where Ai is the number of codewords in C with weight i.
Example

gap> CodeWeightEnumerator(ElementsCode([[0,0,0], [0,0,1],
> [0,1,1], [1,1,1]], GF(2)));
xˆ3 + xˆ2 + x + 1
gap> CodeWeightEnumerator(HammingCode(3, GF(2)));
xˆ7 + 7*xˆ4 + 7*xˆ3 + 1

7.5.2 CodeDistanceEnumerator

♦ CodeDistanceEnumerator(C, w) (function)

CodeDistanceEnumerator returns a polynomial of the following form:

f (x) =
n

∑
i=0

Bixi,

where Bi is the number of codewords with distance i to w.
If w is a codeword, then CodeDistanceEnumerator returns the same polynomial as

CodeWeightEnumerator.
Example

gap> CodeDistanceEnumerator(HammingCode(3, GF(2)),[0,0,0,0,0,0,1]);
xˆ6 + 3*xˆ5 + 4*xˆ4 + 4*xˆ3 + 3*xˆ2 + x
gap> CodeDistanceEnumerator(HammingCode(3, GF(2)),[1,1,1,1,1,1,1]);
xˆ7 + 7*xˆ4 + 7*xˆ3 + 1 # ‘[1,1,1,1,1,1,1]’ \in ‘HammingCode(3, GF(2))’

7.5.3 CodeMacWilliamsTransform

♦ CodeMacWilliamsTransform(C) (function)

CodeMacWilliamsTransform returns a polynomial of the following form:

f (x) =
n

∑
i=0

Cixi,

where Ci is the number of codewords with weight i in the dual code of C.
Example

gap> CodeMacWilliamsTransform(HammingCode(3, GF(2)));
7*xˆ4 + 1

7.5.4 CodeDensity

♦ CodeDensity(C) (function)

CodeDensity returns the density of C. The density of a code is defined as

M ·Vq(n, t)
qn ,

where M is the size of the code, Vq(n, t) is the size of a sphere of radius t in GF(qn) (which may be
computed using SphereContent), t is the covering radius of the code and n is the length of the code.

GUAVA 137

Example
gap> CodeDensity(HammingCode(3, GF(2)));
1
gap> CodeDensity(ReedMullerCode(1, 4));
14893/2048

7.5.5 SphereContent

♦ SphereContent(n, t, F) (function)

SphereContent returns the content of a ball of radius t around an arbitrary element of the
vectorspace Fn. This is the cardinality of the set of all elements of Fn that are at distance (see
DistanceCodeword (3.6.2) less than or equal to t from an element of Fn.

In the context of codes, the function is used to determine if a code is perfect. A code is perfect
if spheres of radius t around all codewords partition the whole ambient vector space, where t is the
number of errors the code can correct.

Example
gap> SphereContent(15, 0, GF(2));
1 # Only one word with distance 0, which is the word itself
gap> SphereContent(11, 3, GF(4));
4984
gap> C := HammingCode(5);
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
#the minimum distance is 3, so the code can correct one error
gap> (SphereContent(31, 1, GF(2)) * Size(C)) = 2 ˆ 31;
true

7.5.6 Krawtchouk

♦ Krawtchouk(k, i, n, q) (function)

Krawtchouk returns the Krawtchouk number Kk(i). q must be a prime power, n must be a positive
integer, k must be a non-negative integer less then or equal to n and i can be any integer. (See
KrawtchoukMat (7.3.1)). This number is the value at x = i of the polynomial

Kn,q
k (x) =

n

∑
j=0

(−1) j(q−1)k− jb(x, j)b(n− x,k− j),

where b(v,u) = u!/(v!(v−u)!) is the binomial coefficient if u,v are integers. For more properties of
these polynomials, see [MS83].

Example
gap> Krawtchouk(2, 0, 3, 2);
3

7.5.7 PrimitiveUnityRoot

♦ PrimitiveUnityRoot(F, n) (function)

GUAVA 138

PrimitiveUnityRoot returns a primitive n-th root of unity in an extension field of F. This is a
finite field element a with the property an = 1 in F, and n is the smallest integer such that this equality
holds.

