
Implementing Generalized Reed-Solomon Codes and a
Cyclic Code Decoder in GUAVA

Jason McGowan
4-4-2005

Contents

1 Problem 1

2 Introduction 2

3 Algorithms 6

4 Examples 8

5 GAP Code 9

6 Conjecture 15

1 Problem

1. Implement evaluation codes. (Algorithm 1)

2. Write a decoding algorithm for Generalized Reed-Solomon codes. (Al-
gorithm 2)

3. Write a decoding algorithm for cyclic codes. (Algorithm 3)

Background Information: GAP is a computer algebra program whose
open source kernel is written in the C programming language. GUAVA is a
package for error-correcting block codes in GAP. Neither GAP nor GUAVA
contains a program for decoding Generalized Reed-Solomon codes or cyclic
codes, two very popular families of codes. Our work will greatly speed the
decoding algorithms for several types of codes in the next release of the
GUAVA package.

1

2 Introduction

A linear code of length n is a subspace of GF (q)n for some prime power
q and some n > 1. Let C be a linear code of length n over F = GF (q).
If q = 2 then the code is called binary. We assume that Fn has been
given the standard basis e1 = (1, 0, ..., 0) ∈ Fn, e2 = (0, 1, 0, ..., 0) ∈ Fn, ...,
en = (0, 0, ..., 0, 1) ∈ Fn. The dimension of C is denoted k, so the number
of elements of C is equal to qk.

Another important parameter associated to the code is the number of
errors which it can, in principle, correct. For this notion, we need to introduce
the Hamming metric. For any two x,y ∈ Fn, let d(x,y) denote the number
of coordinates where these two vectors differ:

d(x,y) = |{1 ≤ i ≤ n | xi 6= yi}|. (1)

This is called the Hamming distance or Hamming metric. Define
the weight w of v to be the number of non-zero entries of v. Note, d(x,y) =
w(x−y) because the vector x−y has non-zero entries only at locations where
x and y differ. The smallest distance between distinct codewords in a linear
code C is the minimum distance of C:

d = d(C) = minc∈C, c 6=0d(0, c) (2)

(for details see [HILL] Theorem 5.2).
A linear code C of length n and dimension k over F has a basis of k

vectors of length n. If those vectors are arranged as rows of a matrix G, then
we call the k × n matrix G a generator matrix for C.

Example 1 The following matrix is a generator matrix for a code of length
11, dimension 8, and minimum distance 4 over GF (11).

G =




1 0 0 0 0 0 0 0 7 2 1
0 1 0 0 0 0 0 0 8 3 10
0 0 1 0 0 0 0 0 1 2 7
0 0 0 1 0 0 0 0 8 8 5
0 0 0 0 1 0 0 0 10 3 8
0 0 0 0 0 1 0 0 1 4 5
0 0 0 0 0 0 1 0 5 4 1
0 0 0 0 0 0 0 1 5 8 8




2

Now we define a general class of codes which, as part of this project,
were implemented in GUAVA. Let R = F[x1, ..., xd] denote the polynomial
ring in d variables x1 through xd. Let K = F(x1, ..., xd) denote the field of
rational functions in these d variables. Let V be a finite dimensional subspace
of K and choose a subset E of points of Fd disjoint from the poles of the
functions in V (so all the functions f ∈ V are defined at the points p ∈ E).
Construct a linear code C by evaluating basis vectors of V at the points of
E as follows. Choose f1, ..., fk ∈ K which are basis vectors for V and pick
E = {p1, ..., pn} ⊂ Fd as above. Denote by

EvalE(f) = (f(p1), f(p2), ..., f(pn))

the evaluation map EvalE : K → (F ∪ {∞})d. Define the associated
evaluation code C by means of the k × n generator matrix,

G = (fi(pj))1≤j≤n, 1≤i≤k.

This is the code spanned by the vectors EvalE(fi), 1 ≤ i ≤ k.

