
A Solution to Ulam’s Problem with

Error-correcting Codes

Justin Montague

Dedicated to the memory of Ivan Niven.

Abstract

Suppose two people are playing a guessing game with numbers.
One person thinks of a number between 1 and 1,000,000, and the
other person must determine the unknown number by asking only
yes-or-no questions. Clearly, this game will not prove too difficult
for the Questioner. He only needs to halve the set containing the
unknown number with each question, e.g., Is the number between 1
and 500,000? Now let us suppose the second person may lie to one
of the questions asked him. The problem is to determine a strategy
which yields the least number of questions needed to determine the
unknown number.

Error-correcting codes - specifically Hamming Codes - will be used
to construct such a strategy. The strategy given does not depend
on feedback from the Responder and lends itself to quick decoding.
While the solution using codes for the most part agrees with answers
previously calculated, it sometimes requires one extra question. This
discrepancy, however, is outweighed by the simplicity and speed of the
solution.

1 Introduction

In his 1976 autobiography Adventures of a Mathematician, Stanislaw Ulam
[U] poses the following problem:

1

2

Someone thinks of a number between one and one million (which
is just less than 220). Another person is allowed to ask up to
twenty questions, to which the first person is supposed to an-
swer only yes or no. Obviously, the number can be guessed by
asking first: Is the number in the first half-million? and then
again reduce the reservoir of numbers in the next question by
one-half, and so on. Finally, the number is obtained in less than
log2(1000000). Now suppose one were allowed to lie once or twice,
then how many questions would one need to get the right answer?

A problem of a similar sort can also be found in Elwyn Berlekamp’s 1964
PhD thesis for MIT [B]. Since then, several papers have been published con-
taining solutions to this problem and some of its variations. These solutions,
however, were laden with complicated accounting and required feedback in
between questions.

This paper approaches Ulam’s problem from a different field of math-
ematics - Coding Theory. In general, we are concerned with transmitting
information (which may or may not be erroneous) between two persons. If it
is erroneous, we need an efficient method of detection and correction. A Uni-
versity of Oregon Professor named Ivan Niven authored a paper in 1988 [N]
that gave a solution to Ulam’s Problem using error-correcting codes. While
his idea was sound, the paper contained a few errors1, and thus the problem
remains unsolved.

Now we describe briefly the contents of this thesis. The solution contained
in this paper utilizes Hamming codes along with the necessary corrections
to Niven’s idea to solve Ulam’s problem with one lie. This work is not
found in the literature. The strategy is simple, requires no feedback from the
other player, and is easily generalized to the case where the number may be
chosen from the set 1 to M. Furthermore, some simple examples, a discussion
of problem variations, and a comparison to another “feedback” solution are
included. In section 4, we define a new class of codes called circle codes which
have a very simple decoding algorithm, although they are not as efficient as
Hamming Codes. In section 8, we give a new result concerning the case of

1In [N], the decoding algorithm at the bottom of page 277 and the corresponding
argument on page 279 (below Equation 15) are both incorrect.

3

the Pathological Liar (where the number of lies is variable). The remaining
sections contain background material. The paper closes with two appendices,
one a table of known A(n, d) values, the other a table of Maple calculations
comparing our formula for g(M, 1) with Pelc’s formula for f(M, 1).

2 Definitions and Notation

For Ulam’s game, let Player 1 choose the number from the set of integers 1
to M and Player 2 ask the questions to deduce the number. Player 1 and
Player 2 are sometimes referred to as the Responder and the Questioner,
respectively. If Player 2 structures his questions based on previous answers,
we say he is using feedback. In this case, let f(M,e) denote the minimum
number of “yes/no” questions needed to deduce the unknown number if
Player 1 can lie at most e times. If feedback is not allowed, then the minimum
number of questions is g(M,e). This case is equivalent to saying that all
questions are determined before the game begins. Obviously, f(M, e) ≤
g(M, e).

For a given integer n > 0, a binary code is a set C of n-tuples of 0’s
and 1’s. The set C can also be defined as a subset of Fn

2 , the n-dimensional
vector space over the integers mod 2. A codeword is an element of C.

