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The goal of the project is to write a program to perform list-decoding
of Reed-Solomon codes using the Sudan Algorithm [S] and implement this
program into the GAP coding-theory package known as GUAVA [GUA]. The
Sudan Algorithm is Algorithm 12.1.1 in Justesen and Høholdt’s recent book
[JH]. GAP is a computer algebra package whose open source kernel is written
in the C programming language [GAP]. However, the GUAVA package is
written in GAP’s own interpreted language. Neither GAP nor the GUAVA
package contain a program for list-decoding of generalized Reed-Solomon
codes. When implemented, this program will greatly increase GAP’s speed
in decoding Reed-Solomon codes. We will also discuss generalizations, both
to the higher rate case (Algorithm 2) and the multivariate case (Algorithm
3).

1 Introduction

Let q denote a prime power. A finite field is a finite set of elements with
operations of addition and multiplication which satisfy the properties of a
field. Let F = GF (q) denote a finite field with q elements. A linear code C is
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simply a finite dimensional vector space over a finite field, and its elements are
called codewords. If C ⊂ GF (q)n, then we say C has length n. Moreover,
if k = dim(C), then we call C a [n, k] code. A k×n matrix whose rows form
a basis of a linear [n, k] code is called a generator matrix of the code.

Example 1 We give an example of a generator matrix for a [10,5] code
over F11. The generator matrix will be a 5 × 10 matrix that has linearly
independent rows. We can build this generator matrix in standard form by
using a 5 × 5 idendtity matrix and filling the remaining five columns with
elements from F11. Since we are using the identity matrix and building the
generator matrix in standard from, we can put any elements of the field in
the remaining five columns and the rows will be linearly independent.




1 0 0 0 0 6 8 2 5 0
0 1 0 0 0 7 2 3 1 8
0 0 1 0 0 1 0 4 1 7
0 0 0 1 0 5 4 9 10 6
0 0 0 0 1 10 7 3 0 1




Let C be a linear code of length n over F with generator matrix G, where
q is a power of a prime p. If p = 2 then the code is called binary. We
assume that Fn has been given the standard basis e1 = (1, 0, ..., 0) ∈ Fn,
e2 = (0, 1, 0, ..., 0) ∈ Fn, ..., en = (0, 0, ..., 0, 1) ∈ Fn. If the dimension of C is
k, then the number of elements of C is equal to qk. The quantity R = k/n is
called the rate of the code and measures the amount of information which
the code can transmit. For instance, the code in the above example has rate
1/2.

Another important parameter associated to the code is the number of
errors which it can, in principle, correct. For this notion, we need to introduce
the Hamming metric. For any two x,y ∈ Fn, let d(x,y) denote the number
of coordinates where these two vectors differ:

d(x,y) = |{0 ≤ i ≤ n | xi 6= yi}|. (1)

Define the weight of v, denoted w(v), to be the number of non-zero entries
of v. Note, d(x,y) = w(x−y) because the vector x−y has non-zero entries
only at locations where x and y differ.

We call the minimum distance of a code C, denoted d(C), the smallest
distance between distinct codewords in C. There exists x and y such that
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d(C) = d(x,y). Note that d(C) = w(x − y) ≥ w(C), where w(C) is the
minimum weight of a codeword in C. Also, for some other codeword z,
w(C) = w(z) = d(0, z) ≥ d(C). Therefore, w(C) = d(C). Now, we see that
the minimum distance of C satisfies

d(C) = minc∈C, c 6=0d(0, c). (2)

In general, this parameter d = d(C) is known to be very difficult to efficiently
determine. (In fact, computing it in general is known to be NP-complete
[BMT].) The parameter d(C) is very important because in principle it is
always possible to correct [(d − 1)/2] errors. (Please see Irons [I] for more
details on the Nearest Neighbor Algorithm.)

Definition 2 ([JH], p50) Let x1, ..., xn be different elements of a finite field
F. For k ≤ n consider the vector space Pk of polynomials in F[x] of degree
< k. A (generalized) Reed-Solomon code RS(k, q) is a code in Fn whose
codewords are of the form

(f(x1), f(x2), ..., f(xn)) where f ∈ Pk.

It is easy to check that RS(k, q) is a linear code.

