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Abstract

In this project we will investigate the Blum-Goldwasser Cryptosystem, a public-
key, probabilistic cryptosystem. We will implement the cryptosystem on a com-
puter using the Python programming language. In addition, we will analyze the se-
curity and computational complexity of the cryptosystem. Along the way, we will
also investigate the Blum-Blum-Shub streamcipher, an essential component of the
cryptosystem. In addition, we will explore the number-theoretic background (Chi-
nese remainder theorem, Fermat’s little theorem, quadratic residues, and so on)
needed for the analysis of these topics. Finally, we will improve upon the estimate
for the period of the Blum-Blum-Shub sequence.
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1 Introduction
The need for information security has been a paramount concern for military opera-
tions dating back to the Roman Empire and the rule of Julius Caesar. According to
his biographer, Suetonius, Caesar kept messages confidential by using a simple shift
cipher. The Japanese code, known as JN-25 to the Americans, was broken in 1942 to
allow advanced knowledge of the impending invasion of Midway, and contributed to
the American victory in the same battle. However, since the beginning of the infor-
mation age, the need for cryptographic security has expanded to include encryption of
bank information for everday consumers making online purchases or even everyday
communications by all people.

In addition to the need for security in everyday communications, the need for secu-
rity in military communications has never been higher. Engaged in wars on two fronts
with an evolving enemy and having forward deployed assets in locations all over the
world, we cannot afford to have communications intercepted and used against us. I
hope that my research can increase the knowledge of the basics behind current cryp-
tosystems and lead to new thinking on improving our current methods.

In this paper, I will be taking an in depth look at the Blum-Goldwasser crypstosys-
tem, a probabilistic, public-key cipher with minimal, if any, usage in applications today.
I will discuss the math behind the cryptosystem, as well as the complexity, efficiency,
and security. Through the Blum-Goldwasser system, I will also explore the Blum-
Blum-Shub stream cipher, a key component of the system. Using special Blum primes,
I will establish a better estimation for the period of the pseudorandom sequence than
that given in [BBS] (see p. 378). Finally, I will implement the Blum-Goldwasser cryp-
tosystem in Sage with the Python coding language.

2 Background
Cryptosystems are used to ensure that your messages are not intercepted and read by an
adversary you don’t want to gain knowledge of your correspondances. There are two
things that distinguish cryptosystems from one another: the complexity, or efficiency,
of the system and the security behind the system. In this section, [Men] is used as a
general reference.
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2.1 Complexity
In order to discuss the complexity of the cryptosystem, we first need to define an algo-
rithm as well as two measures of complexity, O-notation and Ω-notation.

Definition 1 (Algorithm) An algorithm is a well-defined computational process that
receives an input and, after a finite number of steps, yields an output.

An example of a well-known algorithm, and one that will be used for the decryp-
tion of the Blum-Goldwasser cryptosystem, is the Extended Euclidean Algorithm.

Algorithm:
INPUT:(a, b): integers, a ≥ b, b > 0
OUTPUT: (d, x, y): where d = gcd(a, b) and integers x, y which satisfy ax+ by = d

1. Initialize x1 = 0, x2 = 1, y1 = 1, y2 = 0

2. While b > 0,

(a) Set q =floor(a/b), r = a− qb, x = x2 − qx1, y = y2 − qy1
(b) Set a = b, b = r, x2 = x1, x1 = x, y2 = y1, y1 = y

3. Set d = a, x = x2, y = y2, and return (d, x, y)

The following notations are two of the methods to measure the complexity of an
algorithm. O-notation will give us an upper bound of complexity, while Ω-notation
will yield a lower bound.

Definition 2 (O-notation) Let f, g be positive functions on the natural numbers. Then
we say

f(n) = O(g(n))

if there exists a constant c > 0 and an n0 > 0 such that 0 ≤ f(n) ≤ c · g(n) for all
n ≥ n0.

An example of O-notation is n2 + 1 = O(n2). This is true because n2 + 1 ≤ 2n2,
for all n ≥ 1, after taking c = 2.

Definition 3 (Ω-notation) Let f, g be positive functions on the natural numbers. Then
we say

f(n) = Ω(g(n))

if there exists a constant c > 0 and an n0 > 0 such that f(n) ≥ c · g(n) ≥ 0 for all
n ≥ n0.

To further clarify these definitions, let us look at the complexity of the Extended
Euclidean Algorithm defined above.

Remark 1 Let f(a, b) be the Extended Euclidean Algorithm. Then f(a, b) = O(logn).
Also, since f(a, b) can be found in any number of steps, there is no lower bound to it,
thus Ω does not exist for this algorithm.
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2.2 Kerckhoff’s Principles of Cryptographic Security
Auguste Kerckhoff articulated six rules for cryptographic security in his 1883 article,
“La cryptographie militaire,” part of Journal des sciences militaires.

2.2.1 The system should be unbreakable in practice

While a system that is mathematically unbreakable is ideal, a fundamentally secure
cryptosystem needs only to be unbreakable in practice. The Blum-Goldwasser cryp-
tosystem is breakable only through factoring n = pq, a problem that is believed prac-
tically impossible if n is 1000 bits.