The weight of a vector or n-tuple v, denoted by wt(v), is the number of
non-zero components in v. The minimum distance of a code C, denoted
by d, is the minimum weight of v − v′, where v, v′ in C.

The length of a code is the number of binary bits in a codeword. The
dimension of a linear code is the dimension as a vector space over F2, which
is equal to the number of information carrying bits. A code C of length n

and minimum distance d is perfect if all the vectors in Fn

2 are contained in
spheres of radius t=⌊(d − 1)/2⌋ about the codewords of C. A sphere of radius
t about a codeword would contain all vectors of equal length that differ from
the codeword in at most t places. In other words, the spheres of radius t

completely cover the space. Perfect codes can detect and correct patterns of
t or fewer errors.

The Hamming Code is a perfect, single error-correcting binary code with
minimum weight 3. The Hamming Code has length n and dimension k, where

4

n = 2r − 1 and k = 2r − r − 1 for positive integers r ≥ 3.

The parameter r refers to the number of parity check bits on the end of each
codeword. Obviously, n − k = r. These parameters generate a family of
Hamming Codes, where distinct members are labeled as (n,k,3)-Hamming
codes.

Let A(n,d) denote the size of the largest possible binary code of minimum
distance d and length n. If we fix M and e, the two parameters of Ulam’s
problem, then g(M,e) is the smallest n such that A(n,2e+1) ≥ M. It is a
known fact that if a code C is e-error correcting, then |C| ≤ A(n,2e+1).
Finding A(n,d) for every n and d is perhaps the central problem in Coding
Theory today, and is mostly unsolved (see table in Appendix A).

3 A Simple Problem

Let us first look at a simpler version of Ulam’s game. As before, we have
two players, and Player 1 must choose a number between 0 and 15, inclusive.
Player 2 must discern which number Player 1 picked with a minimum number
of questions, and Player 1 is allowed to lie at most once. To solve this problem
- and thus win the game - we will use a code generated by a three-circle Venn
Diagram. The diagram should be drawn with regions labeled as in Figure 1.

From Figure 1, we can see that this code has length 7. The spaces labeled
1 through 4 will contain the information bits. This coincides with the fact
that it takes a binary 4-tuple to represent all numbers from 0 to 15. Spaces
5, 6, and 7 will contain the parity check bits. The code generated by this
diagram has codewords of the form

b1b2b3b4b5b6b7,

5

Figure 1: Three circle decoding diagram.

where bi is the number in the i-th space of the diagram. To complete our
construction of this code, we define the parity check bits in this way:

b5 = b1 + b3 + b4,
b6 = b1 + b2 + b4,
b7 = b1 + b2 + b3.

Next, Player 1 has to convert his number to binary and encode it as a three-
circle codeword. A table containing all 16 codewords is included at the end
of this section for reference. Player 2 then asks seven questions of the form,
“Is the i-th bit of your 7-tuple a 1?” Player 1’s answers form the new 7-tuple,

c1c2c3c4c5c6c7.

If Player 1 was completely truthful, then the codeword’s parity conditions
hold. This means that the 7-tuple generated by Player 2’s questions will
match a 7-tuple from Table 1. At this point, Player 2 just has to decode his
7-tuple to win the game. A single lie, however, will yield a 7-tuple unlike

6

any in Table 1. If this is the case, Player 2 must error-check the received
codeword using the three parity check bits. In other words, Player 2 needs
to find all existing parity failures in the received codeword. A parity failure
occurs when a parity check bit does not agree with its corresponding sum.
Once Player 2 determines the position of the erroneous bit, he corrects it by
changing its value. Decoding the corrected codeword will yield Player 1’s
original number.

An example here will help to illustrate what is actually happening. Sup-
pose the answers to Player 2’s questions produced the 7-tuple 0111101. Since
this codeword is not in Table 1, we may deduce that Player 1 lied in answer-
ing one of the questions. Next we notice that the 5th and 7th bits fail their
respective parity checks. Since c3 is the only bit common to the parity sums
for c5 and c7, it must be the erroneous bit. This means that Player 1 lied
to the third question, and his actual number is the 7-tuple 0101101 which
decodes to 5.

