
Low Density Parity Check Codes

Gordon McDonald∗

April 21, 2006

This paper will discuss a brief history of the field of error correcting codes
and an interesting subfield known as Low Density Parity Check (LDPC)
codes. I explored some explicit constructions of LDPC codes arising from
the theory of design codes [S], [GU]. Lastly, it will investigate decoding
methods. The methods investigated are based upon majority decision de-
coding (which is a procedure for correcting a bit based upon how many
failures it contributes to the syndrome). We discuss in detail an iterative
method of decoding LDPC codes using a method called bit-flipping and
compare it to a similar iterative algorithm known as Gallagher Hard Deci-
sion Decoding. The algorithms are illustrated by means of detailed examples
and implemented in GAP, an open source computer algebra system. Unfor-
tuneatly, I discovered that the examples arising from design codes did not
work well with the Bit-Flipping algorithm. These unsuccessful trials were
omitted from the thesis.

1 Introduction

Before we can explore the nuances of Low Density Parity Check codes we
must first understand a little about general error-correcting code theory. 1

Error-correcting codes are primarily used to correctly transmit data across
a noisy channel. To do this one must encode the data so that if a few errors
occur they can be corrected and the original message can still be read.
Codewords are the encoded data; they are what is transmitted. A code
is a set of codewords, and a linear code is a subspace of the vector space
(Fq)n, where F = GF (q) is the finite field with q elements. The length of
the code is the integer n. A generator matrix of a linear code can be any

∗Department of Mathematics, United States Naval Academy, Honors Thesis 2005-2006,
Advisor Prof. Joyner, wdj@usna.edu

1As a good general reference for this material, see [HP, pp. 1-52]

1

matrix whose rows form a basis for the subspace. Let C be a linear code
of length n over F with generator matrix G, where q is a power of a prime
p. If p = 2, then the code is called binary. We assume that Fn has been
given the standard basis e1 = (1, 0, ..., 0) ∈ Fn, e2 = (0, 1, 0, ..., 0) ∈ Fn,
..., en = (0, 0, ..., 0, 1) ∈ Fn. The dimension of C is denoted k, so the
number of elements of C is equal to qk. Put simply, the dimension is the
number of elements in the basis. The quantity R = frackn is called the
rate of the code and measures the amount of information that the code can
transmit. A parity check matrix, H, of an [n, k] code C is a [n − k] × n
matrix whose rows are linearly independent parity checks. The minimum
distance of a code, d is the minimum distance between any pair of different
codewords. For a recieved codeword y of a code C with parity check matrix
H the syndrome, s, is computed by s = H · y.

1.1 History of Linear Codes and LDPC codes

The theory of error-correcting codes was originated in the late 1940’s by
Richard Hamming, a mathematician who worked for Bell Telephone. Ham-
ming’s motivation was to program a computer to correct “bugs” which arose
in punch-card programs. Hamming’s overall motivation behind the theory
of error-orrecting codes was to reliably enable digital communication.

LDPC codes were first developed in a doctoral dissertation in 1963 by
R.G. Gallager. Gallager’s work was largely ignored for approximately 30
years until connections were drawn between the iterative methods used for
decoding both LDPC codes and Turbo codes. Today, LDPC codes are be-
coming paramount in digital decoding and reliable digital communication
over a noisy channel. Applications range from cellular telephones to world-
wide computer communication.

2 Low Density Parity Check Code Construction

2.1 Basic Construction of LDPC codes

Although LDPC codes can be applied in any field, they are mostly considered
over the GF(2) field - the binary case. For simplicity, when referring to
LDPC codes consider them in the binary case.

Low Density Parity Check codes are codes of construction (n, c, r) and
defined by a matrix which always has the following properities: [G, p. 7]

• The codes are of low density. That is, they contain mostly 0’s and
very few 1’s.

2

• Contains block length n. That is, the number of columns in both
the Generator Matrix and the Parity Check Matrix are of length n.

• Each row in the parity check matrix has exactly r 1’s.

• Each column in the parity check matrix has exactly c 1’s.