Example 2 Let n be greater than q. Let R = F[x] denote the polynomial
ring in x. Let V = Rk denote the vector space of polynomials with coefficients
in F of degree less than k. Let E denote a subset of n elements of F (since
n > q this makes sense). Choose as a vector space basis of V the powers of
1, x, x2, . . . , xk−1. In this case the evaluation code has generator matrix,

G = (pi−1
j)1≤j≤n, 1≤i≤k.

This is a generalized Reed-Solomon code of length n and dimension k
over F.

Lemma 3 Let C denote a generalized Reed-Solomon code as in above exam-
ple. C has minimum distance d = n− k + 1.

Proof Suppose a codeword c has weight less than n− k + 1. Associated
to c is a polynomial f(x) of degree less than k with the property that c =
(f(x1), f(x2), ..., f(xn)). If the weight of c is less than n − k + 1 then f(x)
must have greater than n− (n− k + 1) zeros. Therefore f has greater than
k − 1 zeros. This contradicts the fact that f has at most k − 1 zeros. ¤

Therefore all generalized Reed-Solomon codes are minimum distance sep-
arable.

3

Definition 4 A linear code C of length n is a cyclic code if whenever
c = (c1, ..., cn) is a codeword then so is its cyclic shift c′ = (c2, ..., cn, c1).

Example 5 Consider the binary code C with generator matrix

G =




1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1




Clearly these four rows g1, g2, g3, g4 are obtained from the previous by a shift
to the right. Also notes the shift of g4 to the right is equal to g5 = g1+g3+g4.
The shift of g5 to the right is g6 = g1 + g2 + g3. And the shift of g6 is
g7 = g2 +g3 +g4. The shift of g7 is g1. Therefore, the linear code generated
by G is invariate under shifts to the right. Therefore C is a cyclic code.

Cyclic codewords are conveniently represented as polynomials modulo
xn − 1. In fact, if c = (c1, ..., cn) then let

c(x) = c1 + c2x + ... + cnx
n−1

denote the associated codeword polynomial. In this notation the cyclic
shift c′ = (c2, ..., cn, c1) of c corresponds to the polynomial xc(x) (mod xn −
1). In other words cyclic shifts correspond to multiplication by x. Since cyclic
shifts leave cyclic codes invariant, multiplication by any power of x modulo
xn−1 corresponds to a codeword in C. Since C is a linear code, the sum of any
two such codeword polynomials is another codeword polynomial. Therefore,
in fact, the product of any codeword polynomial times any polynomial in x
modulo xn − 1 is another codeword polynomial.

Denote by Rn the ring of polynomials with coefficients in F modulo xn−1:

Rn = F[x]/(xn − 1). (3)

Define an ideal I of Rn to be any subset of Rn closed under addition and
multiplication by an arbitrary element of Rn:

• If f, g ∈ I then f + g ∈ I, and

• If f ∈ I and r ∈ Rn then rf ∈ I.

4

In other words an ideal in Rn is simply a subset closed under addition and
multiplication by an arbitrary polynomial modulo xn − 1. In particular, the
collection of codeword polynomials associated to a cyclic code is an ideal of
Rn.

Lemma 6 There is natural one-to-one correspondence between cyclic codes
of length n over F and ideals of Rn.

This can be found in any book on coding theory, for example MacWilliams
and Sloane [MS].

In fact GUAVA allows you to easily pass back and forth between code-
words as vectors and codewords as polynomials.

In order to define the generator polynomial of a cyclic code we need the
following mathematical fact.

Lemma 7 Every ideal I of Rn is of the form g(x)Rn. In other words every
element of I is a multiple of g(x) for some polynomial g(x) in Rn.

Ideals which are of the form I = g(x)Rn are called principal ideals and
g(x) is called a generator of the ideal I.