Example
gap> PrimitiveUnityRoot(GF(2), 15);
Z(2ˆ4)
gap> lastˆ15;
Z(2)ˆ0
gap> PrimitiveUnityRoot(GF(8), 21);
Z(2ˆ6)ˆ3

7.5.8 PrimitivePolynomialsNr

♦ PrimitivePolynomialsNr(n, F) (function)

PrimitivePolynomialsNr returns the number of irreducible polynomials over F = GF(q) of
degree n with (maximum) period qn−1. (According to a theorem of S. Golomb, this is φ(pn−1)/n.)

See also the GAP function RandomPrimitivePolynomial, RandomPrimitivePolynomial
(2.2.2).

Example
gap> PrimitivePolynomialsNr(3,4);
12

7.5.9 IrreduciblePolynomialsNr

♦ IrreduciblePolynomialsNr(n, F) (function)

PrimitivePolynomialsNr returns the number of irreducible polynomials over F = GF(q) of
degree n.

Example
gap> IrreduciblePolynomialsNr(3,4);
20

7.5.10 MatrixRepresentationOfElement

♦ MatrixRepresentationOfElement(a, F) (function)

Here F is either a finite extension of the “base field” GF(p) or of the rationals Q, and a ∈ F .
The command MatrixRepresentationOfElement returns a matrix representation of a over the base
field.

If the element a is defined over the base field then it returns the corresponding 1×1 matrix.
Example

gap> a:=Random(GF(4));
0*Z(2)
gap> M:=MatrixRepresentationOfElement(a,GF(4));; Display(M);
.

GUAVA 139

gap> a:=Random(GF(4));
Z(2ˆ2)
gap> M:=MatrixRepresentationOfElement(a,GF(4));; Display(M);
. 1
1 1
gap>

7.5.11 ReciprocalPolynomial

♦ ReciprocalPolynomial(P) (function)

ReciprocalPolynomial returns the reciprocal of polynomial P. This is a polynomial with co-
efficients of P in the reverse order. So if P = a0 + a1X + ... + anXn, the reciprocal polynomial is
P′ = an +an−1X + ...+a0Xn.

This command can also be called using the syntax ReciprocalPolynomial(P , n). In this
form, the number of coefficients of P is assumed to be less than or equal to n+1 (with zero coefficients
added in the highest degrees, if necessary). Therefore, the reciprocal polynomial also has degree
n+1.

Example
gap> P := UnivariatePolynomial(GF(3), Z(3)ˆ0 * [1,0,1,2]);
Z(3)ˆ0+x_1ˆ2-x_1ˆ3
gap> RecP := ReciprocalPolynomial(P);
-Z(3)ˆ0+x_1+x_1ˆ3
gap> ReciprocalPolynomial(RecP) = P;
true
gap> P := UnivariatePolynomial(GF(3), Z(3)ˆ0 * [1,0,1,2]);
Z(3)ˆ0+x_1ˆ2-x_1ˆ3
gap> ReciprocalPolynomial(P, 6);
-x_1ˆ3+x_1ˆ4+x_1ˆ6

7.5.12 CyclotomicCosets

♦ CyclotomicCosets(q, n) (function)

CyclotomicCosets returns the cyclotomic cosets of q (mod n). q and n must be relatively
prime. Each of the elements of the returned list is a list of integers that belong to one cyclotomic
coset. A q-cyclotomic coset of s (mod n) is a set of the form {s,sq,sq2, ...,sqr−1}, where r is the
smallest positive integer such that sqr − s is 0 (mod n). In other words, each coset contains all
multiplications of the coset representative by q (mod n). The coset representative is the smallest
integer that isn’t in the previous cosets.