2.2.2 Security through obscurity is bad

An adversary who knows what system is being used should not have any advantage
in breaking it. The Blum-Goldwasser system is public-key, therefore it will be widely
known by any adversary. In our application, an extra step is being taken to ensure
against chosen ciphertext attacks, making it not quite a public-key system. However,
adversaries will still have the same trouble in breaking the system even if they know
the method of encryption.

2.2.3 The public key is easily communicable and changeable

The public-key is easily changed (as will be seen in the simple Python code below)
and can be transferred from party to party without compromising the integrity of the
system.

2.2.4 Cryptogram should be transmissable digitally

Since the only transmission is a t-length binary string, it is easily transferrable through
digital means, including telegraph, the original apparatus used for Kerckhoff’s theories.

2.2.5 Encryption apparatus is portable and operable by a single person

The apparatus is a computer with a Python compiler.

2.2.6 The system is easy to use

There is no need for knowledge of the system in order to use our implementation. The
user needs only enter the message he or she wishes to encrypt. The implementation
calculates everything for the user.

2.3 Number theory
The basis for the security of the Blum-Goldwasser cryptosystem, as well as the actual
encryption and decryption, is in computing quadratic residues. In this section, I will
discuss theorems generally and in the more specific case of n = pq, p, q distinct odd
primes, that will apply to the Blum-Goldwasser cryptosystem.

4



The number theory behind the Blum-Goldwasser cryptosystem uses the modulo op-
eration. The modulo operation yields the remainder after the division of two numbers.
This lends to a set of congruencies between numbers.

Example 1 15 mod 2 = 1, 17 mod 2 = 1, so 15 mod 2 ≡ 17 mod 2 ≡ 1.

Definition 4 (Quadratic residue) Let a > 0 be an integer. We say a is a quadratic
residue (mod m) if the congruence x2 ≡ a (mod m) is solvable. The set of all
quadratic residues a, 0 < a < m, is denoted by Qm.

The order of Qm is important for security. The larger the group, the harder it will
be to randomly stumble across our quadratic residues.

Lemma 1 Let m be a prime number, m 6= 2. Qm is a subgroup of (Z/mZ)× of index
2. In other words,

|Qm| =
m− 1

2
.

proof: Let G = (Z/mZ)×. Clearly, |G| = m − 1. Let f : G → G be de-
fined as f(x) = x2 mod m. Then, f(ab) = (ab)2 = a2b2 = f(a)f(b) since G
is abelian. Thus, f is a homomorphism. By definition, Image(G) = Qm. Since
|Ker(f)| = |G|/|Qm| and |Ker(f)| = |{1,m− 1}| = 2, then |Qm| = (m− 1)/2.�

The Blum-Goldwasser system utilizes the product of two primes, n = pq. We want
to look at the order of the group Qn.

Lemma 2 Let p, q be odd primes with n = pq. Then the order of the group of quadratic
residues mod n is given by:

|Qn| = |Qp||Qq|.

Example 2 Here is an example of Lemma 2 entered using Sage:
Sage

sage: n = 11; QR = list(Set([xˆ2%n for x in range(1,n) if
gcd(x,n)==1])); QR; len(QR)
[1, 3, 4, 5, 9]
5
sage: n = 13; QR = list(Set([xˆ2%n for x in range(1,n) if
gcd(x,n)==1])); QR; len(QR)
[1, 3, 4, 9, 10, 12]
6
sage: n = 11*13; QR = list(Set([xˆ2%n for x in range(1,n) if
gcd(x,n)==1])); len(QR)
30
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We can prove this formally as well:
proof: Let p, q be distinct odd primes, and let n = pq. Suppose x2 ≡ a (mod p)

and x2 ≡ a (mod q) for some x ∈ Z. Then x2 ≡ a (mod pq). Further, since x2 ≡ a
(mod p) has either 0 or 2 solutions, and x2 ≡ a (mod q) has either 0 or 2 solutions,
we see x2 ≡ a (mod pq) has either 0 or 4 solutions. In particular, if G = (Z/nZ)×,
then G→ G2 = {x2 | x ∈ G} is a 4-1 map, so

|Qn| = |G2| = 1
4
|G| = (p− 1)(q − 1)

4
= |Qp||Qq|.

�

Example 3 Here are a couple of examples of the above proof entered into Sage. You
will see that 4 solutions is only reached when x2 has 2 solutions each mod p and mod
q.

Sage

sage: p = 23; q = 47

sage: a = randrange(2,20); a
2
sage: solns1 = [x for x in range(p) if (x2-a)%p == 0];
len(solns1)
2
sage: solns2 = [x for x in range(q) if (x2-a)%q == 0];
len(solns2)
2
sage: solns = [x for x in range(p*q) if (x2-a)%(p*q) == 0];
len(solns)
4

sage: a = randrange(2,20); a
13
sage: solns1 = [x for x in range(p) if (x2-a)%p == 0];
solns1; len(solns1)
[6, 17]
2
sage: solns2 = [x for x in range(q) if (x2-a)%q == 0];
solns2; len(solns2)
[]
0
sage: solns = [x for x in range(p*q) if (x2-a)%(p*q) == 0];
solns; len(solns)
[]
0

sage: a = randrange(2,20); a
5
sage: solns1 = [x for x in range(p) if (x2-a)%p == 0];
solns1; len(solns1)
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[]
0
sage: solns2 = [x for x in range(q) if (x2-a)%q == 0];
solns2; len(solns2)
[]
0
sage: solns = [x for x in range(p*q) if (x2-a)%(p*q) == 0];
solns; len(solns)
[]
0