The algorithm for error-detection and correction is not difficult. The
erroneous bit is determined by which check bit - or combination of check
bits - fails parity. If a single check bit fails parity, then that check bit is
the erroneous bit. If two check bits fail parity, then the erroneous bit is the
one common to both parity sums. If all three check bits fail parity, then the
erroneous bit is b1 since it is the only one common to all three parity sums.
Table 2 shows the correspondence between erroneous bits and sets of parity
failures.

It is interesting to note that the code generated by three circles is equiv-
alent to the (7,4,3)-Hamming Code. This means it is perfect, single-error
correcting, and has a minimum weight of three.

7

decimal binary codeword
0 0000 0000000
1 0001 0001110
2 0010 0010101
3 0011 0011011
4 0100 0100011
5 0101 0101101
6 0110 0110110
7 0111 0111000
8 1000 1000111
9 1001 1001001
10 1010 1010010
11 1011 1011100
12 1100 1100100
13 1101 1101010
14 1110 1110001
15 1111 1111111

Table 1

parity failure region(s) error position
none none

A, B, and C 1
B, C 2
A, C 3
A, B 4
A 5
B 6
C 7

Table 2

4 More circle codes

Larger circle codes can be generated in the above manner by using Venn-
like diagrams with more circles. Suppose we have n circles of diameter 1.5,
centered at the n-th roots of unity on the unit circle in the complex plane.

8

Here is how to label the intersecting regions of this Venn-like diagram. Be-
ginning with 1 in the center and spiraling outward counterclockwise, label
the (n− 1)2 + n intersecting regions as in Figure 1. The n outer regions will
serve as check bits for our circle code defined as follows. Write the integers
0, ..., 2(n−1)2 − 1 in binary, put the i-th bit in the i-th region, fill in the re-
maining n outer regions with check digits. These ((n−1)2 +n)-tuples are the
codewords. This defines our circle code. In fact, a circle code generated by
n circles will have a length of (n − 1)2 + n and dimension of (n − 1)2. This
can be easily shown.

Theorem: A circle code generated by n circles will have a length of

(n − 1)2 + n and dimension of (n − 1)2.

Proof: By the nature of our construction, each circle has one section that
is not shared with the others, such as spaces 5, 6, and 7 in Figure 1. For an
n-circle diagram, this amounts to n spaces. The inner regions of an n-circle
diagram are those that are shared by 2 or more circles. There is only one
region shared by all n circles. Due to the geometry of these diagrams, there
are always n regions shared among j circles for 2 ≤ j ≤ n−1. The dimension
of an n-circle code is the number of inner regions of the diagram since the
inner regions correspond to the information bits of the codeword. Thus, the
dimension of an n-circle code is n(n − 2) + 1 = (n − 1)2. The length is then
the sum of the dimension and the number of parity check regions.

Each parity check bit of an n-circle code equals the mod 2 sum of the
values of the inner regions of that specific circle. This is an extension of the
parity sum construction of the previous section. The generalized circle code
can correct one error since the number of combinations of parity failures is
always greater than or equal to the number of bits in a codeword.

Because of its properties, we could consider using the circle code to solve
Ulam’s problem. However, a single, as yet unmentioned property will prevent
us from doing this. This property is the rate of the circle code. The rate, R,
of any code is defined as the ratio of information carrying bits to total bits
of a codeword. Thus,

R = k

n
.

9

When compared to the Hamming Code, the circle code has a smaller rate
which means it is less efficient. This is readily seen since for an equal number
of check bits, the Hamming Code contains more information bits. If we let
r = n, then

RHam = 2n
−n−1

2n
−1

, whereas Rcircle = (n−1)2

n2
−n+1

.

In fact, the dimension of the Hamming Code is exactly equal to the number
of combinations of parity failures given a fixed number of check bits.

This comparison simply reiterates the fact that the Hamming Code is the
best single-error correcting code. Accordingly, it will be used to solve Ulam’s
Problem.

5 Original Problem

We will now solve Ulam’s original problem as stated in the beginning of this
paper assuming one lie is allowed. We must first determine how many binary
digits are needed to encode all numbers from 0 to 1,000,000. This is equal to
the number of binary digits needed to represent 1,000,000. If we let b denote
the number of binary digits needed, then

b = 1 + ⌊log2(1, 000, 000)⌋ = 20.