Example 3 We now give an explicit example of a [10,5] Reed-Solomon code
over F = GF (11). Using the definition, we let P5 = {polynomials of degree ≤
4}. Because our code is over GF (11), let us choose {x1 = 1, x2 = 2, ..., x10 =
10} ⊂ F. We create a basis {b1 = 1, b2 = x, b3 = x2, b4 = x3, b5 = x4} for the
vector space P5 over F. From this we can determine a generator matrix for
RS(5, 11):

G =




b1(x1) . . . b1(x10)
b2(x1) . . . b2(x10)
b3(x1) . . . b3(x10)
b4(x1) . . . b4(x10)
b5(x1) . . . b5(x10)




=




1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 4 9 5 3 3 5 9 4 1
1 8 5 9 4 7 2 6 3 10
1 5 4 3 9 9 3 4 5 1




Since n ≤ q, by the assumption in Definition 2, the dimension of the Reed-
Solomon code C = RS(k, q) is equal to the same k used in Pk ([JH], p50).
A code is MDS if its parameters satisfy the Singleton bound d ≤ n− k + 1
with equality ([JH], p49). Generalized Reed-Solomon codes are MDS codes,
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so d = n−k+1 is easily computed in terms of the other parameters. (Please
see [McG] for more details on this.)

Reed-Solomon codes were discovered in 1959 and have applications in
CDs, DVDs, and satellite communications among other things ([JH], p49).
The GUAVA package does not contain any programs which provide fast list-
decoding of Reed-Solomon codes. In fact, to our knowledge, this list decoder
has not yet been implemented in any computer algebra system. A fast de-
coder for generalized Reed-Solomon codes has been recently implemented
by J. McGowan [McG]. However, McGowan’s program does not perform
list-decoding. The optimal method of decoding these codes utilizes list de-
coding with the Sudan Algorithm. Instead of using brute force to examine
all codewords to find the ones closest to the received vector, list decoding
uses systems of linear equations and polynomial interpolation. This method
of using brute force is known as nearest neighbor decoding for which the re-
ceived vector r is decoded as the codeword c so that d(c, r) is the minimum
distance ([HILL], p5). This method returns a list of codewords within some
fixed distance of the received vector.

2 Sudan’s algorithm

Let C be a generalized Reed-Solomon code with parameters [n, k, n− k + 1].
Let τ = [(d− 1)/2].

Now we discuss a generalization of the algorithm implemented in [McG].
See his discussion for further details of the case ` = 1.

We use the notation in Definition 2. Let r = c + e = (r1, ..., rn) ∈ Fn

be a received word where c = (f(x1), ..., f(xn)) is a codeword in C. Assume
that the weight of the error vector e is less than or equal to τ , w(e) ≤ τ . In
other words, τ represents the maximum number of errors which the algorithm
below can correct. The idea is to determine a non-zero polynomial

Q(x, y) = Q0(x) + Q1(x)y + · · ·+ Q`(x)y`

satisfying

1. Q(xi, ri) = 0 for all i

2. deg(Qj(x)) ≤ n− τ − 1− j(k − 1), for j = 0, ..., `
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Such a polynomial Q (depending on r) is called an interpolating poly-
nomial.

Here ` represents the number of codewords near r which the algorithm
below returns. (When ` = 1, the codeword closest to r is returned. When
` = 2 the two codewords closest to r are returned, and so on.)

Our next aim will be to show that such a non-zero polynomial Q exists
under certain conditions (to be made explicit below).

Lemma 4 ([JH], Ch 12, p127) If Q(x, y) satisfies the above conditions and
if c = (f(x1), f(x2), ..., f(xn)) with deg(f(x)) < k, then y− f(x) must divide
Q(x, y).

proof : By definition of Q and the fact that deg(f(x)) < k, the polyno-
mial Q(x, f(x)) has degree at most n − τ − 1. Since ri = f(xi), except in
at most τ cases, we have that Q(xi, f(xi)) = 0, for at least n− τ of the i in
1 ≤ i ≤ n. This forces Q(x, f(x)) = 0 for all x, since a non-zero polynomial
of degree d can have at most d zeroes. Therefore, y = f(x) is a root of the
polynomial Q(x, y). If we consider the polynomial Q(x, y) as a polynomial
in y over F[x], the division algorithm over the ring F[x] implies that y− f(x)
divides Q(x, y). ¤

This lemma means that any codeword c ∈ RS(k, q) as above is associated
with a factor of Q(x, y).

