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Abstract

The object of this paper is to prove certain p-adic orbital integral
identities needed in order to accomplish the symmetric square transfer
via the twisted Arthur trace formula. Only §6 of this article contains
original material, the rest of it is due to R. Langlands. Very briefly,
we reduce the problem of proving certain orbital integral identities for
“matching” functions in the respective Hecke algebras to two counting
problems on the buildings. We give Langlands’ solution of one of
these problems in the case of the unit elements of the respective Hecke
algebras and §6 provides the solution to the other one, again, in the
unit element case. The main results assume p # 2.
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1 Contents

Only §6 of this article contains original material, the rest of it can be es-
sentially be found in the unpublished notes [Lal]. Very briefly, §2 provides
an introduction including the definition (due to H. Jacquet and J. Shalika)
of the “norm map”, §3 applies the Satake transform to proving some simple
orbital integral identities in the “split case”, §4 reduces the problem of prov-
ing these identities in the “non—split case” to two counting problems on the
buildings, §5 recalls R. Langlands’ solution of one of these problems for the
unit element of the Hecke algebra, and, finally, §6 provides the solution to
the other one (for the unit element of the Hecke algebra). In sections 5 and
6 we assume that p # 2.

This paper was written independently of a recent paper [F| which also
relied on Langlands’ unpublished manuscipt [Lal].

Acknowledgement: The author sincerely thanks Professor R. Langlands for
his suggestions, many helpful conversations on the subject, and the use of
his notes [Lal]. Conversations with R. Kottwitz were also beneficial. Finally,
I’d like to thank the referee for some helpful comments. Most of this work
was carried out at the Institute for Advanced Study in 1986-7, supported by
an NSF fellowship.

2 Introduction

2.1 History

Let F' denote a p—adic field and [I(G(F')) denote the set of equivalence classes
of admissible irreducible representations of G(F'), for a reductive algebraic
group G defined over F. Typically, F' will be a completion of a number field
K at a place v; let A = Ag denote the adele ring of K.

One example of the local functoriality conjecture ([Bor], [La2]) says that
the L-homomorphism

r:GL(2,C) - GL(2n +1,C), (1)

given by r := Sym®*" ® (det) ™™ should yield a transfer (the “symmetric n

power lifting”)
re : II(GL(2, F)) - [I(GL(2n + 1, F)). (2)
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Using L-parameters one can directly “lift” or transfer unramified principal
series from GL(2, F') to GL(2n + 1, F'), so there is some evidence for the va-
lidity of this conjecture. There is of course a global analog of this conjectural
transfer, predicted by the global functoriality principle.

If n = 1 then S. Gelbart and H. Jacquet [GJ] proved the existence
of a global representation Il € II(GL(3,4A)) associated to a cuspidal 7 €
II(GL(2, A)) using the theory of L-functions, converse Hecke theory on GL(3, A)
[JPSS], and an idea of G. Shimura [Sh]. Let me reformulate this in terms of
functoriality: when n =1, the L-map (1) becomes

—c cd d?

1 a?  —ab —b?
T(gg):ad_bc<2azcad+bc2bd) (3)
the adjoint representation of s/(2,C) with respect to the basis

€ 3:((1)8): €9 ::(—118)a €3 3:(8(1)):

and this factors through PG L(2) giving us

A PSL(2,C) = PGL(2,C) — SO(3,C) — SL(3,C) = “PGL(3,C). (4)

The functoriality conjecture then predicts a local and global transfer from
SL(2) to PGL(3). On the other hand, the natural embedding gives us an
L-map

X2 : 'PGL(2,C) = “PGL(3,C), (5)

In this case the functoriality conjecture predicts a local and global transfer
from PGL(2) to PGL(3). The global transfer associated to (5) is in fact the
Gelbart—Jacquet lift. The local transfer associated to (4) will be elaborated
upon in subsection 2.2 below.

Around 1976, H. Jacquet suggested that there should be a twisted trace
formula for PGL(3), corresponding to the outer automorphism

oc:g— Jg7'J, 0% =1,

where J is the idempotent matrix given by

7= ().



and that this trace formula could be applied to proving the symmetric square
transfer in a fashion analogous to the base change lift of Saito—Shintani—
Langlands. Moreover, PGL(2) and SL(2) should be o—endoscopic groups
for PGL(3) and the symmetric square transfer should be a consequence of
stabilizing this twisted PGL(3)-trace formula. The notes [Lal], completely
a year or so later, were motivated by Jacquet’s suggestion.