Proof Suppose not. Let s(x) be a non-zero element in I of smallest
degree. Pick an arbitrary non-zero element f(x) in I. By the division algo-
rithm, we can write f(x) = q(x)s(x) + r(x) where q and r are polynomials
and the degree of r(x) is strictly less than the degree of s(x). Notice that
r(x) = f(x) − q(x)s(x) belongs to I by definition. This contradicts the as-
sumption that s(x) has smallest degree unless r(x) = 0. Therefore every
element of I is a multiple of s(x). Take g(x) = s(x). ¤

Definition 8 Let C be a cyclic code of length n. Let I be the ideal corre-
sponding to C by Lemma 6. We call g(x) a generator polynomial of C if
it is a generator of I.

Example 9 We continue with Example 5. Let g(x) = 1 + x2 + x3. This is
the codeword polynomial associated to the top row of the generator matrix.
g(x) is the generator polynomial of the cyclic code C. Note that x7 − 1 =
(x + 1)(x3 + x2 + 1)(x3 + x + 1).

More generally we have the following result

Lemma 10 The generator polynomial always divides xn − 1.

5

Proof By the division algorithm xn− 1 = q(x)g(x) + r(x) for some quotient
q(x) and some remainder r(x) of degree less than g(x). In Rn this means
that r(x) = −q(x)g(x). So r(x) corresponds to a codeword since g(x) is the
generator polynomial. This is impossible since g(x) has minimal degree of
any codeword in C unless r(x) = 0.¤

3 Algorithms

Recall F = GF (q).
One common method of constructing a linear code is by constructing

its generator matrix from the values of certain functions at certain points.
Sometimes this construction adds extra structure to the code which aids in
implementing fast decoding algorithms. The algorithm below assumes that
you have a list L of rational functions in r variables and a list E of n points
in F.

Algorithm 1 (Evaluation Code)

1. Input: E is a list of n points in Fr, L is a list of m rational functions
in r variables. R is the ring of multivariate polynomials in r variables
of which L is a subset.

2. For 1 ≤ i ≤ n and 1 ≤ j ≤ m let gi,j = fj(pi), where pi ∈ E and
fj ∈ L. Let C be the code with generator matrix G = (gi,j). This is a
[n,≤ m] code over F.

The decoding of generalized Reed-Solomon codes relies on the algebraic
structure of the code. Codewords are values of a polynomial of degree less
than k. The rough idea is that if enough values are known, then the polyno-
mial can be reconstructed (think of the Lagrange interpolation formula).

Let r = c+e = (r1, ..., rn) be a received word where c = (f(p1), ..., f(pn))
is a codeword and the weight of e is less than τ = [(d − 1)/2], where [...]
denotes the integer part. The interpolating polynomial Q(x, y) = Q0(x)+
yQ1(x) is defined to be a polynomial of two variables having the following
three properties:

1. Q(pi, ri) = 0, for all i with 1 ≤ i ≤ n,

2. deg(Q0) ≤ n− 1− τ ,

6

3. deg(Q1) ≤ n− τ − k

First we show that an interpolating polynomial always exists.

Lemma 11 There always exists a non-zero polynomial Q(x, y) satisfying the
conditions above.

Proof By condition 2 we can write

Q0(x) = a0 + a1x + ... + an−1−τx
n−2−τ ,

and by condition 3 we can write

Q1(x) = b0 + b1x + ... + bn−τ−kx
n−τ−k−1.

So we have 2n−2τ−k−1 degrees of freedom in choosing the coefficients for Q.
Condition 1 imposes n constraints on these coefficients, therefore giving rise
to a linear system of n equations in 2n−2τ −k +1 unknowns. By Lemma 3,
τ = [(d−1)/2] = [(n−k)/2]. So 2n−2τ−k+1 ≥ 2n−2(n−k)/2−k+1 = n+1.
Therefore, this system has a solution.¤