sage: a = randrange(2,20); a
16
sage: solns1 = [x for x in range(p) if (x2-a)%p == 0];
solns1; len(solns1)
[4, 19]
2
sage: solns2 = [x for x in range(q) if (x2-a)%q == 0];
solns2; len(solns2)
[4, 43]
2
sage: solns = [x for x in range(p*q) if (x2-a)%(p*q) == 0];
solns; len(solns)
[4, 372, 709, 1077]
4

sage: a = randrange(2,20); a
7
sage: solns1 = [x for x in range(p) if (x2-a)%p == 0];
solns1; len(solns1)
[]
0
sage: solns2 = [x for x in range(q) if (x2-a)%q == 0];
solns2; len(solns2)
[17, 30]
2
sage: solns = [x for x in range(p*q) if (x2-a)%(p*q) == 0];
solns; len(solns)
[]
0

sage: a = randrange(2,20); a
2
sage: solns1 = [x for x in range(p) if (x2-a)%p == 0];
solns1; len(solns1)
[5, 18]
2
sage: solns2 = [x for x in range(q) if (x2-a)%q == 0];
solns2; len(solns2)
[7, 40]
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2
sage: solns = [x for x in range(p*q) if (x2-a)%(p*q) == 0];
solns; len(solns)
[87, 524, 557, 994]
4

Theorem 1 (Chinese Remainder Theorem) Suppose n1, n2, . . . , nk are positive inte-
gers which are pairwise coprime. Then, for any given integers a1, a2, . . . , ak, there
exists an integer x solving the system of simultaneous congruences

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

Furthermore, all solutions x to this system are congruent modulo the product n =
n1n2 · · · · · nk.

The unique solution to the Chinese Remainder Theorem is given by Gauss’ For-
mula.

Theorem 2 (Gauss’ Formula) In the Chinese Remainder Theorem, the solution x is
given by

x = a1N1M1 + a2N2M2 + · · ·+ akNkMk ,

where

Ni = n/ni

Mi = N−1
i (mod ni) .

In our case, if n = pq ,

x ≡ r (mod p) ,

x ≡ s (mod q) ,

then x ≡ rq(q−1 mod p) + sp(p−1 mod q) (mod pq) .

Theorem 3 (Euler’s theorem) For any modulus n and any integer a coprime to n, we
have

aϕ(n) ≡ 1 (mod n)

where ϕ(n) denotes Euler’s totient function counting the integers between 1 and n that
are coprime to n.

Theorem 3 is a generalization of Fermat’s Little Theorem, because if n is a prime
number, then ϕ(n) = n− 1.
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Definition 5 (Carmichael’s λ-function) LetM = 2e·P1
e1 ·· · ··Pkek , where P1, . . . , Pk

are distinct odd primes. Carmichael’s λ-function is defined by

λ(2e) =
{

2e−1 if e = 1 or 2,
2e−2 if e > 2,

and λ(M) = lcm[λ(2e), (P1 − 1) · P1
e1−1, . . . , (Pk − 1) · Pkek−1].

Remark 2 When M = pq, with p, q distinct odd primes, then λ(M) = lcm[(p −
1), (q − 1)]. We will be using this later.

Theorem 4 (Carmichael’s Theorem) Let a, n be integers such that a is coprime to n.
Then, aλ(n) ≡ 1 (mod n).

Remark 3 Let n = pq be the product of two primes. By Theorems 3 and 4, aφ(n) ≡
aλ(n) ≡ 1 (mod n). This shows that φ(n) is an upper bound for the period of the
sequence {aj ∈ (Z/nZ)×|j = 0, 1, 2, . . . }. It is also possible that the ”true period” is
a proper factor of φ(n).

3 Pseudo-random Binary Sequences
Digital communication is centered around the transmission of binary sequences, strings
of 1’s and 0’s, that represent letters, numbers and symbols. A pseudo-random sequence
is a sequence of numbers that appears random to a user, but actually repeats after some
point. The length of the sequence before it repeats is referred to as the period of the
sequence. In order to formally define a pseudo-random binary sequence , we must first
define its autocorrelation .

Definition 6 (Autocorrelation) Let a = {an}∞n=1, an ∈ {0, 1} be a sequence of num-
bers considered “random.” We say the autocorrelation of a is

C(k) = C(k, a) = lim
N→∞

1
N

N∑
n=1

(−1)an+an+k .

If a is periodic with period P , then the autocorrelation is reduced to

C(k) =
1
P

P∑
n=1

(−1)an+an+k .

We will also be examining the ”runs” in a binary sequence. A run is a subsequence
of all 0’s or 1’s. The length and frequency with which each run appears has a role in
determining if the sequence is pseudo random or not.

Definition 7 (Pseudo-random binary sequence) Let {an}∞n=1, an ∈ {0, 1}, be a bi-
nary sequence with period P . We say this sequence is pseudo-random provided the
following conditions hold (Golomb’s Principles) [Gol]:
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1. balance: |
∑P
n=1(−1)an | ≤ 1.

In order to satisfy this condition, a sequence with k 0’s will have j 1’s, (k−1) ≤
j ≤ (k + 1).

2. low autocorrelation:

C(k) =
{

1, k = 0,
ε, k 6= 0,

for some ”small” ε. For sequences satisfying these first two properties, it can be
seen that ε = −1/P must hold.