• r
n and c

n are ‘small’ (this is to satisfy the concept of the check matrix
being of ‘low density’). In general, r

n , c
n ≤ 1

4

• The linear binary code C is defined by C = {c ∈ Fn | Hc = 0}.
Before we can construct a LDPC matrix, it is important first to prove

this lemma (see for example [JH, Chapter 13]).

Theorem 1 The rate of an (n, c, r) LDPC code satisfies R ≥ 1− c
r .

Proof : If the check matrix H has m rows, the total number of 1’s is
mr = nc (obtained by first counting the number of 1’s in each row and then
by counting the number of 1’s in each column). Because not all the rows
are lineraly independent we know k ≥ n−m. By substituting, we can infer
that the dimension, k of the code satisfies k ≥ n−m = n− nc

r . ¤

2.2 Noteworthy Examples

Let us consider an (n, c, r) LDPC parity check matrix with n = 16, c = 3,
and r = 4. Divide the matrix into c submatrices each with a single 1 in each
column. The resulting parity check matrix will look like the example below.

Example 2 A (16,3,4) LDPC code. (this is a [16,6,6] binary code of form
[n, k, d])




1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0




3

This example is borrowed from [HP, 15.6].

Remark 1 It’s important to note that most LDPC matrices are linearly
dependent based upon their construction. At least (c−1) rows in each matrix
are linearly dependent.

Example 3 Here is an example of a less elegant check matrix of a LDPC
Code with r = 10,c = 2, and n = 20




1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0
0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1




Note the redundancy in the above matrix. This matrix would not suffice
as an adequate Low Density Parity Check matrix because it is not of low
density. It can also be shown that the matrix cannot correct a single error.
This illustrates the elegance of a well constructed LDPC matrix.

3 Algorithms

3.1 Majority Decision

Let w be a recieved ‘word’ and C be a code with parity check matrix H.
Remember that H ·w is the syndrome of the code. Simply speaking, majority
decision seeks to flip a bit in w which will minimize the number of syndrome
‘failures’ (i.e. si 6= 0). It’s easist to explain majority decision in terms of a
specific situation. Let us assume that |Cu∩Cu′ | ≤ a, for all distinct columns
u and u′. Let us also assume that 2c > a and, for simplicity that exactly 1
bit in w is in error, call it wj . By definition, the elements of Cj all contribute
to the syndrome coordinates

si = hi,1w1 + ... + hi,nwn

which ‘fail’ for i ∈ Cj , whereas all other syndrome coordinates ’pass’ (si = 0,
i /∈ Cj). First, let us flip the bit wj′ (this means replace w = (w1, ..., wn)
by w′ = w + ej′ , where ej′ has a 1 in the j′th coordinate and 0’s elsewhere.
If j 6= j′ then the syndrome coordinates of w′ which fail are precisely the
si with i ∈ Cj′ − Cj . So there will be at least 2c − a failures provided
a < 2x < n − k. However, if j = j′ then w′ will be no ’failing’ syndrome

4

coordinates. Therefore, majority decision would tell us to flip the jth bit.
The majority decision decoding algorithm is the process of repeating
bit flips determined by majority decision until either a codeword is obtained
or it is determined that a codeword is unobtainable.

Remark 2 If w has t errors, (t+1)c < n−k, and c > (t+1)ta
2 then majority

decision decodes w to the closet codeword (in the Hamming Metric). We
shall not need this, so it shall not be proven, but it illustrates some of the
limitations to the applicability of this method. In summary, codewords can
only afford to contain a few errors.

3.2 Bit-Flipping

An iterative decoding method for LDPC codes is called bit-flipping. This
technique’s premise depends on decoding single positions based upon ma-
jority decision. Let the parity check matrix be indexed as H = [huv]. We
also define the set of row indices in column v such that huv = 1 as

Rv = {u ∈ {1, ..., n− k} | huv = 1}, 1 ≤ v ≤ n.