Why is it that computing Q(x, y) will help us to find the polynomial
f(x) that gave rise to the codeword c that we’re looking for? Here’s the
intuitive explaination. Since there aren’t too many errors in the recieved
word, it follows that “usually” f(pi) = ri. Therefore, by Property (1) above,
Q(pi, f(pi)) is “usually” 0. But notice that Properties (2) and (3) above,
Q(x, f(x)) is a polynomial in x of degree at most n− τ −2. So if the number
x = pi which are roots of Q(x, f(x)) exceeds n− τ − 2, then Q(x, f(x)) must
be equal to 0 identically. But if Q(x, f(x)) = 0, then it is easy to solve for

f(x): Q0(x) + f(x)Q1(x) = 0 implies f(x) = −Q0(x)
Q1(x)

.

Algorithm 2 (Generalized Reed-Solomon Decoder)

1. Input: E = {p1, ...pn} is a list of n points in F, k < n is an integer.

Output: A codeword in C close to v or “fail”.

2. Let Q0(x) = a0 + a1x + ... + an−1−τx
n−2−τ and Q1(x) = b0 + b1x + ... +

bn−τ−kx
n−τ−k−1. Property (1) above gives n equations

Q(pi, ri) = Q0(pi) + riQ1(pi)
= a0 + a1pi + ... + an−1−τp

n−2−τ
i

+ri(b0 + b1pi + ... + bn−τ−kp
n−τ−k−1
i)

in 2n− 2τ − k + 1 unknowns {a0, ..., an−1−τ , b0, ..., bn−τ−k}. Solve these
equations for these unknowns.

7

3. Compute using the previous step Q(x, y) = Q0(x) + yQ1(x).

4. Let f(x) = −Q0(x)
Q1(x)

. Return c = (f(p1), ..., f(pn)).

Consider a cyclic code C with generator polynomial g(x) of length n over
F and a received word v in Fn. Let v(x) denote the polynomial associated
to the received word v. Consider the “syndrome polynomial” s(x) = v(x)
(mod g(x)). If the degree of s(x) is less than [(d−1)/2] then a) the polynomial
c(x) = v(x) − s(x) is within Hamming distance (d − 1)/2 of the received
polynomial v(x), and b) c(x) is associated to a codeword c in C. Therefore
c is the codeword that the minimum distance algorithm would return for
decoding v.

Algorithm 3 (Cyclic Decoder)

1. Input: C is a cyclic code with generator polynomial g(x) of length n
over F and a received word v in Fn.

Output: A codeword in C close to v or “fail”.

2. Compute the polynomial v(x) associated to the received word v.

3. For each i from 1 to n− 1, compute the syndrome polynomials si(x) =
xiv(x) (mod g(x)). Let di denote the degree of si.

4. Find the first di which is less than [(d − 1)/2]. Let e(x) = xn−isi(x)
(mod xn − 1). Let c(x) = v(x)− e(x).

5. Convert c(x) to a codeword c and return c.

The algorithm will never return fail if the number of errors is less than [(d-
1)/2].

4 Examples

In the following two examples we consider a cyclic code C of length 10 over the
field with three elements GF (3). Let c ∈ C denote a random codeword. We
create an error in the first coordinate of c and use the method of Algorithm
3 to decode this incorrect received word.

8

example - stays in 1st loop

CCs:=CyclicCodes(10,GF(3));;
C:=CCs[2];
c:=Random(C);
e:=Codeword(Z(3)*[1,0,0,0,0,0,0,0,0,0,0],GF(3));
CyclicDecodeword(c+e,C);

gap> CCs:=CyclicCodes(10,GF(3));;
gap> C:=CCs[2];
a cyclic [10,9,1..2]1 enumerated code over GF(3)
gap> c:=Random(C);
[2 1 0 1 1 1 1 2 0 2]
gap> e:=Codeword(Z(3)*[1,0,0,0,0,0,0,0,0,0,0],GF(3));
[2 0 0 0 0 0 0 0 0 0 0]
gap> CyclicDecodeword(c+e,C);
[2 1 0 1 1 1 1 2 0 2]