Example
gap> CyclotomicCosets(2, 15);
[[0], [1, 2, 4, 8], [3, 6, 12, 9], [5, 10],
[7, 14, 13, 11]]

gap> CyclotomicCosets(7, 6);
[[0], [1], [2], [3], [4], [5]]

GUAVA 140

7.5.13 WeightHistogram

♦ WeightHistogram(C[, h]) (function)

The function WeightHistogram plots a histogram of weights in code C. The maximum length of
a column is h. Default value for h is 1/3 of the size of the screen. The number that appears at the top
of the histogram is the maximum value of the list of weights.

Example
gap> H := HammingCode(2, GF(5));
a linear [6,4,3]1 Hamming (2,5) code over GF(5)
gap> WeightDistribution(H);
[1, 0, 0, 80, 120, 264, 160]
gap> WeightHistogram(H);
264----------------

*
*
*
*
* *

* * *
* * * *
* * * *

+--------+--+--+--+--
0 1 2 3 4 5 6

7.5.14 MultiplicityInList

♦ MultiplicityInList(L, a) (function)

This is a very simple list command which returns how many times a occurs in L. It returns 0 if a
is not in L. (The GAP command Collected does not quite handle this “extreme” case.)

Example
gap> L:=[1,2,3,4,3,2,1,5,4,3,2,1];;
gap> MultiplicityInList(L,1);
3
gap> MultiplicityInList(L,6);
0

7.5.15 MostCommonInList

♦ MostCommonInList(L) (function)

Input: a list L
Output: an a in L which occurs at least as much as any other in L

Example
gap> L:=[1,2,3,4,3,2,1,5,4,3,2,1];;
gap> MostCommonInList(L);
1

GUAVA 141

7.5.16 RotateList

♦ RotateList(L) (function)

Input: a list L
Output: a list L’ which is the cyclic rotation of L (to the right)

Example
gap> L:=[1,2,3,4];;
gap> RotateList(L);
[2,3,4,1]

7.5.17 CirculantMatrix

♦ CirculantMatrix(k, L) (function)

Input: integer k, a list L of length n
Output: kxn matrix whose rows are cyclic rotations of the list L

Example
gap> k:=3; L:=[1,2,3,4];;
gap> M:=CirculantMatrix(k,L);;
gap> Display(M);

7.6 Miscellaneous polynomial functions

In this section we describe several multivariate polynomial GAP functions GUAVA uses for construct-
ing codes or performing calculations with codes.

7.6.1 MatrixTransformationOnMultivariatePolynomial

♦ MatrixTransformationOnMultivariatePolynomial (A, f, R) (function)

A is an n×n matrix with entries in a field F , R is a polynomial ring of n variables, say F [x1, ...,xn],
and f is a polynomial in R. Returns the composition f ◦A.

7.6.2 DegreeMultivariatePolynomial

♦ DegreeMultivariatePolynomial(f, R) (function)

This command takes two arguments, f, a multivariate polynomial, and R a polynomial ring over
a field F containing f, say R = F [x1,x2, ...,xn]. The output is simply the maximum degrees of all the
monomials occurring in f.

This command can be used to compute the degree of an affine plane curve.
Example

gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [x_1, x_2])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;

GUAVA 142

gap> poly:=yˆ2-x*(xˆ2-1);;
gap> DegreeMultivariatePolynomial(poly,R2);
3

7.6.3 DegreesMultivariatePolynomial

♦ DegreesMultivariatePolynomial(f, R) (function)

Returns a list of information about the multivariate polynomial f. Nice for other programs but
mostly unreadable by GAP users.

Example
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [x_1, x_2])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> poly:=yˆ2-x*(xˆ2-1);;
gap> DegreesMultivariatePolynomial(poly,R2);
[[[x_1, x_1, 1], [x_1, x_2, 0]], [[x_2ˆ2, x_1, 0], [x_2ˆ2, x_2, 2]],
[[x_1ˆ3, x_1, 3], [x_1ˆ3, x_2, 0]]]

gap>

7.6.4 CoefficientMultivariatePolynomial

♦ CoefficientMultivariatePolynomial(f, var, power, R) (function)

The command CoefficientMultivariatePolynomial takes four arguments: a multivariant
polynomial f, a variable name var, an integer power, and a polynomial ring R containing f. For
example, if f is a multivariate polynomial in R = F[x1,x2, ...,xn] then var must be one of the xi. The
output is the coefficient of xpower

i in f.
(Not sure if F needs to be a field in fact ...)
Related to the GAP command PolynomialCoefficientsPolynomial.