Similarly, Cu is the set

Cu = {v ∈ {1, ..., n} | huv = 1}, 1 ≤ u ≤ n− k

Suppose that a vector w is received. In the syndrome s = HyT compu-
tation of w,

si = hi,1w1 + ... + hi,nwn,

which contains at most r terms.
Consider the c parity checks in Rv. Each involves c − 1 other received

symbols which are assumed to be distinct. If p is the probability of bit error
due to noise and pc < 1, then most sets of c symbols will not include errors
and most of the code is correct. Therefore, for each position, the symbol in
position v is changed if a majority of the parity checks including the indices
Rv are not satisfied.

In [JH, Chapter 13] they also assume that Rv′∩Rv′′ has at most 1 element
and Cu′ ∩ Cu′′ has at most 1 element for all u′, u′′, v′, v′′.

Lemma 4 If fewer than r
2 errors occur among the r(c − 1) + 1 symbols

involved in the majority decision, the position is correctly decoded.

5

Proof : If the position v is correct, fewer than r
2 parity checks can have

errors. Therefore, most of the parity checks are satisfied and correct. If
there happens to be an error in position v, less than r

2 parity checks contain
an additional error, and thus most fail the test.

Remark 3 If there is more than 1 error, this does not hold true, but the
probability of inducing two errors along the same parity checks is low.

We are now prepared to implement the bit-flipping algorithm.

Algorithm: Bit-flipping.

Input: The received vector w.

(1) Set q = w.

(2) Calculate s = HqT .

(3) If for some v
∑

u∈Rv
s > r

2 , set qv = qv + 1 (mod 2).

(4) Repeat from 2. until q is unchanged.

Output: The decoded word, q.

3.3 Gallager Hard Decision Decoding Algorithm

The Gallager hard decision decoding algorithm is very similar to the bit-
flipping algorithm. It too is based upon the premise of majority decision.
Suppose a codeword c is transmitted by a (n, c, r) binary LDPC code C.
Suppose the vector y is received. In the syndrome HyT each received bit yi

affects at most c components of that syndrome because the ith bit is in c
parity checks. If among all the bits involved in these c parity checks, call it
S, only the ith is in error then these components, c of HyT will equal 1. This
will indicate that they parity check equations are not satisfied and the ith
bit should be flipped. If there is more than one error among S then several
of the c components of HyT will equal 1. This indicates that multiple bits
must be flipped.

6

Algorithm: Gallager Hard Decision Decoding Algorithm.

(I) Compute HyT and determine the number of unsatisfied parity checks.
That is, the parity checks where HyT equals 1.

(II) For each of the n bits, compute the number of unsatisfied parity checks
involving that bit.

(III) Change the bits of y that are involved in the largest number of unsat-
isfied parity checks; reset the resulting vector to y again.

(IV) Iteratively repeat I, II, and III until either HyT = 0, in which case the
recieved vector is decoded as the latest y, or until a certain number of
iterations is reached, in which case the recieved vector is not decoded.

The Gallager Hard Decicision Decoding algorithm can be better under-
stood by several examples.

Example 5 Let C be a [16, 6, 6] LDPC code with a parity check matrix H
with r = 3 and c = 4. (as seen in Example 2). Suppose that the codeword

y =
(

1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1
)

is received. We compute

HyT =
(

1 0 0 0 1 0 0 0 1 0 0 0
)T

This creates a total of six unsatisfied parity checks, rows 1,5 and 9 of H.
If you look at the columns of H and compare HyT it is easily seen that

column 1 of H is involved in 3 of the 3 unsatisfied parity checks (column 1
has 1’s in 1, 5 and 9). All other columns in H are involved in two or fewer
of the unsatisfied parity check rows. Thus, flip bit 1 of y to obtain a new

y =
(

0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1
)

Iterating, we see that HyT = 0 so the newest value of y is the decoded
codeword. This particular example only requires one iteration of bit-flipping
until the sent codeword was decoded. However, this algorithm is designed to
run multiple iterations to correct codes. Let’s look at an example that will
require more than one iteration to decode the codeword.