######## example - goes into 2nd loop

CCs:=CyclicCodes(15,GF(3));;
C:=CCs[6];
MinimimDistance(C);
c:=Random(C);
e:=Codeword(Z(3)*[1,0,0,0,0,0,0,0,0,0,0,0,0,0,1],GF(3));
CyclicDecodeword(c+e,C);

5 GAP Code

ValueExtended:=function(f,vars,P)
return Value(NumeratorOfRationalFunction(f)*vars[1]^0,vars,P)\
*Value(DenominatorOfRationalFunction(f)*vars[1]^0,vars,P)^(-1);
end;

P is a list of n points in F^r
L is a list of rational functions in r variables
EvaluationCode returns the image of the evaluation map f->[f(P1),...,f(Pn)]
The output is the code whose generator matrix has rows (f(P1)...f(Pn)) where
f is in L and P={P1,..,Pn}
EvaluationCode:=function(P,L,R)
local i, G, n, C, j, k, varsn,varsd, vars, F;
vars:=IndeterminatesOfPolynomialRing(R);

9

F:=CoefficientsRing(R);
n:=Length(P);
k:=Length(L);
G:=ShallowCopy(NullMat(k,n,F));
for i in [1..k] do

for j in [1..n] do
G[i][j]:=ValueExtended(L[i],vars,P[j]);

od;
od;
C:=GeneratorMatCode(G,F);
C!.GeneratorMat:=ShallowCopy(G);
return C;
end;

GeneralizedReedSolomonCode:=function(P,k,R)
local p, L, vars, i, F, f, x, C, R0, P0, G, j, n;
n:=Length(P);
F:=CoefficientsRing(R);
G:=NullMat(k,n,F);
vars:=IndeterminatesOfPolynomialRing(R);
x:=vars[1];
L:=List([0..(k-1)],i->(x^i));
for i in [1..k] do

for j in [1..n] do
G[i][j]:=Value(L[i],vars,[P[j]]);

od;
od;
C:=GeneratorMatCode(G,F);
C!.GeneratorMat:=ShallowCopy(G);
return C;
end;

GeneralizedReedMullerCode:=function(Pts,r,F)
Pts are points in F^d
for usual GRM code, take
pts:=Cartesian(List([1..d],i->Elements(F)));
for some d>1.
r is the degree of the polys in x1, ..., xd
##
local q, n, pts, row, B0, L, exps, Ld, i, x, e, d;

q:=Size(F);
d:=Length(Pts[1]);
L:=[0..Minimum(q-1,r)];

10

Ld:=Cartesian(List([1..d],i->L));
exps:=Filtered(Ld,x->Sum(x)<=r);
n:=Size(pts);
B0:=[];
for e in exps do

row:=List(Pts,t->Product([1..d],i->t[i]^e[i]));
Add(B0,row);

od;
B:=AsList(B0);
C:=GeneratorMatCode(One(F)*B,F);

return C;
end;

CyclicDecodeword:=function(w,C)
local d, g, wpol, s, ds, cpol, cc, c, i, m, e, x, n, ccc, r;
if not(IsCyclicCode(C)) then

Error("\n\n Code must be cyclic");
fi;
n:=WordLength(C);
d:=MinimumDistance(C);
g:=GeneratorPol(C);
x:=IndeterminateOfUnivariateRationalFunction(g);
wpol:=PolyCodeword(w);
s:=wpol mod g;
ds:=DegreeOfLaurentPolynomial(s);
if ds<=Int((d-1)/2) then

cpol:=wpol-s;
cc:=CoefficientsOfUnivariatePolynomial(cpol);
r:=Length(cc);
ccc:=Concatenation(cc,List([1..(n-r)],i->0*cc[1]));
c:=Codeword(ccc);
return c;

fi;
for i in [1..(n-1)] do

s:=x^i*wpol mod g;
ds:=DegreeOfLaurentPolynomial(s);
if ds<=Int((d-1)/2) then

m:=i;
e:=x^(n-m)*s mod (x^n-1);
cpol:=wpol-e;
cc:=CoefficientsOfUnivariatePolynomial(cpol);
r:=Length(cc);
ccc:=Concatenation(cc,List([1..(n-r)],i->0*cc[1]));
c:=Codeword(ccc);

