
A polynomial-time probabilistic algorithm for
the minimum distance of a non-binary linear

error-correcting code
Wayne Irons

April 22, 2005

Contents

1 Introduction 2

2 Algorithms 5

3 Application to Trace Codes 9

4 Application to McEliece Public Key Cryptosystem 10

5 Appendix: GAP Code 11

The goal of the project is to examine a polynomial-time probabilistic al-
gorithm to compute the minimum distance of an arbitrary, non-binary, linear
error-correcting code. Only the binary case was done in A. Foster’s honors
project [F]. For the non-binary case a new function was needed in the GAP
kernel. This function was added by Steve Linton of St. Andrews, Scotland,
one of GAP’s kernel maintainers, in August 2004. The programming shall be
done in the GAP coding-theory package GUAVA. GAP is a computer algebra
package whose open source kernel is written in the C programming language
[GAP]. However, most packages (such as GUAVA) and the algorithms de-
scribed here are written in GAP’s own interpreted language. Jointly, with
my advisor, I extended Foster’s work (Algorithm 4) to the non-binary case
but with a new feature making it faster (Algorithm 5). The paper ends with
applications to the non-binary McEliece public key cryptosystem (see §4)
and trace codes (see §3)

Acknowledgement: The GAP examples were performed on an AMD-64
linux PC with 2G of RAM. I am grateful to the Director of Research Professor
Reza Malek-Madani for making this available.

1

1 Introduction

When sending a message across a noisy channel, the message must first be
converted into a binary sequence. Different types of error correcting codes
exist, however, we will only consider block codes. A block code has the
property that every element can be described as a word in an alphabet of
a fixed length. We will only consider the case when the alphabet consists
of elements of a finite field, and regard a word in the alphabet as a vector
with coordinates in the finitle field. Error-correcting block codes are used
primarily to transmit data across a noisy channel. Block codes allow for error
correction by means of source encoding which adds redundant information
onto each message vector being sent. A source encoder converts the data into
codewords which are then transmitted across a medium. Depending on the
nature of the information being sent and the amount of noise in the channel,
we choose a block code with the suitable amount of redundancy to accurately
recover the message being sent. In every application known to us, the block
code is a set of binary vectors of a fixed number of coordinates n. Therefore,
the message being sent must be split into pieces of length n. The parameter
n depends on the nature of the application.

Let F = GF (q) be a finite field with q elements. We call a subset of Fn

a (block) code. A linear code is a subspace of the vector space Fn. The
length of the code is the integer n. A generator matrix of a linear code
can be any matrix whose rows form a basis for the subspace. Let C be a
linear code of length n over F with generator matrix G, where q is a power of
a prime p. In this case if m is a row vector in Fk, then c = mG is a codeword
in C. Moreover, all codewords in C arise from some message vector m this
way. This defines the encoder from the message space Fk to the code
C. If p = 2, then the code is called binary. We assume that Fn has been
given the standard basis e1 = (1, 0, ..., 0) ∈ Fn, e2 = (0, 1, 0, ..., 0) ∈ Fn, ...,
en = (0, 0, ..., 0, 1) ∈ Fn. The dimension of C is denoted k, so the number of
elements of C is equal to qk. The quantity R = k/n is called the rate of the
code and measures the amount of information that the code can transmit.

Example 1 Consider the code C1 over GF (3) with generator matrix G1

given by

1 0 0 0 1 1 2
0 1 0 0 0 1 1
0 0 1 0 2 0 1
0 0 0 1 2 1 0

2

and consider the code C2 over GF (3) with generator matrix G2 given by

1 0 0 1 0 1 2
0 1 0 0 0 1 1
0 0 1 2 0 0 1
0 0 0 2 1 1 0

 .

Notice that these two codes are identical except that the 4th and 5th columns
have been swapped. Therefore they are equivalent to each other in the sense
defined below.

Two codes are equivalent to each other if one can be obtained from the
other by a combination of permutations of coordinate positions of the code
and multiplication of the symbols appearing in a fixed position by a non-zero
scalar. More precisely, two codes are equivalent if the generator matrix of
one can be derived from the other using operations of the following types:

1. Permutation of the rows.

2. Multiplication of a row by a non-zero scalar.

3. Addition of a scalar multiple of one row to another.

4. Permutation of the columns.

5. Multiplication of any column by a non-zero scalar.

Two codes are permutation equivalent if one generator matrix can be
obtained from the other by using operations of only type 4.