2.2 L—parameters and the transfer from SL(2) to PGL(3)

Let F' be a p—adic field with ring of integers Op, let G denote one of the groups
SL(n) or PGL(n), let K denote a maximal compact subgroup of G(F),
and let % (G, K) denote the Hecke algebra of compactly supported locally
constant functions on the double coset space K\ G(F)/K. Let Ky := G(OF)
denote the hyperspecial maximal compact subgroup; when K = K, we write
H(G) = H(G, Ky). Let C*(G) denote the algebra of Schwartz—Bruhat
functions of locally constant functions of compact support on G(F).

Corresponding to the L-map (4), the Satake transform (defined in §3
below) gives us a homomorphism of Hecke algebras

X H(PGL(3)) — H(SL(2)),
¢ — f = Ai(9),

determined by f(t) = ¢(M(t)), t € LSL(2,C). When this identity holds,
one says that the spherical function ¢ on PGL(3, F') corresponds with the
spherical function f on SL(2, F). Similarly, corresponding to the L-map (5)
there is the L-homomorphism of Hecke algebras

(6)

A5 H(PGL(3)) — H(PGL(2)),
¢ — f = X5(9),

determined by f(t) = ¢(\s(t)), t € “PGL(2,C). Using this one can define a
“correspondence”, as above, between spherical functions on PGL(3, F') and
spherical functions on PGL(2, F).

According to the local Langlands correspondence for GL(3), to each un-
ramified admissible homomorphism ¢ : Wp — LSL(3,C) there is an L-
packet of admissible irreducible unramified representations I1(#) € II(SL(2, F)),,
of SL(2,F). Here Wy denotes the absolute local Weil group of F' and the

(7)

5



subscript L on the II signifies that we are identifying L-indistinguishable
representations. Each homomorphism 6 : Wp — LSL(2,C) yields via (4) a
homomorphism 6* : W — LPGL(2,C), and if § is admissible then so is §*.
The local functoriality conjecture predicts that the L-map (4) should yield
a map of tempered L—packets

Ay IT"P(SL(2, F)), — TP (PGL(3, F)), ®)
We say that 7 € II(SL(2, F')) transfers to Il € II(PGL(3, F)) if 7 € 11(0)
and II = my«, for some admissible § as above. The L-packets of SL(2) have
been described by J.-P. Labesse and R. Langlands [LL].

2.3 The Jacquet—Shalika norm maps

The basic ideas of this subsection are, I believe, due to H. Jacquet and J.
Shalika and may be found in [Lal].

Let G := PGL(3), H, := SL(2), Hy := PGL(2). Associated to the two
o-endoscopic groups H; are “norm” maps

N; : {stable o-conjugacy classes in G} — {stable conjugacy classes in H;},

(9)
which (hopefully) allow one to relate stable class functions on G to stable
class functions on H;. The explicit construction of these norm maps is the
object of this subsection.

Lemma 1 If[A] € PGL(2n+1, F) is represented by A € GL(2n+1, F) then
[Alo([A]) is represented by A-tA~! and A-*A~! has at least one eigenvalue
equal to one.

This is an immediate consequence of the fact that A= —*A~! is singular
(since 2n + 1 is odd), hence has 0 as an eigenvalue.

Let V := F?"*1 and identify, by fixing a basis of V, GL(2n + 1, F) with
Autp (V). For the [A] and A in the lemma, let V4 C V be a 1-dimensional
subspace on which A -?A~! acts as the identity. Let W, be the orthogonal
complement of A1V, with respect to the inner product (vy,vs) := vy - vo.



Observe that A-*A~! acts on V4 trivially, therefore on V/V,, and A'A~! acts
on Wju.
Let me now restrict to the case n = 1.

Lemma 2 Suppose that A - t'A~! induces the linear transformation B, €
Autp(Wa) and By € Autp(V/Va). Then

(a) det By = det By =1,

(b) there is an isomorphism 0 : W4 — V/V4 such that

WAL)WA

BJ( TG
V/Va =2 V/Va

commutes,
(c) as elements of SL(2, F), By and By are stably conjugate,

(d) the stable conjugacy class of B; is independent of the choice of V.
For the proof, I refer to [Lal].

Definition 3 Choose a basis of V//V4 or of W4 and represent the transfor-
mation induced by A-'A7 by a 2 X 2 matriz. The stable SL(2)-conjugacy
class of this matriz is well-defined and depends only on the stable c—conjugacy
class of [A]. This stable conjugacy class in SL(2, F) is called the Hi-norm
of [A], written as N1([A]) C H1(F). For the Hy—norm, first identify Hy with
S0(3) via the adjoint representation (3), where SO(3) denotes the connected
component of the orthogonal group for the skew—diagonal matriz J above.
If the eigenvalues of A-'A7! are o, 1, o= and o # %1, then define the
Hy—norm of [A], written No([A]), to be the stable Hy—conjugacy class which
contains a matriz with o, 1, o' as eigenvalues.