Example 6 Let C again be a (16, 3, 4) LDPC code with the parity check
matrix H as seen in Example 1. Suppose that the codeword

7

y =
(

1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1
)

is received.
That makes

HyT =
(

1 0 0 1 0 0 0 0 1 1 0 0
)T

Parity checks 1,4,9 and 10 are unsatisfied and from H; columns 1,2,13 and
15 each have two unsatisfied parity checks in them. So flip bits 1,2,13, and
15 of y to yield a new

y =
(

0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1
)

Iterating,

HyT =
(

1 0 0 1 0 1 1 0 0 1 1 0
)T

This makes parity checks 1,4,6,7,10 and 11 unsatisfied. Columns 2 and 15
from H each have three unsatisfied parity checks in them. The other bits
have two or fewer unsatisfied parity checks. We now flip bits 2 and 15 from
y to yield a new

y =
(

0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1
)

Iterating again yields HyT = 0 and so this latest y is the decoded codeword.
Example 3 required one more iteration than example 2 did, showing how

bit-flipping words in the iterative sense. But there are cases when the sent
codeword becomes so corrupted that it is un-decodable. Example 4 provides
us with just such an example.

Example 7 Let C again be a (16, 3, 4) LDPC code with the parity check
matrix H as seen in Example 1. Suppose that the codeword

y =
(

1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1
)

is received.
In turn,

HyT =
(

0 0 0 0 1 1 1 1 1 1 1 1
)T

There are a total of 8 unsatisfied parity checks: 5,6,7,8,9,10,11 and 12.
Every column of H is involved in at least two of these; so flip every bit in
the codeword y.

8

y =
(

0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0
)

Iterating,

HyT =
(

0 0 0 0 1 1 1 1 1 1 1 1
)T

This is the same HyT as before indicating that we should flip every bit of
y. However, we know that will lead us onto a cycle that will never yield the
corrected codeword. So the original codeword

y =
(

1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1
)

is un-decodable by this method!

3.4 GAP Code

The following is a function written in GAP code which will construct a
random LDPC code.

random_ldpc_code2:=function(n,r,a)
n = length
r = number of checks
a must divide gcd(n,r)
creates r1xn1 block matrix of
random axa permutation matrices
local C,i,j,H,P,G,p;

G:=SymmetricGroup(a);
if GcdInt(n,r)/a <> Int(Gcd(n,r)/a) then

Print("Wrong data\n");
return [n,r,a];

fi;
p:=[];
for i in [1..Int(r/a)] do

p[i]:=[];
for j in [1..Int(n/a)] do

p[i][j]:=PermutationMat(Random(G),a);
od;

od;
P:=List([1..Int(r/a)],i->List([1..Int(n/a)],j->[i,j,p[i][j]]));
H:=BlockMatrix(P[1],Int(r/a),Int(n/a));
C:=CheckMatCode(H,GF(2));

9

return C;
end;

The following are helper functions implimented in the Bit-Flipping al-
gorithm.

checksetJ:=function(H,w)
local i,I,n,k;
I:=[];
n:=Length(H[1]);
for i in [1..n] do
if H[w][i]<>0*Z(2) then
I:=Concatenation(I,[i]);
fi;
od;
return I;
end;

checksetI:=function(H,u)
return checksetJ(TransposedMat(H),u);
end;

counter:=function(I,s)
local S,i;
S:=Codeword(List(I, i -> List(s)[i]));
return WeightCodeword(S);
end;

The following is the GAP code created to implement the Bit-Flipping
algorithm.

bit_flip:=function(H,v)
local i,j,s,q,n,k,rho,gamma,I_j,tH;
tH:=TransposedMat(H);
q:=ShallowCopy(v);
#start of missing while loop
s:=H*q;
n:=Length(H[1]);
k:=n-Length(H);
rho:=Length(Support(Codeword(H[1])));
#gamma:= Length(Support(Codeword(TransposedMat(H)[1])));

10

for j in [1..n] do
gamma:= Length(Support(Codeword(tH[j])));
I_j:=checksetI(H,j);

if counter(I_j,s)>gamma/2 then
q[j]:=q[j]+Z(2);
break;

fi;
od;
return Codeword(q);
end of missing while q is changed loop
end;

bit_flipping:=function(H,v)
local s,q,rho_new,rho_old;
q:=ShallowCopy(v);
s:=H*q;
rho_old:=Length(Support(Codeword(s)));
rho_new := 0;
while rho_new < rho_old do
rho_old:=rho_new;
q:=bit_flip(H,q);
s:=H*q;
rho_new:=Length(Support(Codeword(s)));

od;
return Codeword(q);
end;

The following is the GAP code created to implement the Gallager Hard
Decision decoding algorithm.