3. Proportional Runs Property: In each period, half the runs are length 1, one-fourth
are length 2, one-eighth are length 3, etc. Moveover, there are as many runs of
1’s as there are of 0’s.

3.1 Generalities
Now that a pseudo-random binary sequence is defined, it is important to know how this
pertains to a cryptosystem. Let m = m0m1 . . .mt be a message in binary, and let c =
c0c1 . . . ct be a pseudo-random binary sequence. If you add m and c component wise
with a modulo of 2, you will receive a new message b = b0b1 . . . bt that is completely
different from the other two. However, if you want to retrieve m again, simply add c
and b in the same manner, and the result yielded is m. This is called a stream cipher.
The Blum-Goldwasser cryptosystem relies heavily on a stream cipher known as the
Blum-Blum-Shub stream cipher.

3.2 BBS stream cipher
The Blum-Blum-Shub pseudorandom number generator was created in a 1986 paper
by Lenore Blum, Manual Blum and Michael Shub [BBS]. It creates a streamcipher that
meets all the requirements of a pseudorandom binary sequence.

Definition 8 (Blum-Blum-Shub streamcipher) Let p, q be two distinct prime numbers
such that p ≡ 3 (mod 4) and q ≡ 3 (mod 4). Let n = pq and let 0 < r < n be a
random number. We define x0, the first number of the Blum-Blum-Shub pseudorandom
number generator as

x0 = r2 (mod n).

Each proceeding seed can be defined as

xi+1 = xi
2 (mod n),

or, more generally by Theorem 3,

xi = (x0
2i mod (p−1)(q−1)) (mod n).

The streamcipher, b = b1b2 . . . bt, is created by setting bi = xi mod 2, thus yielding
a pseudorandom string of 0’s and 1’s.
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Our implementation uses a pseudo-random number generator built into Sage to
generate the initial seed x0. Many of these pseudo-random number generators are lin-
ear feedback shift registers, as discussed in [Bro]. All of these pseudo-random number
generators are periodic over time. This creates a possible problem with the random
seed and the Blum-Blum-Shub generator. Obviously, a short period will lead to repli-
cated numbers, and make a message more easily decipherable. Similarly, a repeated
random seed allows for easy decryption by an adversary if they have both the original
message and the encrypted version . In their paper, Blum, Blum and Shub prove that
in certain conditions the period, π(x0) = λ(λ(n)). Let us define ordnx to be the order
of x mod n.

Theorem 5 (Period of x0) Let n be a number as described above and let x0 be a
quadratic residue of it. Let π(x0) be the period of the BBS sequence, x0, x1, x2, . . . .
If ordλ(n)/2(2) = λ(λ(n)) and ordn(x0) = λ(n)/2, then λ(λ(n)) = π(x0).

In order to prove the equality of the statements, it is enough to show that π(x)|λ(λ(n))
and λ(λ(n))|π(x).

proof: Recall, since π = π(x0) is the period of the sequence x0, x1, . . . , it is the
least possible integer such that xπ = x0

2π (mod n) = x0. Also, note that ordnx is an
odd number. Thus, by Theorem 4,

2λ(ordnx0) ≡ 1 mod (ordnxo).

By definition of π, 2π ≡ 1 mod (ordnx0), since x0 = x0
2π (mod n). Therefore,

π|λ(λ(n)).
Conversely, by assumption, λ(n)/2 is the least positive integer such that x0

λ(n)/2

(mod n) = 1. So, 2π mod (λ(n)/2) = 1. But, since x0
2π (mod n) = x0, it is also

true that x0
2π−1 (mod n) = 1. Therefore, λ(n)/2|2π−1. So, by assumption, 2λ(λ(n))

mod (λ(n)/2) = 1, and, since 2π mod (λ(n)/2) = 1, it can be seen that λ(λ(n))|π.
Therefore, π(x0) = λ(λ(n)), when all the assumptions hold. �

To examine this further, we need to define a type of prime that will have uses in our
examples.

Definition 9 (Special Blum Prime) Let p be a prime number. We say p is a special
Blum prime if and only if p ≡ 3 (mod 4), p = 2p1 + 1 and p1 = 2p2 + 1 with p1, p2

prime numbers. A number n = pq is special if and only if p, q are distinct special
Blum primes.

According to Theorem 5, we need an x0, our initial quadratic residue, with order of
λ(n)/2. Here are some Sage examples that demonstrate how often a quadratic residue
has the required period.

Example 4 Here is an example, using Sage, plotting the multiplicative order of each
quadratic residue of n = 23 · 47. In this specific example, we use two special Blum
primes. Note that λ(23 · 47)/2 = 253.

Sage
sage: p = 2*11+1; q = 2*23+1; n = p*q
sage: QR = quadratic_residues(n)
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sage: QR.remove(0)
sage: QR = [x for x in QR if gcd(x,n)==1]
sage: R = IntegerModRing(n)
sage: L = [R(x).multiplicative_order() for x in QR]
sage: list_plot(L)

The list plot command is seen in Figure 1 below.

Figure 1: Quadratic residue orders (mod 1081). The dark line shows that a majority
of residues have period λ(x0)/2

Below, we have a table of a sampling of quadratic residues with their multiplicative
orders as presented in the graph above.