Under what conditions on τ and ` does such an interpolating polynomial
exist? Let us regard all the coefficients of Q(x, y) as unknowns. The defini-
tion of Q(x, y) tells us that the number of unknowns is determined by the
conditions (2). Therefore, the number of unknowns is

(n− τ) + (n− τ − (k − 1)) + (n− τ − 2(k − 1)) + ... + (n− τ − `(k − 1))
= (` + 1)(n− τ)− 1

2
`(` + 1)(k − 1).

By condition (1) in the definition of Q(x, y), there are n linear equations
constraining these unknown coefficients. Therefore, there are more unknowns
than constraining equations provided

(` + 1)(n− τ)− 1

2
`(` + 1)(k − 1) > n.

This is equivalent to saying that τ satisfies the inequality

τ <
n`

` + 1
− `(k − 1)

2
.
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Since, without loss of generality, τ > 0, if ` ≥ 2 we must have n > (`+1)(k−1)
2

≥
3
2
(k − 1). In particular, this algorithm does not apply when R = k

n
> 2

3
+ 1

n
.

The most interesting case is when the number of correctable errors, τ ,
is greater than d−1

2
= n−k

2
, since otherwise the Nearest Neighbor Algorithm

applies. (Please see [I] for a discussion of this.)
We now determine when τ > n−k

2
. This condition forces

`
2n− (` + 1)(k − 1)

2(` + 1)
>

n− k

2
,

which forces n(` − 1) > (` + 1)((` − 1)k − `), so n > (` + 1)(k − `
`−1

) ≥
(` + 1)(k − 2). From this condition we determine that

k− `
`−1

n
< 1

`+1
, so

R <
1

` + 1
+

`
`−1

n
=

1

` + 1
+

`

(`− 1)n
.

In particular, this algorithm applies to “low rate” RS codes. Also, it says
` < n

k−2
, giving us a crude bound on the maximum number of codewords

“near” r returned by Sudan’s Algorithm.
Another condition that arises from the condition (2) with j = `, namely

0 ≤ deg Q`(x) ≤ n− τ − 1− `(k − 1). This implies τ ≤ n− 1− `(k − 1).
Summarizing the above, list decoding applies only when R has “low rate”

and moreover beats the Nearest Neighbor Algorithm when d−1
2

< τ < n(1−
R`) + `− 1.

Algorithm 1 ([JH], Ch 12, p129) List decoding of RS codes using Sudan
algorithm

1. Input: A received word r = (r1, r2..., rn) and a natural number `.

2. Solve the system of linear equations

∑̀
j=0




rj
1 . . . 0 0

0 rj
2 . . . 0

...
...

. . . 0
0 0 . . . rj

n







1 x1 . . . x
`j

1

1 x2 . . . x
`j

2
...

... . . .
...

1 xn . . . x
`j
n







Qj,0

Qj,1
...

Qj,`j


 =




0
0
...
0




(3)
Here `j = n− τ − 1− j(k − 1).
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3. Put the result in

Qj(x) =

`j∑
r=0

Qj,rx
r,

and

Q(x, y) =
∑̀
j=0

Qj(x)yj.

4. Find all factors of Q(x, y) of the form (y− f(x)) with degree f(x) < k.

5. Output: A list of ` codewords c = (f(x1), ..., f(xn)) obtained from the
factors f(x) above, that satisfy

d(c, r) ≤ τ.

The GAP implementation is below. This factorization routine is not the
optimal one.

Examples of this algorithm are given in the next section.

3 Examples

In this section we give examples of a GUAVA implementation of Sudan’s
Algorithm 1.

Let α be a primitive element of F16 where α4 + α3 + 1 = 0 and consider
the [15, 3] Reed-Solomon code obtained by evaluating polynomials of degree
at most 2 in the powers of α. The code has minimum distance 13 and thus is
6-error correcting. With ` = 2 it is possible to decode up to seven errors with
list size at most 2. Suppose w = (0, 0, 0, 0, 0, 0, 0, 0, α6, α2, α5, α14, α, α7, α11)
is the received vector . Solving the system in step 2 then plugging the results
into the polynomial in step 3 gives Q(x, y) = (1+x)y+y2 = (y−0)(y−(1+x)).
Since the linear factors of Q(x, y) are y−0 and y− (1+x), the functions f in
step 4 are f(x) = 0 and f(x) = x+1. Therefore, by step 5, the corresponding
two codewords with 7 errors corrected are:

c1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

c2 = (0, α12, α9, α4, α3, α10, α8, α6, α2, α5, α14, α, α7, α11).