GallagerDecoder:=function(H,y)
local s,syns,i,n,k,u,I,Helper;
y0:=y;

Helper:=function(H1,y1)
local i,supH,n,u;
s:=H1*y1;
supS:=Support(CodeWord(s));
supH:=List([1..Length(H1[1]),i->Support(Codeword(TransposedMat(H1[i]))));
meet:=List([1..Length(H1[1]),i->Length(Intersection(supS,supH[i])));

11

u:=Maximum(meet);
I:=Filtered(1..Length(H1[1]),i->u=Length(Intersection(supS,supH[i])));
for i in I do
y1[i]:=y1[i]+Z(2);
y2:=y1;

return(y2);
end;

syns:=[];
s:=H*y0;
while not(s in syns[]) do

syns:=Concatonation(syns,[s]);
y0:=Helper(H,y0);
if Support(Codeword(H*y0[]) then return y0 fi

od
end;

4 Conclusion

The three examples involving the Gallager Hard Decision decoding algo-
rithm fully illustrate the capabilities and limitations of the algorithm. It
shows, that if the received codeword contains only one error, it will only
take one iteration to decode the codeword. The examples also show that
the further corrupted that one gets from the original codeword the more it-
erations it takes to decode it. Lastly, the examples illustrate that sometimes
the codeword is so corrupted that no amount of iterations will yield a de-
coded codeword. These all reaffirm the necessity of well constructed LDPC
codes. This will allow more errors to occur, without losing the original mes-
sage. This concludes a brief walkthrough of the construction of LDPC codes
and its major decoding process. When dealing with codewords thousands of
bits long, fast, reliable decoding is desired. LDPC codes’ simple, low weight
design are what make it fast and reliable, which in turn, is what makes
LDPC codes so important in today’s world. 1

1After most of the thesis was written, I discovered an article, [DSV], which explains
how well the Bit-Flipping error correcting algorithm works for certain types of LDPC
codes arising from finite geometry. Searching for this paper was inspired from comments
made by Professor T.S. Michael. This paper contains several elegent constructions of
LDPC matricies. The article also provides a class of examples which meet an assumption
made by [JH] (no two rows and no two columns in a check matrix for an LDPC code may
have more than one ’1’ in common).

12

References

[DSV] I.B. Djordjevic, S. Sankaranarayanan, and B.V. Vasic, Projective-
Plane Iteratively Decodable Block Codes for WDM High-Speed Long-Haul
Transmission Systems. (IEEE J of Lightwave Technology, Vol 22., No.
3, March 2004), 695-702.

[G] Gallager, Robert G., “Low Density Parity Check Codes” Ph.D. diss.,
Massachusetts Institute of Technology, 1963.
http://www.ldpc-codes.com/papers/Robert_Gallager_LDPC_1963.pdf

[GU] Guava Webpage, http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/

[H] Hill, Raymond. A First Course in Coding Theory. (New York: Oxford
University Press, 2004).

[HP] W. Cary Huffman and Vera Pless, Fundamentals of Error Correction
Codes (Cambridge: Cambridge University Press, 2003), 598-602.

[JH] Justesen Jorn, and Tom Hoholdt, A Course in Error-Correcting Codes
(Zurich: European Mathematical Society Publishing House, 2004), 137-
145.

[M] Mackay, D.J.C., Good Error Correcting Codes Based on Very Sparse
Matrices. (IEEE Trans. Inform. Theory IT-45, 1999), 399-431.

[S] Sonata Webpage, http://www.gap-system.org/Packages/sonata.html

13