Sage
sage: [(QR[i],L[i]) for i in range(10)]

[(1, 1),
(2, 253),
(3, 253),
(4, 253),
(6, 253),
(8, 253),
(9, 253),
(12, 253),
(16, 253),
(18, 253)]
sage: [(QR[i],L[i]) for i in range(100,111)]
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[(404, 253),
(418, 253),
(426, 253),
(427, 253),
(430, 253),
(432, 253),
(439, 253),
(440, 253),
(441, 253),
(450, 253),
(455, 253)]
sage: [(QR[i],L[i]) for i in range(115,125)]

[(484, 23),
(486, 253),
(487, 253),
(491, 253),
(495, 253),
(507, 23),
(512, 253),
(518, 11),
(519, 253),
(524, 253)]

Example 5 Here is larger example using n = 91261 = 262 · 347. As you can see,
almost all multiplicative orders are 22663. In fact, only 303 of the 22663 quadratic
residues (mod 91261) are not of the desired order.

Sage
sage: p = 263; p1 = 131
sage: q = 347; q1 = 173
sage: n = p*q; n
91261
sage: QR = quadratic_residues(n)
sage: QR.remove(0)
sage: QR = [x for x in QR if gcd(x,n)==1]
sage: R = IntegerModRing(n)
sage: L = [R(x).multiplicative_order() for x in QR]
sage: a = L[1]; a
22663
sage: odds = [i for i in range(len(L)) if L[i]!=a]
sage: len(odds); len(L)
303
22663
sage: list_plot(L)

The list plot command is seen in Figure 2 below.
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Figure 2: Quadratic residue orders (mod 91261)

The above examples demonstrate that almost all quadratic residues meet the needs
of Theorem 5. Looking further, at special numbers specifically, we can estimate π(x0).

Theorem 6 (Period of a special number) Let n = pq be a special number and x0 be a
quadratic residue satisfying the conditions of Theorem 5. Then, π(x0) can be estimated
asymptotically from below by n/8, as n→∞.

Remark 4 This improves on the estimate Ω( N
(lnlnN)2 ) given in [BBS].

proof: Let the above assumptions hold. Then,

λ(n) = λ(pq)
= lcm(p− 1, q − 1)
= lcm(2p1, 2q1)
= 2p1q1.

Thus, continuing with Carmichael’s function,

λ(λ(n)) = λ(2p1q1)
= lcm(p1 − 1, q1 − 1)
= lcm(2p2, 2q2)
= 2p2q2
≈ n/8.

�
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Special Blum primes only occur as 1/(n3 ln32) of all primes, but a special number
has the maximum π(x0) approximation. In his paper, Brock discusses linear feedback
shift registers and their periods. While BBS itself is not a LFSR, it can be examined in
a similar manner.

Theorem 7 (Blum-Blum-Shub as a LFSR) Let a0, a1, a2, . . . , ap−1 be a given BBS
sequence with period p. Define an = an−p. Then, the BBS sequence can be considered
a LFSR with a key length of p, approximated by λ(λ(n)) = n/8.

Sketch of proof: The shortest LFSR of a sequence can be defined by the connection
polynomial as described in [Bro]. With a small key, the Berlekamp-Massey method is
efficient to define this connection polynomial and break the sequence. However, with
a long key, specifically of length n/8, this is just as inefficient as trying to calculate the
quadratic residues.

The period length of this sequence is the one of the inherent security issues present
in the Blum-Blum-Shub sequence. A large period makes it hard for an adversary to
determine the seed x0 by listening to the sequence and determining where it repeats,
while a small period makes the sequence more susceptible to attacks. Another possible
attack, however, comes from an adversary finding the initial seed computationally. The
fact that x0 is a quadratic residue ensures security here. If we examine p prime for
quadratic residues, we will discover there are (p− 1)/2 quadratic residues. Observe
that, for n = pq, [(p− 1)(q − 1)]/4 numbers in (Z/mZ)× are quadratic residues.
If someone could determine the quadratic residuosity of a number mod n, then the
security of the system may be compromised. However, there is an assumption about
the difficulty of finding quadratic residues [BBS, GM].

Definition 10 (Quadratic residuosity assumption) The quadratic residuosity assump-
tion states that it is ”hard on average” to compute the quadratic residue of a number in
(Z/mZ)×. More formally, for each polynomial f(n), the complexity is Ω(f(n)), so
there is no polynomial time algorithm to determine the quadratic residue of a number.

This means that for large enough n, it is virtually impossible, by sheer time con-
straints, to compute the initial seed x0, making this number generator safe from this
mathematical attack.

4 BG cryptosystem
The Blum-Goldwasser cryptosystem [BG] makes use of the BBS streamcipher to en-
crypt a message. In addition, the decryption algorithm is used to determine the initial
seed of BBS, x0, without compromising the integrity of the system.

4.1 Encryption
Definition 11 (XOR operation) Let a = a1a2 . . . at and b = b1b2 . . . bt be binary
sequences. We define c = a⊕ b as

ck =
{

1, ak 6= bk,
0, ak = bk
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for all 1 ≤ k ≤ t.

Consider a message m = m1m2 . . .mt a binary string of length t. Let x0 be a
random seed x0 ∈ Qn. Let b = b1b2 . . . bt be the Blum-Blum-Shub streamcipher of
length t associated to x0, n.Compute c = b⊕m,where⊕ indicates the XOR operation.
This defines the ciphertext output c = c1c2 . . . ct of the Blum-Goldwasser encryption
algorithm. Alice sends the ciphertext c along with a number y = x2t+1

0 (mod n).