We used our GAP code to test the above example. The following param-
eters were used when testing the example.
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gap> F:=GF(16);
GF(2^4)
gap> a:=PrimitiveRoot(F);; b:=a^7; b^4+b^3+1; ## alpha in JH Ex 12.1.1, pg 129
Z(2^4)^7
0*Z(2)
gap> Pts:=List([0..14],i->b^i);
[ Z(2)^0, Z(2^4)^7, Z(2^4)^14, Z(2^4)^6, Z(2^4)^13, Z(2^2), Z(2^4)^12,

Z(2^4)^4, Z(2^4)^11,
Z(2^4)^3, Z(2^2)^2, Z(2^4)^2, Z(2^4)^9, Z(2^4), Z(2^4)^8 ]

gap> R1:=PolynomialRing(F,1);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> x:=vars[1];
x_1
gap> y:=Indeterminate(F,vars);;
gap> R2:=PolynomialRing(F,[x,y]);;
gap> C:=GeneralizedReedSolomonCode(Pts,3,R1); MinimumDistance(C);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=[z,z,z,z,z,z,z,z,b^6,b^2,b^5,b^14,b,b^7,b^11];; ## as in JH Ex 12.1.1
gap> r:=Codeword(r);
[ 0 0 0 0 0 0 0 0 a^12 a^14 a^5 a^8 a^7 a^4 a^2 ]
gap> cs1:=NearestNeighborGRSDecodewords(C,r,7); time;
[ [ [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ], 0*Z(2) ],

[ [ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ],
x_1+Z(2)^0 ] ]

1556
gap> cs2:=GeneralizedReedSolomonListDecoder(C,r,2); time;
[ [ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ],

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ]
151

This verifies the above example.
For the next example we use a slightly different received vector. One of

the codewords listed will actually correct 8 errors.

gap> F:=GF(16);
GF(2^4)
gap> a:=PrimitiveRoot(F);; b:=a^7; b^4+b^3+1; ## alpha in JH Ex 12.1.1, pg 129
Z(2^4)^7
0*Z(2)
gap> Pts:=List([0..14],i->b^i);
[ Z(2)^0, Z(2^4)^7, Z(2^4)^14, Z(2^4)^6, Z(2^4)^13, Z(2^2), Z(2^4)^12,
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Z(2^4)^4, Z(2^4)^11,
Z(2^4)^3, Z(2^2)^2, Z(2^4)^2, Z(2^4)^9, Z(2^4), Z(2^4)^8 ]

gap> R1:=PolynomialRing(F,1);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> x:=vars[1];
x_1
gap> y:=Indeterminate(F,vars);;
gap> R2:=PolynomialRing(F,[x,y]);;
gap> C:=GeneralizedReedSolomonCode(Pts,3,R1); MinimumDistance(C);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=[z,z,z,z,z,z,z,b^13,b^6,b^2,b^5,b^14,b,b^7,b^11];;
gap> r:=Codeword(r);
[ 0 0 0 0 0 0 0 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ]
gap> cs1:=NearestNeighborGRSDecodewords(C,r,7); time;
[ [ [ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ], x_1+Z(2)^0 ] ]
1570
gap> cs2:=GeneralizedReedSolomonListDecoder(C,r,2); time;
[ [ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ],
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ]

147
gap> c1:=cs2[1]; c1 in C;
[ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ]
true
gap> c2:=cs2[2]; c2 in C;
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
true
gap> WeightCodeword(c1-r);
6
gap> WeightCodeword(c2-r);
8

The time to run the program that finds the nearest neighbor codewords
by brute force (1570 “gapstones”) is much longer than the time to run the
program which uses Sudan’s algorithm (147 “gapstones”) for this example.