Next we must find the Hamming Code with dimension greater than or equal
to 20. Using the parameters of the general Hamming Code given earlier, this
is the (31,26,3)-Hamming Code. Obviously, the (31,26,3)-Hamming Code
has a much larger cardinality than the set {0,1,...,106}. In fact, it is roughly
67 times larger. Therefore, we will concern ourselves with a subcode of the
(31,26,3)-Hamming Code consisting only of the codewords representing the
numbers 0 through 1,000,000. The reader should note that this subcode is
not linear, although this fact has little bearing on the solution.

10

As a result of the definition, the first six bits of every codeword in our
subcode are zeros. Only the last 25 bits of our subcode will carry information
needed by Player 2, the first 20 being leftover information bits while the last
5 are parity check bits. In order to determine Player 1’s number, Player 2
asks questions of the form, “Is the i-th bit of the (31,26,3)-Hamming Code
representation of your number a 1?” for i=7...31. After 25 questions, Player
2 will have a binary 31-tuple whose first 6 bits are zero.

Now Player 2 must error-check his 31-tuple. He does this using the
Hamming Check Matrix for the (31,26,3)-Hamming Code. The dot prod-
uct (where addition is mod 2) of Player 2’s possible codeword with each row
of the 5x31 check matrix yields a binary 5-tuple. Converting this 5-tuple to
decimal yields a number from 0 to 31, which corresponds to the index of the
erroneous bit. A zero implies an accurate codeword meaning Player 1 never
lied.

Finally, Player 2 corrects the erroneous bit - if necessary - by inserting
the opposite binary value. For example, if the erroneous bit is a 1, Player 2
changes it to a 0. Converting the corrected codeword to decimal will yield
Player 1’s number.

The use of the Hamming Code gave us a solution that does not depend on
feedback from Player 1. All 25 questions were constructed before the game
actually began, and Player 1’s number was determined using a quick and
efficient decoding algorithm. Thus, g(M, 1) ≤ 25, when M = 106. It will
follow from a result in section 7 that, in fact, g(M, 1) = 25.

6 Generalized Problem

Generalizing Ulam’s original problem gives us the following question,

Player 1 chooses a number between 0 and M-1. Player 2 must
determine this number by asking yes or no questions. What is
the minimum number of questions needed to correctly determine
Player 1’s number if he can lie at most e times (e ≥ 0)?

11

The solution from the previous section, applied to the set {0,1,2,...,M},
can be used to determine g(M,1) for all M.

As before, we must first calculate how many binary digits are needed to
represent every number in the set {0,1,2,...,M}. Let b denote the number of
binary digits needed. Therefore,

b = 1 + ⌊log2 M⌋.

Let Hr denote the Hamming Code with dimension 2r − r − 1 and length
2r − 1. Next we choose r as small as possible so that 2r − r − 1 ≥ b. If the
dimension of Hr is larger than b, we consider the subcode C whose elements
are the codewords of Hr corresponding to the numbers 0 trough M. Hr and
C have the same number of check bits. The definition of C forces the first
2r − r − 1 − b bits of each codeword to be zero. We ignore these bits during
the question phase of the game.

Player 2 then asks b + r questions of the form, “Is the i-th bit of the
(2r − 1,2r − r − 1,3)-Hamming Code representation of your number a 1?”,
where i=2r − r − b,2r − r − b + 1,...,2r − 1. When finished, Player 2 will
have a (2r −1)-tuple to error-check using the corresponding Hamming Check
Matrix.

If the (2r −1)-tuple has an erroneous bit, Player 2 corrects it by inserting
the opposite binary value. Converting the corrected codeword into decimal
will yield Player 1’s number. Again, no feedback was required, all questions
were pre-determined, and an efficient decoding algorithm exists for the code
used.

7 Comparison to Pelc’s Solution

In 1987, Andrzej Pelc [P] solved Ulam’s original problem with one lie using
a rigorous accounting process. The solution was complicated and required
feedback from the Responder on every question. Pelc went on to solve the

12

generalized one-lie problem giving the following conditions for the minimum
number of questions (Pelc’s paper dealt with the set {1,2,...,M}).