Example
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [x_1, x_2])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> poly:=yˆ2-x*(xˆ2-1);;
gap> PolynomialCoefficientsOfPolynomial(poly,x);
[x_2ˆ2, Z(11)ˆ0, 0*Z(11), -Z(11)ˆ0]
gap> PolynomialCoefficientsOfPolynomial(poly,y);
[-x_1ˆ3+x_1, 0*Z(11), Z(11)ˆ0]
gap> CoefficientMultivariatePolynomial(poly,y,0,R2);
-x_1ˆ3+x_1
gap> CoefficientMultivariatePolynomial(poly,y,1,R2);
0*Z(11)
gap> CoefficientMultivariatePolynomial(poly,y,2,R2);

GUAVA 143

Z(11)ˆ0
gap> CoefficientMultivariatePolynomial(poly,x,0,R2);
x_2ˆ2
gap> CoefficientMultivariatePolynomial(poly,x,1,R2);
Z(11)ˆ0
gap> CoefficientMultivariatePolynomial(poly,x,2,R2);
0*Z(11)
gap> CoefficientMultivariatePolynomial(poly,x,3,R2);
-Z(11)ˆ0

7.6.5 SolveLinearSystem

♦ SolveLinearSystem(L, vars) (function)

Input: L is a list of linear forms in the variables vars.
Output: the solution of the system, if its unique.
The procedure is straightforward: Find the associated matrix A, find the ”constant vector” b, and

solve A∗ v = b. No error checking is performed.
Related to the GAP command SolutionMat(A, b).

Example
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [x_1, x_2])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> f:=3*y-3*x+1;; g:=-5*y+2*x-7;;
gap> soln:=SolveLinearSystem([f,g],[x,y]);
[Z(11)ˆ3, Z(11)ˆ2]
gap> Value(f,[x,y],soln); # checking okay
0*Z(11)
gap> Value(g,[x,y],col); # checking okay
0*Z(11)

7.6.6 GuavaVersion

♦ GuavaVersion() (function)

Returns the current version of Guava. Same as guava version().
Example

gap> GuavaVersion();
"2.7"

7.6.7 CoefficientToPolynomial

♦ CoefficientToPolynomial(x, b, F) (function)

GUAVA 144

Returns the Zech log of x to base b, ie the i such that x+1 = bi, so y+ z = y(1+ z/y) = bk, where
k=Log(y,b)+ZechLog(z/y,b) and b must be a primitive element of F.

Example
gap> F:=GF(11);; l := One(F);;
gap> ZechLog(2*l,8*l,F);
-24
gap> 8*l+l;(2*l)ˆ(-24);
Z(11)ˆ6
Z(11)ˆ6

7.6.8 CoefficientToPolynomial

♦ CoefficientToPolynomial(coeffs, R) (function)

The function CoefficientToPolynomial returns the degree d − 1 polynomial c0 + c1x + ... +
cd−1xd−1, where coeffs is a list of elements of a field, coe f f s = {c0, ...,cd−1}, and R is a univariate
polynomial ring.

Example
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> coeffs:=Z(11)ˆ0*[1,2,3,4];
[Z(11)ˆ0, Z(11), Z(11)ˆ8, Z(11)ˆ2]
gap> CoefficientToPolynomial(coeffs,R1);
Z(11)ˆ2*aˆ3+Z(11)ˆ8*aˆ2+Z(11)*a+Z(11)ˆ0

7.6.9 DegreesMonomialTerm

♦ DegreesMonomialTerm(m, R) (function)

The function DegreesMonomialTerm returns the list of degrees to which each variable in the
multivariate polynomial ring R occurs in the monomial m, where coeffs is a list of elements of a
field.