Lemma 1 Every linear code C of length n and dimension k is permutation
equivalent to a code C ′ with a generator matrix of the form (Ik |A), where A
is a k × (n− k) matrix.

Please see [HILL] or MacWilliams and Sloane [MS] for a proof of this fact.
A code with generator matrix in the form above is said to be in standard
form.

Another important parameter associated to the code is the number of
errors which it can, in principle, correct. For this notion, let us introduce the
concept of distance between codewords. For any two x,y ∈ Fn, let d(x,y)
denote the number of coordinates where these two vectors differ:

3

d(x,y) = |{0 ≤ i ≤ n | xi 6= yi}|. (1)

This defines the Hamming metric on the space Fn. Define the weight w
of x to be the number of non-zero entries of x. Note, d(x,y) = w(x − y)
because the vector x− y has non-zero entries only at locations where x and
y differ.

If d(C) denotes the smallest distance between distinct codewords in a
linear code C,then there exist x and y such that d(C) = d(x,y). If M is any
matrix with coefficents in F, then let d(M) denote the minimum distance of
the linear code spanned by the rows of M .

Lemma 2
d(C) = min

c∈C, c 6=0
d(0, c). (2)

Proof : Note that d(C) = w(x − y) ≥ w(C), where w(C) is the minimum
weight of a non-zero codeword in C. Also, for some codeword z, w(C) =
w(z) = d(0, z) ≥ d(C). Therefore, w(C) = d(C).¤

Note, if C is equivalent to C ′, then d(C) = d(C ′). In general, this pa-
rameter is known to be very difficult to efficiently determine [CHA]. In fact,
computing it in general is known to be NP-complete [BMT], [VAR].

Let C be a linear code. We say C is e error-correcting provided for any
vector v in Fn there is exactly one codeword c ∈ C for which d(c,v) ≤ e.

Lemma 3 A linear code C is e-error-correcting if and only if d(C) ≥ 2e+1.
In other words, if d = d(C) then C is [(d− 1)/2]-error-correcting.

Proof : Let c be a codeword. Let B(c, e) denote a ball of radius e centered
at c. Since C is e error correcting, any two such balls must be disjoint.
Therefore, the distance between their centers cannot be less than or equal
to 2e. This proves “the only if” part. For the “if” part of the proof, note
that d(C) ≥ 2e + 1 implies that any two such balls are disjoint. Suppose
that C is not e error-correcting, in other words, the ball of radius e centered
at v contains distinct codewords c and c′. By the triangle inequality for the
Hamming metric, B(c, e)∩B(c′, e) contains v. This contradicts the fact that
they must be disjoint. ¤

Notation: Let E denote a field extension of the finite field F.
First we must explain how each element of E may be represented as an

invertible matrix with entries in F.

4

Let α ∈ E denote a generator of the cyclic group E×. Let f(x) denote the
minimal polynomial of α (the lowest degree monic polynomial which has α
as a root). Take the matrix associated to α, denoted A, to be the companion
matrix of f(x) (namely the characteristic polynomial of A is f). If the degree
of f(x) is m, then A is an m×m matrix with coefficients in F (and the degree
of E/F is m). If β ∈ E denotes any other non-zero element, then we can write
β = αi, for some i (because E× is a cyclic group). Take the matrix associated
to β to be B = Ai. The matrix associated to 0 ∈ E will be the m×m zero
matrix.

We define the trace of x ∈ E to be the trace of the corresponding matrix.
Denote this trace by TraceE/F(x). Let C denote a linear code over E. The
trace code of C is defined to be

TraceE/F(C) = {(TraceE/F(c1), ..., T raceE/F(cn)) | (c1, ..., cn) ∈ C}.

Note that this is a vector space over F therefore is a linear code over F. The
length of this code is n, but the dimension and minimum distance are more
difficult to determine.

2 Algorithms

The naive method for calculating the minimum distance is to examine the
weight of every possible linear combination of rows in G.

Algorithm 1 Brute Force Minimum Distance.
Input: A code C of length n containing M elements over F.
Output: The minimum distance of C.