Theorem:

If M is even, f(M, 1) = min{n : M(n + 1) ≤ 2n},
If M is odd, f(M, 1) = min(n : M(n + 1) + n − 1 ≤ 2n}.

Thus, f(106, 1) = 25.

Where Pelc deals with the set {1,2,...,M}, we will use the set {0,1,...,M−
1}. In either case, Player 1 has an equal number of possibilities to choose
from. See Appendix B for the tabular comparison of g(M, 1) and f(M, 1).

In his paper, Niven [N] states that g(M, 1) = f(M, 1) or f(M, 1) + 1.
Though earlier parts of his solution contained errors, this statement and its
argument are correct. Therefore we will consider the proof for this statement
already done. This is also shown experimentally in the comparison contained
in Appendix B.

8 Case of the Pathological Liar

An n×n Hadamard Matrix H is a matrix of ±1’s satisfying

H·Ht = n·In.

Hadamard Codes are constructed from Hadamard matrices2 and are the best
binary codes for correcting large numbers of errors. From a well-known but
difficult conjecture, we expect that Hadamard matrices exist for n=1,2 or
4|n. If we assume this conjecture, and if

1
4+ 3

e

< e

n
< 1

2+ 1

e

,

2There are at least three ways to construct a code from a Hadamard matrix. One way
is to create a new matrix A (the binary Hadamard matrix) from H by replacing the 1’s
in H by 0’s and −1’s in H by 1’s. One Hadamard code is the code C whose codewords
are the columns in A along with all their complements. See chapter 2, §3, of [MS].

13

then it is possible to show that (Joyner, unpublished)

g(M, 1) ≤
⌊

4e + 3 − 4 (e+1)
M

⌋

.

In fact, g(M, 1) can be calculated explicitly under these conditions. This is a
very interesting result. If Player 1 promises to lie more than one-fourth but
less than one-half the time to Player 2’s questions, then we can determine
g(M,e) precisely. It seems we know more about Ulam’s problem (and its
Coding Theory equivalent) if Player 1 lies many times than if he lies only
twice. We credit this result to Dr. Joyner, Plotkin, and Levinshtein [MS]
(Theorem 8, Chapter 2, Section 3).

9 Conclusions

Approaching Ulam’s problem from the field of Coding Theory yields a solu-
tion that is easy to understand and implement. The use of Hamming Codes
gives a very efficient algorithm for constructing Player 2’s questions, not to
mention an efficient method of decoding. Also, we do not require feedback
from Player 1 in order to advance the game. This is a definite improvement
over Pelc’ s solution. Although the Hamming Codes sometime require one
more question than Pelc’s solution, it is a small sacrifice for our solution’s
simplicity.

Although Ulam’s problem has been solved for one lie, the solution is only
a small piece of a larger problem for Coding Theorists. What happens when
Player 1 can lie twice? This problem has been solved directly - again by Pelc
- but with the same feedback and heavy accounting as before. Coding Theory
has no answer. What we do know, thanks to Ray Hill [H], is that the codes
necessary for the solution are not linear. The difficulty of this problem has
increased drastically with the addition of only one lie. However, when the
number of lies increases suitably along with the length of the code, thanks
to Hadamard Codes, one can also solve Ulam’s problem. The middle ground
remains untouched. Coding Theory has much work ahead of it.

14

10 Appendix A

Minimum distance d of best binary (n, k) codes by A. Brouwer [Br], compiled
by Luis Goddyn.

Derived from the tables of aeb@cwi.nl (A. Brouwer) found at

ftp.win.tue.nl:/pub/math/codes/table2.gz

Rows: n = 1..50 Columns: n-k = 0..min(n-1,31)

Legend: n+ means n <= d <= n+1 n# means n <= d <= n+2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 n-k/