Example
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[a, b]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [a, b])
gap> c:=X(F,"c",var2);
c
gap> var3:=Concatenation(var2,[c]);
[a, b, c]

GUAVA 145

gap> R3:=PolynomialRing(F,var3);
PolynomialRing(..., [a, b, c])
gap> m:=bˆ3*cˆ7;
bˆ3*cˆ7
gap> DegreesMonomialTerm(m,R3);
[0, 3, 7]

7.6.10 DivisorsMultivariatePolynomial

♦ DivisorsMultivariatePolynomial(f, R) (function)

The function DivisorsMultivariatePolynomial returns the list of polynomial divisors of f
in the multivariate polynomial ring R with coefficients in a field. This program uses a simple but
slow algorithm (see Joachim von zur Gathen, Jürgen Gerhard, [vzGG03], exercise 16.10) which first
converts the multivariate polynomial f to an associated univariate polynomial f ∗, then Factors f ∗,
and finally converts these univariate factors back into the multivariate polynomial factors of f. Since
Factors is non-deterministic, DivisorsMultivariatePolynomial is non-deterministic as well.

Example
gap> R2:=PolynomialRing(GF(3),["x1","x2"]);
PolynomialRing(..., [x1, x2])
gap> vars:=IndeterminatesOfPolynomialRing(R2);
[x1, x2]
gap> x2:=vars[2];
x2
gap> x1:=vars[1];
x1
gap> f:=x1ˆ3+x2ˆ3;;
gap> DivisorsMultivariatePolynomial(f,R2);
[x1+x2, x1+x2, x1+x2]

References

[BMIT] L. Bazzi and S. K. Mitter. Some constructions of codes from group actions. preprint March
2003 (submitted to IEEE IT). 78

[Bro06] A. E. Brouwer. Bounds on the minimum distance of linear codes. On the internet at the
URL: http: //www.win.tue.nl/̃aeb/voorlincod.html, 1997-2006. 113, 118

[Gao03] S. Gao. A new algorithm for decoding reed-solomon codes. Communications, Information
and Network Security (V. Bhargava, H. V. Poor, V. Tarokh and S. Yoon, Eds.), pages pp.
55–68, 2003. 52

[GDT91] E. Gabidulin, A. Davydov, and L. Tombak. Linear codes with covering radius 2 and other
new covering codes. IEEE Trans. Inform. Theory, 37(1):219–224, 1991. 71

[GS85] R. Graham and N. Sloane. On the covering radius of codes. IEEE Trans. Inform. Theory,
31(1):385–401, 1985. 110, 134, 135

[Han99] J. P. Hansen. Toric surfaces and error-correcting codes. Coding theory, cryptography, and
related areas (ed., Bachmann et al) Springer-Verlag, 1999. 83

[Hel72] Hermann J. Helgert. Srivastava codes. IEEE Trans. Inform. Theory, 18:292–297, March
1972. 67

[HP03] W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge Univ.
Press, 2003. 10, 32, 50, 51, 57, 65, 66, 126

[JH04] J. Justesen and T. Hoholdt. A course in error-correcting codes. European Mathematical
Society, 2004. 51, 53, 54, 82

[Joy04] D. Joyner. Toric codes over finite fields. Applicable Algebra in Engineering, Communica-
tion and Computing, 15:63–79, 2004. 83

[Leo82] Jeffrey S. Leon. Computing automorphism groups of error-correcting codes. IEEE Trans.
Inform. Theory, 28:496–511, May 1982. 36

[Leo88] Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large error-
correcting codes. IEEE Trans. Inform. Theory, 34:1354–1359, September 1988. 44, 45

[Leo91] Jeffrey S. Leon. Permutation group algorithms based on partitions, I: theory and algo-
rithms. J. Symbolic Comput., 12:533–583, 1991. 10