1. Initialize mindist = n and select minword to be an arbitrary element
in C.

2. For c in C compute the weight wt = w(c), if wt < mindist then
mindist = wt and minword = c.

3. Return: mindist and minword.

In the above algorithm C is not required to be linear. For linear codes
the following algorithm is much faster.

5

Algorithm 2 1. After replacing C by a permutation equivalent code C ′,
if necessary, one may assume the generator matrix has the following
form: G = (Ik |A), for some k × (n− k) matrix A.

2. If A = 0 then d(C) = 1.

3. Find the minimum distance of the code spanned by the rows of A. Call
this distance d(A). Note that d(A) is equal to the Hamming distance
d(v,0) where v is some proper linear combination of i distinct rows of
A.

4. d(C) = d(A) + i, where i is as in step (2).

By “proper linear combination”, we mean to exclude the case where all
coefficients are equal to 0.

Though this is still an exponential time algorithm problem, the vectors be-
ing compared are of length n−k rather than length n. Additionally, this algo-
rithm works for all Galois fields of order q ≥ 2. (We remark that step 2 in the
above algorithm was missing from the implementation of MinimumDistance
in the last release of GUAVA. This bug is fixed in version 2.0.)

The probabilistic algorithm used to reduce this to polynomial time was
initially proposed by J. S. Leon [LEO] and later modified by F. Chabaud
[CHA]. One version of the algorithm given in Chabaud’s paper is as follows:

Algorithm 3 Let q be a power of a prime p and let C be a linear code of
dimension k over GF (q) as above. This algorithm has input parameters s
and ρ, where s is an integer between 2 and n−k, and ρ is an integer between
2 and k.

(1) Find a generator matrix G of C.

(2) Randomly permute the columns of G.

(3) Perform Gaussian elimination on the permuted matrix to obtain a new
matrix of the following form:

G = (Ik |Z |B) (3)

with Z a k× s matrix. If Z and B are both 0 then return d(C) = 1. If
Z is 0 but B is non-zero, then go back to step (2).

6

(4) Search Z for at most ρ rows that lead to codewords of weight less than
ρ.

(5) For these codewords, compute the weight of the whole word.

However, sometimes step (3) is impossible because Gaussian elimination
does not always produce a matrix in standard form. For example, take any
code with generator matrix in row reduced echelon form which is not of the
form (I |A).

Here is a faster version of Leon’s algorithm.

Algorithm 4 Notation as in Algorithm 3.

(1) Replace, if necessary, C by a permutation equivalent code C ′ with a
generator matrix in standard form, G = (Ik |A).

(2) Select s columns at random from the matrix A and call the resulting
k × s matrix Z.

(3) For each i ≤ ρ, find the linear combination of exactly i rows of Z for
vectors of smallest weight. If Z = 0, then return d(C) = 1.

(4) For these vectors, compute the weight of the associated codeword.

(5) Find the minimum weight of the codewords from (4). Call this dZ.

(6) Repeat this algorithm some multiple m times and return the most com-
monly occurring value of dZ.

Chabaud [CHA] and Barg [BARG] have discussed finding optimal values
for ρ, s, and m.

The previous two algorithms were discussed in A. Foster’s thesis [F],
although only implemented in GUAVA for binary codes. The next algorithm
is original to this thesis and forms the basis of our application to non-binary
McEliece public key cryptosystems. This application is discussed in section
4.

Algorithm 5 Notation as in Algorithm 3.

(1) Select s columns at random from the matrix G.

7

(2) For each i ≤ ρ, find the linear combination of exactly i rows of G for
vectors of smallest weight.

(3) For these vectors, compute the weight of the associated codeword.

(4) Find the minimum weight of the codewords from (3). Call this d0.

(5) Repeat this algorithm some multiple m times and return the most com-
monly occurring value of d0.

Examples of the above algorithm are given in a later section.
The next algorithm is used in this project as well as Lennon’s project [L]

for testing purposes.

Algorithm 6 Nearest Neighbor List Decoding.
Input: A code C of length n containing M elements over F, an integer

s ≥ [(d− 1)/2], a word v ∈ Fn

Output: The list of all codewords within Hamming Distance s from v

1. Initialize L = {}
2. For c in C compute the weight wt = w(c− v), if wt ≤ s then append

c to list L.

3. Return: L.

We remark that if s < [(d− 1)/2] then the algorithm still works but may
return an empty list.