11

return c;
fi;

od;
return "fail";
end;

add_col_mat:=function(M,N)
#N is a matrix with same rowdim as M
#the fcn adjoins N to the end of M
local i,j,S,col,NT;
col:=MutableTransposedMat(M); #preserves M
NT:=MutableTransposedMat(N); #preserves N
for j in [1..DimensionsMat(N)[2]] do

Add(col,NT[j]);
od;
return MutableTransposedMat(col);

end;

add_row_mat:=function(M,N)
#N is a matrix with same coldim as M
#the fcn adjoins N to the bottom of M
local i,j,S,row;
row:=ShallowCopy(M);#to preserve M;
for j in [1..DimensionsMat(N)[1]] do

Add(row,N[j]);
od;
return row;

end;

block_matrix:=function(L)
#L is an array of matrices of the form
#[[M1,...,Ma],[N1,...,Na],...,[P1,...,Pa]]
#returns the associated block matrix

local A,B,i,j,m,n;
n:=Length(L[1]);
m:=Length(L);
A:=[];
if n=1 then

if m=1 then return L[1][1]; fi;
A:=L[1][1];
for i in [2..m] do

A:=add_row_mat(A,L[i][1]);
od;
return A;

fi;

12

for j in [1..m] do
A[j]:=L[j][1];
od;
for j in [1..m] do
for i in [2..n] do
A[j]:=add_col_mat(A[j],L[j][i]);

od;
od;
B:=A[1];
for j in [2..m] do
B:= add_row_mat(B,A[j]);

od;
return B;
end;

DiagonalPower:=function(r,j)
local R,n,i;
n:=Length(r);
R:=DiagonalMat(List([1..n],i->r[i]^j));
return R;
end;

#
#Input: Xlist=[x1,..,xn], l = highest power
#Output: Vandermonde matrix (xi^j)
#
VandermondeMat:=function(Xlist,x)
local V,n,i,j;
n:=Length(Xlist);
V:=List([1..(x+1)],j->List([1..n],i->Xlist[i]^(j-1)));
return TransposedMat(V);
end;

#
#Input: Xlist=[x1,..,xn], l = highest power,
L=[h_1,...,h_ell] is list of powers
r=[r1,...,rn] is received vector
#Output: Computes matrix described in Algor. 12.1.1 in [JH]
#
LocatorMat:=function(r,Xlist,L)

local a,j,b,ell;
ell:=Length(L);
a:=List([1..ell],j->DiagonalPower(r,(j-1))*VandermondeMat(Xlist,L[j]));
b:=List([1..ell],j->[1,j,a[j]]);

13

return BlockMatrix(b,1,ell);
return (block_matrix([a]));

end;

#
Compute kernel of matrix in alg 12.1.1 in [JH].
Choose a basis vector in kernel.
Construct the polynomial Q(x,y) in alg 12.1.1.
#
ErrorLocatorPair:=function(r,Xlist,L)

local a,j,b,q,e,Q,i,lengths,ker,ell;
ell:=Length(L);
e:=LocatorMat(r,Xlist,L);
ker:=NullspaceMat(TransposedMat(e));
if ker=[] then Print("Decoding fails.\n"); return []; fi;
q:=ker[1];
Q:=[];
lengths:=List([1..Length(L)],i->Sum(List([1..i],j->1+L[j])));
Q[1]:=List([1..lengths[1]],j->q[j]);
for i in [2..Length(L)] do
Q[i]:=List([(lengths[i-1]+1)..lengths[i]],j->q[j]);
od;
return Q;

end;