Remark 5 Note: If we were to take c⊕ b again, it will yield the original message m.

4.2 Decryption
Bob receives a ciphertext c and a number y ∈ Qn. Let

d1 = (
p+ 1

4
)t+1 mod (p− 1)

d2 = (
q + 1

4
)t+1 mod (q − 1)

u = yd1 mod p

v = yd2 mod q

Now, use the Extended Euclidean Algorithm (sec. 2.1) to compute a, b such that
ap+ bq = 1. Set x0 = ubq + vap (mod n)

We now give the proof that the decryption is correct.

Theorem 8 (Decryption algorithm works)

proof: Let (c, y) be the transmitted cipher, where y = x2t+1

0 (mod n). Since
n = pq, by the Chinese Remainder Theorem, see theorem 1, for each r, s,

x ≡ r (mod p)

x ≡ s (mod q)

has a unique solution x (mod n), given by

x = rqb+ spa (mod n).

We know that x0 = ubq + vap (mod n) satisfies

x0 ≡ u (mod p)

x0 ≡ v (mod q)

So,
x0 ≡ yd1 mod p
x0 ≡ yd2 mod q

(1)
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Recall that x0 is a quadratic residue, and is therefore equal to w2 for some w ∈
Z/nZ. Therefore, when t = 1,

x0
( p+1

2
)t ≡ x0

p+1
2 mod p

≡ x0
p−1
2

+1 mod p

≡ x0 · x0
p−1
2 mod p

≡ x0 · wp−1 mod p
≡ x0 mod p,

because of Fermat’s Last Theorem. It follows, for any t > 1,

yd1 = (x0
2t+1

)( p+1
4

)t+1
mod p

≡ x0
( p+1

2
)t+1

mod p

≡ x0
( p+1

2
)t( p+1

2
) mod p

≡ (x0
( p+1

2
)t
)

p−1
2

+1 mod p

≡ x0
( p+1

2
)t
x0

( p+1
2

)t( p−1
2

) mod p

≡ x0
( p+1

2
)t
z(p−1) mod p

≡ x0
( p+1

2
)t

mod p,

where z = x0
( p+1

2 )t/2. Repeat this method for t+ 1 replaced by t:

x0
( p+1

2
)t ≡ x0

( p+1
2

)t−1( p+1
2

) mod p

≡ (x0
( p+1

2
)t−1

)
p−1
2

+1 mod p

≡ x0
( p+1

2
)t−1

x0
( p+1

2
)t−1( p−1

2
) mod p

≡ x0
( p+1

2
)t−1

z(p−1) mod p

≡ x0
( p+1

2
)t−1

mod p

We can inductively repeat this until the process yields

yd1 ≡ x0 mod p .

Similarly,
yd2 ≡ x0 mod q .

Therefore, by the uniqueness of the Chinese Remainder Theorem solution and (1), we
have

x0 = x0 .

�
Since Bob has now calculated the original x0, he can generate the Blum-Blum-

Shub streamcipher by calculating x1, x2, . . . , xt, and recreating b = b1b2 . . . bt, where
bi = xi mod 2. When b is calculated, m = c⊕ b is the decrypted message.
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Example 6 Here is an example of the encryption and decryption of a string of 1’s and
0’s implemented in Sage version 4.3.4. We will be using a private key p = 499 and
q = 547 to keep it simple.

Sage

sage: from sage.crypto.public_key.blum_goldwasser
sage: import BlumGoldwasser
sage: bg = BlumGoldwasser(); bg
The Blum-Goldwasser public-key encryption scheme.
sage: p = 499; q = 547
sage: pubkey = bg.public_key(p, q); pubkey
272953
sage: prikey = bg.private_key(p, q); prikey
(499, 547, -57, 52)
sage: P = "10011100000100001100"
sage: C = bg.encrypt(P, pubkey, seed=159201); C
([[0, 0, 1, 0], [0, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0],
[0, 1, 0, 0]], 139680)
sage: M = bg.decrypt(C, prikey); M
[[1, 0, 0, 1], [1, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0],
[1, 1, 0, 0]]
sage: flatten(M)
[1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0]
sage: M = "".join(map(lambda x: str(x), flatten(M))); M
’10011100000100001100’
sage: M == P
True

4.3 Complexity
The Blum-Goldwasser cryptosystem is a very efficient system both for encryption and
decryption, comparable to the current standard, RSA encryption. During encryption,
the Blum-Goldwasser cryptosystem actually performs faster than the standard in all but
a few special cases. It is in linear time and based on generating the BBS stream cipher.
In decryption, the initial calculations have a fixed number of steps, with additional steps
based on message size. This makes it less efficient than RSA for short messages, but a
quicker decryption for long messages. Decryption is also accomplished in linear time
[Men].