Now let us try to use the standard command Decodeword to decode the
received vector r. We type into GUAVA the following command:

gap> Decodeword(C,r); time;
Error, Denominator evaluates as zero called from
Value( rf, inds, vals, One( CoefficientsFamily( FamilyObj( rf ) ) ) ) called from
Value( f, [ x ], [ s ] ) called from
func( elm ) called from
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List( P, function ( s )
return Value( f, [ x ], [ s ] );

end ) called from
SpecialDecoder( C )( C, c ) called from
...
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

The error that GUAVA gives us here indicates that it is not possible to use
ordinary decoding with a received word with 7 errors, because 7 > [(13 −
1)/2]. However, list decoding does work in this case.

4 Generalizations

This section contains related algorithms which will be briefly discussed but
not implemented in this project.

4.1 Higher rate codes

Algorithm 2 ([JH], Ch 12, p131) List decoding of RS codes using the Guruswami-
Sudan algorithm [GS].

1. Input: A received word r = (r1, r2..., rn) and a natural number τ and
s.

2. Solve for Qa,b the system of linear equations, h+r < s and i = 1, 2, ..., n.

∑

a≥h,b≥r

(
a
h

)(
b
r

)
Qa,bx

a−h
i rb−r

i = 0 (4)

with Qa,b = 0 if l > a or b > la where la = s(n− τ)− 1− a(k − 1).

3. Put

Qj(x) =

`j∑
r=0

Qj,rx
r and Q(x, y) =

∑̀
j=0

Qj(x)yj. (5)
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4. Find all factors of Q(x, y) of the form (y − f(x)) with deg(f(x)) < k.

5. Output: A list of factors f(x) that satisfy

d((f(x1), f(x2), ..., f(xn)), (r1, r2, ..., rn)) < τ.

This is an improvement on Algorithm 1 since the Guruswami-Sudan Al-
gorithm works for codes with any rate, but the Sudan Algorithm only works
for RS codes with low rates ([JH], p130).

4.2 Higher dimensions

In the remainder of this section we speculate on Sudan’s generalization to
polynomials in more than one variable. No proofs will be given. For details
please see §5 of [S].

In general terms, the idea of the higher-dimensional generalization is the
following:

Input: a finite field F = GF (q), a subset S ⊂ F, the dimension t ≥
1, a function representing the received vector g : St → F, the number of
coordinates where the received vector is correct s ≥ 1, and the “weighted
degree” of the code r ≥ 1.

Output: All multivariate polynomials f : Ft → F, degwt(f) < r, such
that |{x ∈ St | f(x) = g(x)}| ≥ s where degwt denotes a weighted degree.

A more precise version is stated below.
Consider the following type of evaluation code

C = {(f(p1), ..., f(pn)) | degwt(f) < r},
where n = |S|t, k = dim(Pr), where

Pr = {polynomials f in t variables x1, ..., xt with degwt(f) < r},

and St = {p1, ...,pn} ⊂ Ft.
Here is the more precise version of Sudan’s Algorithm, as it applies to

this case.

Algorithm 3 1. Let S,F, r, s, t, k, n be as above.
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2. Choose new parameters `,m such that

m + `r ≥ (t + 1)(r + 1)
1

t+1 n
1

t+1 , s > (m + `r)|S|t−1.

3. Let degwt(x
e1
1 ...xet

t ) = e1 + ... + et−1 + ret

4. Find any non-zero function Q : Ft+1 → F satisfying

• degwt(Q(x, y)) < m + r`,

• for all x ∈ St, Q(x, g(x)) = 0,

• factor Q(x, y) into irreducibles.

Let L denote the list of all polynomials f(x) with weighted degree < r
such that y − f(x) divides Q(x, y).

Output: The list of codewords T = {c = (f(p1), ..., f(pn) | f ∈ L}
If r = (g(p1), ..., g(pn)) represents the received word then each c ∈ T
satisfies d(c, r) < n− s.

Example 5 Certain “toric codes” constructed in [J] meet the criteria above.
For such codes, the method sketched in the above algorithm appears to be new.

Finally, note that the curves [Crv] GAP package command
SolveLinearEquations can be used to solve for the coefficients of Q in the
system of equations Q(x, g(x)) = 0.