[MS83] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. Amsterdam:
North-Holland, 1983. 10, 66, 72, 82, 137

146

GUAVA 147

[Sti93] H. Stichtenoth. Algebraic function fields and codes. Springer-Verlag, 1993. 96

[vzGG03] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge Univ. Press,
2003. 145

Index

A(n,d), 116
GF(p), 15
GF(q), 15
t(n,k), 47
*, 29
+, 21, 29
-, 21
=, 20, 28
< >, 20, 28

acceptable coordinate, 134, 135
AClosestVectorComb..MatFFEVecFFECoords,

13
AClosestVectorCombinationsMatFFEVecFFE,

12
ActionMoebiusTransformationOnDivisorP1

, 92
ActionMoebiusTransformationOnFunction ,

92
AddedElementsCode, 102
affine code, 34
AffineCurve, 83
AffinePointsOnCurve, 84
AlternantCode, 65
AmalgamatedDirectSumCode, 111
AreMOLS, 133
AsSSortedList, 38
AugmentedCode, 101
AutomorphismGroup, 35

BCHCode, 76
BestKnownLinearCode, 69
BinaryGolayCode, 72
BitFlipDecoder, 53
BlockwiseDirectSumCode, 111
Bose distance, 76
bound, Gilbert-Varshamov lower, 117
bound, sphere packing lower, 117
bounds, Elias, 115

bounds, Griesmer, 115
bounds, Hamming, 114
bounds, Johnson, 114
bounds, Plotkin, 115
bounds, Singleton, 113
bounds, sphere packing bound, 114
BoundsCoveringRadius, 119
BoundsMinimumDistance, 118

check polynomial, 27, 74
CheckMat, 41
CheckMatCode, 64
CheckMatCodeMutable, 64
CheckPol, 42
CheckPolCode, 75
CirculantMatrix, 141
code, 26
code, (n,M,d), 26
code, [n,k,d]r, 27
code, AG, 83
code, alternant, 65
code, Bose-Chaudhuri-Hockenghem, 76
code, conference, 60
code, Cordaro-Wagner, 67
code, cyclic, 27
code, Davydov, 71
code, element test, 30
code, elements of, 26
code, evaluation, 81
code, Fire, 78
code, Gabidulin, 71
code, Golay (binary), 72
code, Golay (ternary), 73
code, Goppa (classical), 65
code, greedy, 62
code, Hadamard, 60
code, Hamming, 64
code, linear, 26
code, maximum distance separable, 33

148

GUAVA 149

code, Nordstrom-Robinson, 62
code, perfect, 32
code, Reed-Muller, 65
code, Reed-Solomon, 76
code, self-dual, 33
code, self-orthogonal, 33
code, Srivastava, 66
code, subcode, 31
code, Tombak, 71
code, toric, 83
code, unrestricted, 26
CodeDensity, 136
CodeDistanceEnumerator, 136
CodeIsomorphism, 35
CodeMacWilliamsTransform, 136
CodeNorm, 134
codes, addition, 29
codes, decoding, 30
codes, direct sum, 29
codes, encoding, 29
codes, product, 29
CodeWeightEnumerator, 135
Codeword, 18
CodewordNr, 19
codewords, addition, 21
codewords, cosets, 21
codewords, subtraction, 21
CoefficientMultivariatePolynomial, 142
CoefficientToPolynomial, 143, 144
conference matrix, 61
ConferenceCode, 60
ConstantWeightSubcode, 106
ConstructionBCode, 104
ConversionFieldCode, 105
ConwayPolynomial, 15
CoordinateNorm, 134
CordaroWagnerCode, 67
coset, 21
CosetCode, 106
covering code, 47
CoveringRadius, 47
CyclicCodes, 80
CyclotomicCosets, 139