-- / n

1 1

2 1 2

3 2 1 3

4 2 2 1 4

5 3 2 2 1 5

6 4 3 2 2 1 6

7 4 4 3 2 2 1 7

8 5 4 4 2 2 2 1 8

9 6 4 4 3 2 2 2 1 9

10 6 5 4 4 3 2 2 2 1 0

11 7 6 5 4 4 3 2 2 2 1 11

12 8 6 6 4 4 4 3 2 2 2 1 12

13 8 7 6 5 4 4 4 3 2 2 2 1 13

14 9 8 7 6 5 4 4 4 3 2 2 2 1 14

15 10 8 8 7 6 5 4 4 4 3 2 2 2 1 15

16 10 8 8 8 6 6 5 4 4 4 2 2 2 2 1 16

17 11 9 8 8 7 6 6 5 4 4 3 2 2 2 2 1 17

18 12 10 8 8 8 7 6 6 4 4 4 3 2 2 2 2 1 18

19 12 10 9 8 8 8 7 6 5 4 4 4 3 2 2 2 2 1 19

20 13 11 10 9 8 8 8 7 6 5 4 4 4 3 2 2 2 2 1 20

21 14 12 10 10 8 8 8 8 7 6 5 4 4 4 3 2 2 2 2 1 21

22 14 12 11 10 9 8 8 8 8 7 6 5 4 4 4 3 2 2 2 2 1 22

23 15 12 12 11 10 9 8 8 8 8 7 6 5 4 4 4 3 2 2 2 2 1 23

24 16 13 12 12 10 10 8 8 8 8 8 6 6 4 4 4 4 3 2 2 2 2 1 24

25 16 14 12 12 11 10 9 8 8 8 8 6 6 5 4 4 4 4 3 2 2 2 2 1 25

26 17 14 13 12 12 11 10 9 8 8 8 7 6 6 5 4 4 4 4 3 2 2 2 2 1 26

27 18 15 14 13 12 12 10 10 9 8 8 8 7 6 6 5 4 4 4 4 3 2 2 2 2 1 27

28 18 16 14 14 12 12 11 10 10 8 8 8 8 6 6 6 5 4 4 4 4 3 2 2 2 2 1 28

29 19 16 15 14 13 12 12 11 10 9 8 8 8 7 6 6 6 5 4 4 4 4 3 2 2 2 2 1 39

30 20 16 16 15 14 12 12 12 11 10 9 8 8 8 7 6 6 6 5 4 4 4 4 3 2 2 2 2 1 30

31 20 17 16 16 15 13 12 12 12 11 10 9 8 8 8 7 6 6 6 5 4 4 4 4 3 2 2 2 2 1 31

32 21 18 16 16 16 14 13 12 12 12 10 10 8+ 8 8 8 6+ 6 6 6 5 4 4 4 4 2 2 2 2 2 1 32

22 18 16 16 16 14 14 12 12 12 11 10 9+ 8+ 8 8 7+ 6+ 6 6 6 5 4 4 4 3 2 2 2 2 2 1 33

19 17 16 16 15 14 13 12 12 12 10 10 9+ 8+ 8 8 7+ 6+ 6 6 6 4+ 4 4 4 3 2 2 2 2 2 1 34

18 16 16 16 15 14 12+ 12 12 11 10 10 9+ 8+ 8 8 7+ 6+ 6 6 5+ 4+ 4 4 4 3 2 2 2 2 2 1 35

17 16 16 16 14 13+ 12+ 12 12 11 10 10 8# 8+ 8 8 7+ 6+ 6 6 5+ 4+ 4 4 4 3 2 2 2 2 2 1 36

17 16 16 15 14 13+ 12+ 12 12 10+ 10 9+ 8# 8+ 8 8 7+ 6+ 6 6 5+ 4 4 4 4 3 2 2 2 2 2 1 37

16 16 16 14+ 14 13+ 12 12 11+ 10+ 10 9+ 8# 8 8 8 6# 6+ 6 6 5 4 4 4 4 3 2 2 2 2 2 1 38

16 16 15+ 14 14 12+ 12 12 11+ 10+ 10 9+ 8+ 8 8 7+ 6# 6+ 6 6 5 4 4 4 4 3 2 2 2 2 2 1 39

16 16 14+ 14 12# 12+ 12 l2 11+ 10+ 10 9+ 8+ 8 8 7+ 6# 6+ 6 6 5 4 4 4 4 3 2 2 2 2 2 1 40