5 Appendix: GAP Code

# List decoder for RS codes using Sudan-Guraswami algorithm
# (this implementation only works for low rate codes)
#
########################################################

#Input: List coeffs of coefficients, R = F[x]
#Output: polynomial L[0]+L[1]x+...+L[d]x^d
#
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CoefficientToPolynomial:=function(coeffs,R)
local p,i,j, lengths, F,xx;
xx:=IndeterminatesOfPolynomialRing(R)[1];
F:=Field(coeffs);
p:=Zero(F);

# lengths:=List([1..Length(coeffs)],i->Sum(List([1..i],j->1+coeffs[j])));
for i in [1..Length(coeffs)] do
p:=p+coeffs[i]*xx^(i-1);

od;
return p;

end;

#Input: Pts=[x1,..,xn], a = element of L
#Output: Vandermonde matrix (xi^j)
#
VandermondeMat:=function(Pts,a)
## returns an nx(a+1) matrix
local V,n,i,j;
n:=Length(Pts);
V:=List([1..(a+1)],j->List([1..n],i->Pts[i]^(j-1)));
return TransposedMat(V);
end;

#Input: Xlist=[x1,..,xn], l = highest power,
# L=[h_1,...,h_ell] is list of powers
# r=[r1,...,rn] is received vector
#Output: Computes matrix described in Algor. 12.1.1 in [JH]
#
LocatorMat:=function(r,Pts,L)
## returns an nx(ell+sum(L)) matrix
local a,j,b,ell,add_col_mat,add_row_mat,block_matrix,diagonal_power;

add_col_mat:=function(M,N) ## "AddColumnsToMatrix"
#N is a matrix with same rowdim as M
#the fcn adjoins N to the end of M
local i,j,S,col,NT;
col:=MutableTransposedMat(M); #preserves M
NT:=MutableTransposedMat(N); #preserves N
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for j in [1..DimensionsMat(N)[2]] do
Add(col,NT[j]);

od;
return MutableTransposedMat(col);
end;

add_row_mat:=function(M,N) ## "AddRowsToMatrix"
#N is a matrix with same coldim as M
#the fcn adjoins N to the bottom of M
local i,j,S,row;
row:=ShallowCopy(M);#to preserve M;
for j in [1..DimensionsMat(N)[1]] do

Add(row,N[j]);
od;
return row;
end;

block_matrix:=function(L) ## "MakeBlockMatrix"
#L is an array of matrices of the form
#[[M1,...,Ma],[N1,...,Na],...,[P1,...,Pa]]
#returns the associated block matrix
local A,B,i,j,m,n;
n:=Length(L[1]);
m:=Length(L);
A:=[];
if n=1 then

if m=1 then return L[1][1]; fi;
A:=L[1][1];
for i in [2..m] do

A:=add_row_mat(A,L[i][1]);
od;
return A;

fi;
for j in [1..m] do
A[j]:=L[j][1];

od;
for j in [1..m] do
for i in [2..n] do
A[j]:=add_col_mat(A[j],L[j][i]);

od;
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od;
B:=A[1];
for j in [2..m] do
B:= add_row_mat(B,A[j]);

od;
return B;
end;

diagonal_power:=function(r,j)
## returns an nxn matrix
local A,n,i;
n:=Length(r);
A:=DiagonalMat(List([1..n],i->r[i]^j));
return A;
end;

ell:=Length(L);
a:=List([1..ell],j->diagonal_power(r,(j-1))*VandermondeMat(Pts,L[j]));
b:=List([1..ell],j->[1,j,a[j]]);
return block_matrix([a]);

end;

# Compute kernel of matrix in alg 12.1.1 in [JH].
# Choose a basis vector in kernel.
# Construct the polynomial Q(x,y) in alg 12.1.1.
#
ErrorLocatorCoeffs:=function(r,Pts,L)
local a,j,b,vec,e,QC,i,lengths,ker,ell;
ell:=Length(L);
e:=LocatorMat(r,Pts,L);
ker:=TriangulizedNullspaceMat(TransposedMat(e));
if ker=[] then Print("Decoding fails.\n"); return []; fi;
vec:=ker[Length(ker)];
QC:=[];
lengths:=List([1..ell],i->Sum(List([1..i],j->1+L[j])));
QC[1]:=List([1..lengths[1]],j->vec[j]);
for i in [2..ell] do
QC[i]:=List([(lengths[i-1]+1)..lengths[i]],j->vec[j]);
od;
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return QC;
end;