DavydovCode, 71
Decode, 50
Decodeword, 51

DecreaseMinimumDistanceUpperBound, 45
defining polynomial, 15
degree, 87
DegreeMultivariatePolynomial, 141
DegreesMonomialTerm, 144
DegreesMultivariatePolynomial, 142
density of a code, 136
Dimension, 37
DirectProductCode, 109
DirectSumCode, 108
Display, 39
DisplayBoundsInfo, 40
distance, 49
DistanceCodeword, 24
DistancesDistribution, 49
DistancesDistributionMatFFEVecFFE, 13
DistancesDistributionVecFFEsVecFFE, 14
DistanceVecFFE, 14
divisor, 86
DivisorAddition , 87
DivisorAutomorphismGroupP1 , 93
DivisorDegree , 87
DivisorGCD , 88
DivisorIsZero , 87
DivisorLCM , 88
DivisorNegate , 87
DivisorOfRationalFunctionP1 , 90
DivisorOnAffineCurve, 86
DivisorsEqual , 88
DivisorsMultivariatePolynomial, 145
DualCode, 104

ElementsCode, 59
encoder map, 29
EnlargedGabidulinCode, 71
EnlargedTombakCode, 71
equivalent codes, 35
EvaluationBivariateCode, 95
EvaluationBivariateCodeNC, 95
EvaluationCode, 81
EvenWeightSubcode, 99
ExhaustiveSearchCoveringRadius, 120
ExpurgatedCode, 100
ExtendedBinaryGolayCode, 72
ExtendedCode, 98
ExtendedDirectSumCode, 110
ExtendedTernaryGolayCode, 73

GUAVA 150

external distance, 126

FerreroDesignCode, 67
FireCode, 78

GabidulinCode, 71
Gary code, 128
GeneralizedCodeNorm, 135
GeneralizedReedMullerCode, 82
GeneralizedReedSolomonCode, 81
GeneralizedReedSolomonDecoderGao, 52
GeneralizedReedSolomonListDecoder, 53
GeneralizedSrivastavaCode, 66
GeneralLowerBoundCoveringRadius, 121
GeneralUpperBoundCoveringRadius, 121
generator polynomial, 27, 74
GeneratorMat, 40
GeneratorMatCode, 63
GeneratorPol, 41
GeneratorPolCode, 74
GenusCurve, 85
GoppaCode, 66
GoppaCodeClassical, 94
GOrbitPoint , 85
GrayMat, 128
greatest common divisor, 88
GreedyCode, 62
Griesmer code, 116
GuavaVersion, 143

Hadamard matrix, 60, 129
HadamardCode, 60
HadamardMat, 129
Hamming metric, 14
HammingCode, 65
HorizontalConversionFieldMat, 132
hull, 109

in, 30
IncreaseCoveringRadiusLowerBound, 119
information bits, 30
InformationWord, 30
InnerDistribution, 49
IntersectionCode, 109
IrreduciblePolynomialsNr, 138
IsActionMoebiusTransformationOnDivisorDefinedP1

, 92
IsAffineCode, 34

IsAlmostAffineCode, 34
IsCheapConwayPolynomial, 15
IsCode, 31
IsCodeword, 20
IsCoordinateAcceptable, 134
IsCyclicCode, 31
IsEquivalent, 35
IsFinite, 37
IsGriesmerCode, 116
IsInStandardForm, 131
IsLatinSquare, 133
IsLinearCode, 31
IsMDSCode, 32
IsNormalCode, 135
IsPerfectCode, 32
IsPrimitivePolynomial, 16
IsSelfComplementaryCode, 33
IsSelfDualCode, 33
IsSelfOrthogonalCode, 33
IsSubset, 31

Krawtchouk, 137
KrawtchoukMat, 128

Latin square, 132
least common multiple, 88
LeftActingDomain, 37
length, 26
LengthenedCode, 103
LexiCode, 63
linear code, 17
LowerBoundCoveringRadiusCountingExcess,

123
LowerBoundCoveringRadiusEmbedded1, 124
LowerBoundCoveringRadiusEmbedded2, 124
LowerBoundCoveringRadiusInduction, 125
LowerBoundCoveringRadiusSphereCovering,