16 15+ 14+ 13+ 12# 12+ 12 12 11+ 10+ 10 9# 8+ 8 8 7+ 6# 6 6 6 5 4 4 4 4 3 2 2 2 2 2 1 41

16 15+ 14 13+ 12# 12+ 12 12 11+ 10 10 8# 8+ 8 8 7+ 6+ 6 6 6 5 4 4 4 4 3 2 2 2 2 2 1 42

16 15 14 13+ 12# 12+ 12 12 11 11 9+ 8# 8+ 8 8 7+ 6+ 6 6 6 5 4 4 4 4 3 2 2 2 2 2 1 43

16 15 14 12# 12# 12 12 12 11 10 9+ 8# 8+ 8 8 7+ 6+ 6 6 6 5 4 4 4 4 3 2 2 2 2 2 1 44

16 14+ 13+ 12# 12+ 12 12 12 11 10 9+ 8# 8+ 8 8 7+ 6+ 6 6 6 5 4 4 4 4 3 2 2 2 2 2 1 45

14# 14+ 12# 12# 12+ 12 12 12 11 10 8# 8# 8+ 8 8 7+ 6+ 6 6 6 5 4 4 4 4 3 2 2 2 2 2 1 46

14# 13# 12# 12# 12+ 12 12 12 11 9+ 8# 8# 8+ 8 8 7+ 6+ 6 6 6 5 4 4 4 4 3 2 2 2 2 2 1 47

14# 12# 12# 12# 12+ 12 12 12 10+ 9+ 8# 8# 8+ 8 8 6# 6+ 6 6 6 4+ 4 4 4 4 3 2 2 2 2 2 1 48

15

13# 12# 12# 12# 12+ 12 12 10# 10+ 8# 8# 8# 8+ 8 7+ 6# 6+ 6 6 5+ 4+ 4 4 4 4 3 2 2 2 2 2 1 49

13# 12# 12# 12# 12+ 12 10# 10# 9# 8# 8# 8# 8+ 8 7+ 6# 6+ 6 6 5+ 4+ 4 4 4 4 3 2 2 2 2 2 1 50

-- \ n

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 n-k\

16777216 4194304 1048576 262144 65536 16384 4096 1024 512 256 128 64 32 16 8 4 2 1 = 2^(n-k)

33554432 8388608 2097152 524288 131072 32768 8192 2048

11 Appendix B

Maple tables comparing Pelc’s formula given above and our formula

g(M, 1) = 2+[log2(M−1)]+[log2(2+[log2(M−1)]+log2(1+[log2(M−1)]))].

M f(M, 1) g(M, 1)

11 7 7
13 7 7
15 7 7
17 8 9
19 8 9
21 8 9
23 8 9
25 8 9
27 8 9
29 9 9
31 9 9
33 9 9
35 9 10
37 9 10
39 9 10
41 9 10
43 9 10
45 9 10
47 9 10
49 9 10

16

M f(M, 1) g(M, 1)

10 7 7
12 7 7
14 7 7
16 7 7
18 8 9
20 8 9
22 8 9
24 8 9
26 8 9
28 8 9
30 9 9
32 9 9
34 9 10
36 9 10
38 9 10
40 9 10
42 9 10
44 9 10
46 9 10
48 9 10
50 9 10

References

[B] E. Berlekamp, “Block coding with noiseless feedback,” PhD Thesis, Dept
EE, MIT, 1964

[Br] A. Brouwer’s ftp site,
ftp.win.tue.nl:/pub/math/codes/table2.gz (see also
http://www.math.sfu.ca/~goddyn/Courses/447.html)

[H] R. Hill, “Searching with lies,” in Surveys in Combinatorics, ed. by
P. Rowlinson, London Math Soc, Lecture Notes Series # 218

17

[MS] F. MacWilliams and N. Sloane, The theory of Error correcting
codes, North-Holland Pub. Co., 1977

[N] I. Niven, “Coding theory applied to a problem of Ulam,” Math Mag
61(1988)275-281

[P] A. Pelc, “Solution to Ulam’s problem on searching with a lie,” J Combin
Theory A 44(1987)129-140

[U] S. Ulam, Adventures of a mathematician, Scribner and Sons, New
York, 1976