4.4 Security
It has been discussed in previous papers on the subject that the Blum-Goldwasser cryp-
tosystem is susceptible to a chosen-ciphertext attack. This attack is based on an attacker
finding a ciphertext and its decryption without knowing the key. With this knowledge,
the attacker may be able to determine the initial seed x0, thus destroying the secu-
rity of the system. Our model, however, takes a few steps to correct this. Firstly, we
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have a random initial seed for each message we send. This means that with a chosen-
ciphertext attack an adversary may gain knowledge of one initial seed, but the x0 for a
second message is one of (p−1)(q−1)

4 quadratic residues. Thus, the probability of hav-
ing the same seed is extremely low. Another possible way to block this attack is with
an authentication challenge. This would require challenging the attacker for the private
key, similar to a password to gain network access. This should also work to prevent
this attack.

5 Conclusion
The Blum-Goldwasser cryptosystem is an efficient system for both encryption and de-
cryption with slight security deficiencies to a chosen ciphertext attack. Through my
research I have tried to find a possible means to cover these deficiencies. We have the-
orized that changing the initial seed, x0, in a pseudorandom method, the system may
then be immune to these attacks. Based on the fact that there will be (p−1)(q−1)

4 dif-
ferent initial seeds, for a large n, the same message could be sent using each quadratic
residue as the initial seed and each create a different ciphertext, c. Is this enough to
classify this system secure? If so, is it financially feasible in comparison to RSA?
This system has no public uses currently, but based on its efficiency and security, the
Blum-Goldwasser cryptosystem could replace RSA in some daily uses.

6 Appendix: Sage code
This is the initial code on Python implemented by Prof Joyner and me. The code has
since been cleaned and added to Sage 4.3.4 by Minh Van Nguyen. A special thanks to
Minh for his hard work in the implementation.

Sage

"""
Functions written to implement the Blum-Goldwasser
cryptosystem, written as part of an honors math
project at the USNA in 2010.

As part of official goverment work, this is in the
public domain.

REFERENCES:
Blum-Goldwasser cryptosystem
http://en.wikipedia.org/wiki/Blum-Goldwasser_cryptosystem

Menezes, Alfred; van Oorschot, Paul C.; and Vanstone, Scott
A. Handbook of Applied Cryptography. CRC Press, October
1996. http://www.cacr.math.uwaterloo.ca/hac/
(see chapter 8)

M. Blum, S. Goldwasser, "An Efficient Probabilistic Public
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Key Encryption Scheme which Hides All Partial Information",
Proceedings of Advances in Cryptology - CRYPTO ’84, pp.
289-299, Springer Verlag, 1985.

The implementation below is a blend of these.

AUTHORS:
M. Hogan and D. Joyner (wdjoyner@gmail.com)

Last modified: 2010-02-06
"""

def num2bin(x):
"""
Converts integer in range (1,255) to binary.

EXAMPLES:
sage: num2bin(100)

"""
return [floor(x/2**(7-i))%2 for i in range(8)]

def string2ascii(m):
"""
Converts a string of characters to a sequence of
0’s and 1’s using the Python ord command.

EXAMPLES:
sage: string2ascii("usna2010")

"""
L = []
for a in m:

L.append(ord(a))
M = [num2bin(x) for x in L]
return flatten(M)

def ascii2string(M):
"""
M is a ciphertext message of 0’s and 1’s of length 8k.
This returns a string of characters representing that
list in ascii.

EXAMPLES:
sage: M = [0,1,0,1,0,1,0,0,0,1,0,0,0,0,1,0]
sage: ascii2string(M)
’BT’

"""
m = len(M)
k = int(m/8)
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S = []
for i in range(k):

s = sum([2**(7-j)*M[8*i+j] for j in range(8)])
S.append(chr(s))

sumS = ""
for s in S:

sumS = s + sumS
return sumS

def carmichael(n):
"""
The Carmichael function of a positive integer n,
denoted \lambda(n) in the literature, is defined as
the smallest positive integer m such that

\[
aˆm \equiv a \pmod n,
\]
for every integer a that is both coprime to and smaller than n.
In other words, in more algebraic terms, it defines the
exponent of the multiplicative group of residues modulo n.

EXAMPLES:
sage: carmichael(4)
2
sage: euler_phi(4)
2
sage: carmichael(8)
2
sage: euler_phi(8)
4
sage: carmichael(10)
4
sage: euler_phi(10)
4
sage: carmichael(36)
6
sage: euler_phi(36)
12
sage: n = 100; a = 11; (power_mod(a,carmichael(n), n) - 1)%n
0
sage: n = 111; a = 11; (power_mod(a,carmichael(n), n) - 1)%n
0

REFERENCES:
http://en.wikipedia.org/wiki/Carmichael_function

"""
L = factor(n)
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if n == 2:
return 1

if n == 4:
return 2

t = len(L) # the no. of dist. prime factors of n
if t == 1: # n is a prime power

p = L[0][0]
if p == 2: # so n is a power of 2

return ZZ(n/4)
if p>2:

return ZZ((p-1)*n/p)
powers = [L[i][0]**L[i][1] for i in range(t)]
return lcm([carmichael(m) for m in powers])

def bbs(N, x0, L):
"""
Implements the Blum-Blum-Shub pseudo-random number generator.

INPUT:
N - product of two primes, each congruent to 3 (mod 4)
x0 - a seed, 1<x0<N (possibly a square (mod N)?)
L - the length of the sequence

OUTPUT:
a pseudo-random sequence of 0’s and 1’s

NOTE:
Under some reasonable hypotheses, Blum-Blum-Shub [1]
sketch a proof that the period of the BBS stream cipher
is equal to carmichael(carmichael(N)). This is verified
below in a few examples by using the Sage function
lfsr_connection_polynomial (written by Tim Brock)
which computes the connection polynomial of a linear
feedback shift register sequence. The degree of that
polynomial is the period.