122
LowerBoundCoveringRadiusVanWee1, 122
LowerBoundCoveringRadiusVanWee2, 123
LowerBoundGilbertVarshamov, 117
LowerBoundMinimumDistance, 117
LowerBoundSpherePacking, 117

MacWilliams transform, 136
MatrixRepresentationOfElement, 138
MatrixRepresentationOnRiemannRochSpaceP1

, 93

GUAVA 151

MatrixTransformationOnMultivariatePolynomial
, 141

maximum distance separable, 114
MDS, 33
minimum distance, 26
MinimumDistance, 43
MinimumDistanceLeon, 44
MinimumDistanceRandom, 45
MinimumWeightWords, 48
MoebiusTransformation , 91
MOLS, 132
MOLSCode, 61
MostCommonInList, 140
MultiplicityInList, 140
mutually orthogonal Latin squares, 132

NearestNeighborDecodewords, 55
NearestNeighborGRSDecodewords, 54
NordstromRobinsonCode, 62
norm of a code, 134
normal code, 135
not =, 20, 28
NrCyclicCodes, 80
NullCode, 79
NullWord, 24

OnePointAGCode, 96
OptimalityCode, 69
order of polynomial, 79
OuterDistribution, 50

Parity check, 98
parity check matrix, 26
perfect, 114
perfect code, 137
permutation equivalent codes, 35
PermutationAutomorphismGroup, 36
PermutationAutomorphismGroup, 36
PermutationDecode, 57
PermutationDecodeNC, 58
PermutedCode, 100
PermutedCols, 131
PiecewiseConstantCode, 107
point, 84
PolyCodeword, 22
primitive element, 15
PrimitivePolynomialsNr, 138
PrimitiveUnityRoot, 137

Print, 38
PuncturedCode, 99
PutStandardForm, 130

QQRCode, 78
QQRCodeNC, 78
QRCode, 77

RandomCode, 62
RandomLinearCode, 68
RandomPrimitivePolynomial, 15
reciprocal polynomial, 139
ReciprocalPolynomial, 139
Redundancy, 43
ReedMullerCode, 65
ReedSolomonCode, 77
RemovedElementsCode, 101
RepetitionCode, 79
ResidueCode, 104
RiemannRochSpaceBasisFunctionP1 , 89
RiemannRochSpaceBasisP1 , 90
RootsCode, 75
RootsOfCode, 42
RotateList, 141

self complementary code, 33
self-dual, 105
self-orthogonal, 33
SetCoveringRadius, 48
ShortenedCode, 102
Size, 37
size, 26
SolveLinearSystem, 143
SphereContent, 137
SrivastavaCode, 67
standard form, 130
StandardArray, 57
StandardFormCode, 107
strength, 126
String, 39
Support, 24
support, 86
SylvesterMat, 128
Syndrome, 56
syndrome table, 56
SyndromeTable, 56

TernaryGolayCode, 73

GUAVA 152

TombakCode, 71
ToricCode, 83
ToricPoints, 83
TraceCode, 105
TreatAsPoly, 23
TreatAsVector, 23

UnionCode, 110
UpperBound, 116
UpperBoundCoveringRadiusCyclicCode, 127
UpperBoundCoveringRadiusDelsarte, 126
UpperBoundCoveringRadiusGriesmerLike,

126
UpperBoundCoveringRadiusRedundancy, 125
UpperBoundCoveringRadiusStrength, 126
UpperBoundElias, 115
UpperBoundGriesmer, 116
UpperBoundHamming, 114
UpperBoundJohnson, 114
UpperBoundMinimumDistance, 118
UpperBoundPlotkin, 115
UpperBoundSingleton, 114
UUVCode, 108

VandermondeMat, 129
VectorCodeword, 22
VerticalConversionFieldMat, 131

weight enumerator polynomial, 135
WeightCodeword, 25
WeightDistribution, 49
WeightHistogram, 140
WeightVecFFE, 14
WholeSpaceCode, 79
WordLength, 42