Algorithm 7 Trace Code Construction.
Input: A linear code C of length n over E where E is an extension field

of F
Output: The Trace Code of C

1. Initialize Tr(C) = {}
2. For c in C compute the trace Tr(c), and append it to the list Tr(C).

3. Compute a basis of Tr(C) over F and compute a generator matrix for
Tr(C)

4. Return: Tr(C) and the generator matrix.

8

3 Application to Trace Codes

In the example below we compute the minimum distance of several randomly
chosen Trace codes where F is the field with 4 elements and E is the field
with 16 elements.

gap> F:=GF(4);

GF(2^2)

gap> FF:=GF(16);

GF(2^4)

gap> Read("/home/irons/gapfiles/TraceCode.gap");

gap> C:=RandomLinearCode(15,4,F);

a [15,4,?] randomly generated code over GF(4)

gap> TC:=TraceCode(C,F);time;

a linear [15,4,1..8]6..11 user defined unrestricted code over GF(4)

126

gap> MinimumDistance(C);

7

gap> MinimumDistance(TC);

7

gap> C:=RandomLinearCode(15,4,FF);

a [15,4,?] randomly generated code over GF(16)

gap> TC:=TraceCode(C,F);time;

a linear [15,8,1..4]4..7 user defined unrestricted code over GF(4)

31061

gap> MinimumDistance(C);

10

gap> MinimumDistance(TC);

4

gap> C:=RandomLinearCode(15,4,FF);

a [15,4,?] randomly generated code over GF(16)

gap> TC:=TraceCode(C,F);time;

a linear [15,8,1..6]4..7 user defined unrestricted code over GF(4)

31542

gap> MinimumDistance(C);

10

gap> MinimumDistance(TC);

5

9

gap> C:=RandomLinearCode(15,4,FF);

a [15,4,?] randomly generated code over GF(16)

gap> TC:=TraceCode(C,F);time;

a linear [15,8,1..4]4..7 user defined unrestricted code over GF(4)

33973

gap> MinimumDistance(C);

10

gap> MinimumDistance(TC);

4

4 Application to McEliece Public Key Cryp-

tosystem

We follow section 1.2 of [CHA].
Here is a brief description of this cryptosystem. Alice is sending a message

to Bob. Eve is trying to read Alice’s message. Given is a [n, k, d] non-binary
code with generator matrix G and also given is a decoding algorithm that
corrects up to t errors. Input parameters are an invertible k × k matrix S
and an n× n permutation matrix P . The triplet (S,G, P) will be the secret
key and the pair (t, Ĝ = SGP) will be the public key. Everyone knows the
public key, but Alice and Bob are the only two who know the secret key. For
Alice to transmit a k bit message m, she sends the cipher text c = mĜ + e,
where e is a random vector of weight at most t. To decipher the cipher text
Bob decodes cP−1 = mSG + eP−1 using the given algorithm.

To decrypt an encoded message, consider the matrix

G′ =
(

Ĝ

mĜ + e

)
.

This is the generator matrix of a linear code C ′ with minimum weight code-
word e. Note that e is the only vector in C ′ of minimum weight, by construc-
tion. Algorithm 4 can be modified to yield not only the minimum distance,
but also a vector of minimum weight. Using this fact Eve can solve for e,
and therefore she can solve for the message m sent by Alice. This example
illustrates the usefulness of fast minimum distance algorithms for cracking
certain types of McEliece cryptosystems.

10

The GAP code below illustrates how to use the MinimumDistanceRan-
dom command described in Algorithm 5 to break the McEliece cryptosystem
cipher.

gap> F:=GF(16);
GF(2^4)
gap> C := ReedSolomonCode(15, 10);
a cyclic [15,6,10]7..9 Reed-Solomon code over GF(16)
gap> G:=GeneratorMat(C);;
gap> g:=Random(SymmetricGroup(15));;
gap> v:=ShallowCopy(NullWord(15, F));
[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2),

0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]

gap> v[1]:=One(F);;
gap> v[2]:=One(F);;
gap> v[3]:=One(F);;
gap> v[4]:=One(F);;
gap> v[5]:=One(F);;
gap> e:=Permuted(v,g);;
gap> c0:=Random(C);;
gap> w:=VectorCodeword(c0+e);;
gap> Gnew:=Concatenation(G,[w]);;
gap> Cnew:=GeneratorMatCode(Gnew,F); time;

a linear [15,7,1..9]6..8 code defined by generator matrix over GF(16)
49109

gap> MinimumDistanceRandom(Cnew,10,13);time;

This is a probabilistic algorithm which may return the wrong answer.
[5, [0 0 0 0 1 0 0 1 0 0 1 1 0 0 1]]
158361
gap> e;
[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0,

0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0]

Notice the error vector e matches the minimum weight vector returned
by MinimumDistanceRandom, as desired.