#Input: List L of coefficients ell, R = F[x]
# Xlist=[x1,..,xn],
#Output: list of polynomials Qi as in Algor. 12.1.1 in [JH]
#
ErrorLocatorPolynomials:=function(r,Pts,L,R)
local q,p,i,ell;
ell:=Length(L)+1; ## ?? Length(L) instead ??
q:=ErrorLocatorCoeffs(r,Pts,L);
if q=[] then Print("Decoding fails.\n"); return []; fi;
p:=[];

for i in [1..Length(q)] do
p:=Concatenation(p,[CoefficientToPolynomial(q[i],R)]);

od;
return p;

end;

#Input: List L of coefficients ell, R = F[x]
# Pts=[x1,..,xn],
#Output: interpolating polynomial Q as in Algor. 12.1.1 in [JH]
#
InterpolatingPolynomialGRS:=function(r,Pts,L,R)
local poly,i,Ry,F,y,Q,ell;
ell:=Length(L)+1;

Q:=ErrorLocatorPolynomials(r,Pts,L,R);
if Q=[] then Print("Decoding fails.\n"); return 0; fi;
F:=CoefficientsRing(R);
y:=IndeterminatesOfPolynomialRing(R)[2];

# Ry:=PolynomialRing(F,[y]);
# poly:=CoefficientToPolynomial(Q,Ry);
poly:=Sum(List([1..Length(Q)],i->Q[i]*y^(i-1)));
return poly;

end;
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GeneralizedReedSolomonListDecoder:=function(C,v,ell)
#
# v is a received vector (a GUAVA codeword)
# C is a GRS code
# ell>0 is the length of the decoded list (should be at least
# 2 to beat GeneralizedReedSolomonDecoder
# or Decoder with the special method of interpolation
# decoding)
#
local f,h,g,x,R,R2,L,F,t,i,c,Pts,k,n,tau,Q,divisorsf,div,

CodewordList,p,vars,y,degy, divisorsdeg1;
R:=C!.ring;
F:=CoefficientsRing(R);
vars:=IndeterminatesOfPolynomialRing(R);
x:=vars[1];
Pts:=C!.points;
n:=Length(Pts);
k:=C!.degree;
tau:=Int((n-k)/2);
L:=List([0..ell],i->n-tau-1-i*(k-1));
y:=X(F,vars);;
R2:=PolynomialRing(F,[x,y]);
vars:=IndeterminatesOfPolynomialRing(R2);
Q:=InterpolatingPolynomialGRS(v,Pts,L,R2);
divisorsf:=DivisorsMultivariatePolynomial(Q,R2);
divisorsdeg1:=[];
CodewordList:=[];
for div in divisorsf do
degy:=DegreeIndeterminate(div,y);
if degy=1 then ######### div=h*y+g

g:=Value(div,vars,[x,Zero(F)]);
h:=Derivative(div,y);

# h:=(div-g)/y;
if DegreeIndeterminate(h,x)=0 then

f:= -h^(-1)*g*y^0;
divisorsdeg1:=Concatenation(divisorsdeg1,[f]);

if g=Zero(F)*x then
c:=List(Pts,p->Zero(F));

else
c:=List(Pts,p->Value(f,[x,y],[p,Zero(F)]));
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CodewordList:=Concatenation(CodewordList,[Codeword(c,C)]);
fi;

fi;
od;
return CodewordList;

end;

######################################################

NearestNeighborGRSDecodewords:=function(C,r,dist)
# "brute force" decoder
local k,F,Pts,v,p,x,f,NearbyWords,c,a;
k:=C!.degree;
Pts:=C!.points;
F:=LeftActingDomain(C);
NearbyWords:=[];
for v in F^k do
a := Codeword(v);
f:=PolyCodeword(a);
x:=IndeterminateOfLaurentPolynomial(f);
c:=Codeword(List(Pts,p->Value(f,[x],[p])));
if WeightCodeword(r-c) <= dist then
NearbyWords:=Concatenation(NearbyWords,[[c,f]]);

fi;
od;
return NearbyWords;
end;

NearestNeighborDecodewords:=function(C,r,dist)
# "brute force" decoder
local k,F,Pts,v,p,x,f,NearbyWords,c,a;
F:=LeftActingDomain(C);
NearbyWords:=[];
for v in F^k do
c := Codeword(v);
if WeightCodeword(r-c) <= dist then
NearbyWords:=Concatenation(NearbyWords,[c]);

fi;
od;
return NearbyWords;

18



end;
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