#
#Input: List coeffs of coefficients, R = F[x]
#Output: polynomial L[0]+L[1]x+...+L[d]x^d
#
CoefficientToPolynomial:=function(coeffs,R)

local p,i,j, lengths, F,xx;
xx:=IndeterminatesOfPolynomialRing(R)[1];
F:=Field(coeffs);
p:=Zero(F);
lengths:=List([1..Length(coeffs)],i->Sum(List([1..i],j->1+coeffs[j])));
for i in [1..Length(coeffs)] do
p:=p+coeffs[i]*xx^(i-1);

od;
return p;

end;

#
#Input: List L of coefficients ell, R = F[x]
Xlist=[x1,..,xn],
#Output: list of polynomials Qi as in Algor. 12.1.1 in [JH]

14

#
ErrorLocatorPolynomials:=function(r,Xlist,L,R)

local q,p,i,ell;
ell:=Length(L);
q:=ErrorLocatorPair(r,Xlist,L);
if q=[] then Print("Decoding fails.\n"); return []; fi;
p:=[];

for i in [1..Length(q)] do
p:=Concatenation([CoefficientToPolynomial(q[i],R)],p);

od;
return p;

end;

DecodewordGRS:=function(r,P,k,R)
local z,F,f,s,t,L,n,Qpolys,vars,x,c,y;
F:=CoefficientsRing(R);
vars:=IndeterminatesOfPolynomialRing(R);
x:=vars[1];y:=vars[2];
n:=Length(r);
t:=Int((n-k)/2);
L:=[n-1-t,n-t-k];
Qpolys:=ErrorLocatorPolynomials(r,P,L,R);
f:=-Qpolys[2]/Qpolys[1];
c:=List(Xlist,s->Int(Value(f,[x],[s])));
return Codeword(c,n,F);
end;

6 Conjecture

There is a simiple relationship between finding the minimum weight codeword
of a linear code and decoding a received word. Here is an illustration: Let
G denote a generator matrix of a linear code C. Let v = c + e denote a
received word with error vector e and codeword c. Create the new code C ′

with generator matrix

G′ =
(

G
v

)
.

The minimum weight codeword of this code is the error vector e provided e
has less than [(d− 1)/2] non-zero coordinates. Therefore if you can compute
the minimum weight codeword of C ′ then you can decode any received word
for C.

15

The following conjecture tries to reverse this idea and ask if the decoding
algorithm for a cyclic code can help one determine the weight of a minimum
weight codeword. If one could reverse this idea, this would have the ad-
vantage of speeding up the algorithm for determining the minimum weight
codeword. (The decoding algorithm for the cyclic code is relatively fast com-
pared to the algorithm for finding the minimum weight codeword.)

Conjecture 1 1. Input: C is a cyclic code with generator polynomial
g(x) of length n over F and a received word v in Fn. Assume we do
not know the minimum distance of C. Let d0 denote an upper bound
for the minimum distance.

Output: A good estimate for the minimum distance.

2. d1 = d0

3. Let {c} denote a “small” set of random codewords in C. Let {v} denote
a corresponding set of received words, with each corresponding vectore
having [(d1 − 1)/2] errors from the corresponding codeword. Compute
the polynomials v(x) associated to the received words v.

4. Apply algorithm 3 to try to correct the errors in the v’s. If any failure
occurs, replace d1 by d1 − 1 and go to step 2. If all are correct, then
stop and return d1.

If this works, it’s a polynomial time algorithm for estimating the minimum
distance of a cyclic code.

References

[GUA] GUAVA web page, http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/

[HILL] R. Hill, A First Course In Coding Theory, Oxford University Press,
1986.

[HJ] T. Høholdt and J. Justesen, A Course In Error-Correcting Codes,
European Math Society Publishing, 2004.

[LX] S. Ling and C. Xing, Coding Theory: A First Course, Cambridge
University Press, 2004.

16

[MS] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
correcting Codes, North-Holland, 1983.

17