5 Appendix: GAP Code

11

BruteForceMindist:=function(C)
local n,c,w, mindist, minword, Cwords;
Cwords:=Elements(C);
n:=WordLength(C);
mindist:=n; #initialize
minword:=Cwords[1]; #initialize
for c in Cwords do
w:=WeightCodeword(c);
if w >0 and w < mindist then

mindist:=w;
minword:=c;
fi;

od;
return [mindist,minword];
end;

NearestNeighborDecodeword:=function(r,C,dist)
local Cwords,NearbyWords,c;
Cwords:=Elements(C);
NearbyWords:=[];
for c in Cwords do
if WeightCodeword(r-c) < dist then

NearbyWords:=Concatenation(NearbyWords,[c]);
fi;

od;
return NearbyWords;
end;

C:=NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)

r:=Codeword("1100000000000000");
[1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

r in C;
false

NearestNeighborDecodeword(r,C,3);
NearestNeighborDecodeword(r,C,4);
NearestNeighborDecodeword(r,C,5);

CodeLength:= function (C)
return WordLength(C);
end;

TraceCode:= function (C,F)
#C is defined over an extension of F

12

#F is a base field
local FF, TC, TrC, i, n, c;
n:= CodeLength(C);
FF:= LeftActingDomain(C);
TC:= List(C,c->Codeword(List([1..n],i->Trace(FF,F,c[i]))));
TrC:=ElementsCode(TC, F);
IsLinearCode(TrC);
return TrC;
end;

###
MinimumDistanceRandom(<C>, <num>, <s>)
##
This is a simpler version than Leon’s method, which does not put G in st form.
(this works welland is in some cases faster than the st form one)
Input: C is a linear code
num is an integer >0 which represents the number of iterations
s is an integer between 1 and n which represents the columns considered
in the algorithm.
Output: an integer >= min dist(C), and hopefully equal to it!
a codework of that weight
##
Algorithm: randomly permute the columns of the gen mat G of C
by a permutation rho - call new mat Gp
break Gp into (A,B), where A is kxs and B is kx(n-s)
compute code C_A generated by rows of A
find min weight codeword c_A of C_A and w_A=wt(c_A)
using AClosestVectorCombinationsMatFFEVecFFECoords
extend c_A to a corresponding codeword c_p in C_Gp
return c=rho^(-1)(c_p) and wt=wt(c_p)=wt(c)
##
MinimumDistanceRandom:= function(C,num,s)
local A,HasZeroRow,majority,G0, Gp, Gpt, Gt, L, k, n, i, j, m, dimMat, J, d1,M,
arrayd1, Combo, rows, row, rowSum, G, F, zero, AClosestVec, B, ZZ, p, numrow0,

bigwtrow,bigwtvec, x, d, v, ds, vecs,rho,perms,g,newv,pos,rowcombos,v1,v2;
returns the estimated distance, and corresponding vector of that weight
Print("\n This is a probabilistic algorithm which may return the wrong answer.\n");
G0 := GeneratorMat(C);
p:=5; #this seems to be an optimal value

it’s the max number of rows used in Z to find a small
codewd in C_Z

G := List(G0,ShallowCopy);

F:=LeftActingDomain(C);
dimMat := DimensionsMat(G);

13

n:=dimMat[2];
k:=dimMat[1];

if n=k then
C!.lowerBoundMinimumDistance := 1;
C!.upperBoundMinimumDistance := 1;
return 1;

fi; # added 11-2004
if s > n-1 then

Print("Resetting s to ",n-2," ... \n");
s:=n-k;

fi;
arrayd1:=[n];

numrow0:=0; # initialize
perms:=[]; # initialize

for m in [1..num] do
##Permute the columns of C randomly

Gt := TransposedMat(G);
Gp := NullMat(n,k);
L := SymmetricGroup(n);
rho := Random(L);
L:=List([1..n],i->OnPoints(i,rho));
for i in [1..n] do
Gp[i] := Gt[L[i]];
od;
Gp := TransposedMat(Gp);