EXAMPLES:
sage: p = next_prime(1015); q = next_prime(1100)
sage: p%4 == 3; q%4 == 3
True
True
sage: bbs(p*q, 999, 10)
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1]
sage: carmichael(carmichael(7*11))
4
sage: bbs(7*11, 13, 16)
[1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0]
sage: s = [GF(2)(x) for x in bbs(7*11, 13, 60)]
sage: lfsr_connection_polynomial(s)
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xˆ3 + xˆ2 + x + 1
sage: carmichael(carmichael(11*23))
20
sage: s = [GF(2)(x) for x in bbs(11*23, 13, 60)]
sage: lfsr_connection_polynomial(s)
xˆ19 + xˆ18 + xˆ17 + xˆ16 + xˆ15 + xˆ14 + xˆ13 + xˆ12\
+ xˆ11 + xˆ10 + xˆ9 + xˆ8 + xˆ7 + xˆ6 + xˆ5 + xˆ4 + xˆ3 + xˆ2 + x + 1

REFERENCES:
[1] Lenore Blum, Manuel Blum, and Michael Shub. "Comparison
of two pseudo-random number generators", Advances in
Cryptology: Proceedings of Crypto ’82.
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C82/61.PDF

"""
if L<0: return []
b = [x0%2] # = [x0**2%2]
R = IntegerModRing(N)
x0 = R(x0)
for i in range(L-1):

x1 = x0**2
b.append(ZZ(x1)%2)
x0 = x1

return b

class BGCryptosystem():
"""
Class implementing Blum-Goldwasser cryptosystems.

EXAMPLES:

"""
def __init__(self, public_key):

self._public_key = public_key

def public_key(self):
"""
Returns the public key of the cipher.

EXAMPLES:
sage: p = next_prime(1015); q = next_prime(1100)
sage: BG = BGCryptosystem(p*q)
sage: BG.public_key()
1123957

"""
return self._public_key

def __str__(self):
"""
Print method.
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EXAMPLES:
sage: p = next_prime(1015); q = next_prime(1100)
sage: BG = BGCryptosystem(p*q)
sage: print BG
BGCryptosystem(1123957)

"""
return "BGCryptosystem(%s)"%self.public_key()

def __repr__(self):
"""
Display method.

EXAMPLES:
sage: p = next_prime(1015); q = next_prime(1100)
sage: BG = BGCryptosystem(p*q)
sage: BG
Blum-Goldwasser cryptosystem with public key
1123957.

"""
return "Blum-Goldwasser cryptosystem with public key
%s."%self.public_key()

def random_key(self):
"""
Returns a random key to be used by the cipher.

EXAMPLES:

"""
N = self.public_key()
return floor(rand()*N)

def encrypt(self, M, r):
"""
Implements the Blum-Goldwasser public key encryption
algorithm.

INPUT:
M - a cleartext string (the message)
r - a random number 1 < r < N

EXAMPLES:
sage: p = next_prime(1015); q = next_prime(1100)
sage: p%4 == 3; q%4 == 3
True
True
sage: BG = BGCryptosystem(p*q)
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sage: c, y = BG.encrypt("Hello World", 999)
sage: len(c)
88
sage: y
760299

TODO: Check if r can be defined inside the method,
and removed as an input parameter.

"""
N = self.public_key()
m = string2ascii(M)
L = len(m)
R = IntegerModRing(N)
x0 = ZZ(R(r**2))
b = bbs(N, x0, L)
return [(b[i]+m[i])%2 for i in range(L)],
power_mod(x0, 2**L, N)

def decrypt(self,c,y,p,q):
"""
Implements the Blum-Goldwasser decryption algorithm.

INPUT:
b - a list of 0’s and 1’s of length L (the ciphertext)
y - a number 1 < y < N = p*q
p, q - primes, each congruent to 3 (mod 4)

OUTPUT:
a string (the cleartext message)

EXAMPLES:
sage: p = next_prime(1015); q = next_prime(1100)
sage: p%4 == 3; q%4 == 3
True
True
sage: BG = BGCryptosystem(p*q)
sage: c, y = BG.encrypt("Hello World", 999)
sage: BG.decrypt(c,y,p,q)
’Hello World’

"""
N = p*q
if not(N == self.public_key()):

raise ValueError("Your private key (%s,%s)
are incorrect"%(p,q))

L = len(c)
pqgcd, a, b = xgcd(p,q)
#rp = power_mod(y, int((p+1)/4)**L, p)
#rq = power_mod(y, int((q+1)/4)**L, q)
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#pi = power_mod(p, -1, q)
#qi = power_mod(q, -1, p)
#x0 = (q*qi*rp + p*pi*rq)%N
d1 = power_mod(int((p+1)/4), L, p-1)
d2 = power_mod(int((q+1)/4), L, q-1)
u = power_mod(y, d1, p)
v = power_mod(y, d2, q)
R = IntegerModRing(N)
x0 = ZZ(R((v*a*p+u*b*q)))
b = bbs(N, x0, L)
d = [(x[0]+x[1])%2 for x in zip(b,c)]
s = ascii2string(d)
reverse_s = s[::-1]
return reverse_s
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