Gp := List(Gp,ShallowCopy);

##generate the matrix A from Gp=(A|B)
Gpt := TransposedMat(Gp);
A := NullMat(s,k);
for i in [1..s] do
A[i] := Gpt[i];
od;
A := TransposedMat(A);

##generate the matrix B from Gp=(A|B)
Gpt := TransposedMat(Gp);
B := NullMat(n-s,k);
for i in [s+1..n] do
B[i-s] := Gpt[i];
od;
B := TransposedMat(B);

14

zero := Zero(F)*A[1];
if (s<n-k and A=Zero(F)*A) then

Error("This method fails for these parameters. Try increasing s.\n");
fi;
if (s=n and A=Zero(F)*A) then

return 1;
fi;

search for all rows of weight p
J is the list of all triples representing the codeword in C which
corresponds to AClosestVec[1].

J := []; #col number of codewords to compute the length of
for i in [1..p] do

AClosestVec:=AClosestVectorCombinationsMatFFEVecFFECoords(A, F, zero, i, 1);
AClosestVec[1]=ZZ*AClosestVec[2]...

v1:=AClosestVec[2]*Gp;
v2:=Permuted(v1,(rho)^(-1));

Add(J,[WeightVecFFE(v2),Codeword(v2,n,F),AClosestVec[2]]);
od;

ds:=List(J,x->x[1]);
vecs:=List(J,x->x[2]);
rowcombos:=List(J,x->x[3]);
d:=Minimum(ds);
i:=Position(ds,d);
arrayd1[m]:=[d,vecs[i],rowcombos[i]];
perms[m]:=rho;

od; ## m

ds:=List(arrayd1,x->x[1]);
vecs:=List(arrayd1,x->x[2]);
rowcombos:=List(arrayd1,x->x[3]);
d:=MostCommonInList(ds);
pos:=Position(ds,d);
v:=vecs[pos];
L:=List([1..n],i->OnPoints(i,perms[pos]^(-1)));
newv:=Codeword(List(L,i->v[L[i]]));
return([d,newv]);

end;

15

References

[BARG] A. Barg. “Complexity issues in coding theory” in Handbook of
coding theory, Vol 1 (edited by V. Pless, W. Huffman, R. Brualdi).
North-Holland. (1998).

[BMT] E. R. Berlekamp, R. J. McEliece, and H. C. A. Van Tilborg. “ On
the inherent intractability of certain coding problems.” IEEE Trans.
Inform. Theory. 24 (1978) 384-386.

[CHA] F. Chabaud. “On the security of some cryptosystems based on error-
correcting codes.” Laboratoire d’Information de l’ENS, Preprint
1994.

[F] A. Foster, “A polynomial-time probabilistic algorithm for the mini-
mum distance of an arbitrary linear error-correcting code,” Mathe-
matics Honors Report, Spring 2003-2004.

[GAP] GAP 4.4, Groups Algorithms Programming, version 4.4
http://www.gap-system.org

[GUA] GUAVA, http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/

[HILL] R. Hill A first course in coding theory, Oxford University Press.
(1986).

[LEO] J. S. Leon. “ A probabilistic algorithm for computing minimum
weights of large error-correcting codes.” IEEE Trans. Inform. Theory.
34 (1988) 1354-1359.

[L] C. Lennon, “List-Decoding of Generalized Reed-Solomon Codes Us-
ing Sudan’s Algorithm,” Math Honors Project, 2004-2005 (Prof. W.
D. Joyner advisor).

[MS] F. J. MacWilliams and N. J. A. Sloane. The theory of error-
correcting codes. North-Holland. (1983).

[VAR] A. Vardy, “ Algorithmic complexity in coding theory and the min-
imum distance problem”, Annual ACM Symposium on Theory of
Computing, Proceedings of the twenty-ninth annual ACM sympo-
sium on Theory, El Paso, Texas, pages: 92 - 109, 1997. Avaliable at
http://portal.acm.org/portal.cfm

16