As a matter of notation, let

CI5*(G) := {stable o-conjugacy classes in G},
C1*'(H;) := {stable conjugacy classes in H;}.



Proposition 4 (Jacquet-Shalika) The norm map
Ny : CING) — O (H,)
s a bijection.
Remark 1 (1) This is proven in [Lal] by explicit matriz manipulations.

(2) For Hy stable conjugacy and ordinary conjugacy are essentially the
same, so the statement analogous to the proposition is false for Ns.

(3) In general, one expects to be able to define norms from PGL(r) to
any of its c—endoscopic groups. One expects that the norm map associated to
the “largest” o—endoscopic group should also yield a bijection. For r = 2n+1
and r = 2n, one would like bijections

N : CEYPGL(2n + 1)) — CI**(Sp(2n)),
N : CEYPGL(2n)) — CI*H(PSp(2n)).

The following corollary of Langlands’ proof of (4) is sometimes useful.

Corollary 5 If N;([A]) does not contain a unipotent, then there is a [A'] in
the same stable o—conjugacy class as [A] and represented by A’ € GL(3, F),
for which

(a) V=Vy@&Wy,

(b) Wi =V with repect to the inner product (vy,vy) := tvy - vy,

(c) Var and Wa are both invariant under A and A~ (i.e., A can be put
in (2,1)-block form).

2.4 The fundamental lemmas
Recall G := PGL(3), H; := SL(2), Hy := PGL(2). Let us denote the
twisted centralizer by

G(go,F) = {g € G(F) | 27"'go(z) = g}, (10)

and the (ordinary) centralizer by



Hi(h,F):={h € Hy(F) | z'ha =h}, i=12. (11)

Let we(go), we be fixed nonzero forms of maximal degree on G(go, F'), G(F'),
respectively, and let

dwg(z)

dwa(go) (@)
(@), define the twisted orbital

dt i = —————

denote the quotient measure. For ¢ € C°
integral by

B(g, 6, w6, woign) = g, @) = / ot ()
go.

provided it converges. Similarly, let wg, ), wp, be fixed nonzero forms of
maximal degree on H;(ho, F'), H;(F), respectively, and let

dei (37)
dw(r) ()
denote the quotient measure. In fact, we don’t take any wg,(s), but only one
obtained by pulling back wg(4) via an étale surjective homomorphism over

F

dzT =

i - Hy(h)® — G(go),

namely, it must satisfy

wryny = |ker ;] T wege),

for all h € N;(g). Here N; denotes the norm map defined above. Note
that if h € H;(F) is regular semi—simple then we may assume that ¢; is an
isomorphism. For f € C®(H;) and h € H;(F) regular, define the orbital
integral by

Q(h, f,wh;, wam) = (b, f) = /.(h . f(z™ ha) dz. (13)

This defines the orbital integrals which will occur in the fundamental lemmas
below. Note that, whereas ®(h, f) is a class function on H;(F)", ®(g, )
may be regarded as a class function on the nonconnected reductive group
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G :=G x{l,0}, (semi— direct product),
because of the identity

(x x o) g xo)(xxo)=0c(z go(x)) x 0.

To analyse these integrals further we of course should know something
about the conjugacy classes on H; and on G. Actually, from now on I shall
pretty much ignore G since it seems easier to regard conjugacy classes on G
as o—conjugacy classes on G.

Let me leave aside the notion of o-conjugacy for the moment and first
discuss the (untwisted) notions of conjugacy and stable conjugacy. Two
elements hy, hy € SL(2,F) = H,(F) can be stably conjugate (meaning
that there is an * € Hy(F) such that h; = z7'hox) but not conjugate
(over F'). This is not true for PGL(n). In other words, if two elements of
PGL(n, F) are PGL(n, F)-conjugate then they are necessarily PGL(n, F)-
conjugate (see, for example, [L], ch. 15, §3, p. 543). Equivalently, for
PGL(n), the notions of stable conjugacy and (ordinary) conjugacy coincide.
For groups other than PGL(n), however, these notions do not generally
coincide. As a measure of the difference between these two notions, one
may consider the set of conjugacy classes of an element within a given stable
conjugacy class of that element. For h € H;(F'), the set of H;(F)-conjugacy
classes of h; within the stable conjugacy class of h is parameterized by

D(h, H;) := H;n(F) \ St(h, H;)/H;(F), (14)

where

St(h,H;) :={x € Hy(F) | x 'hz € H;(F)}

denotes those elements over F' which leave invariant the stable conjugacy
class of h € H;(F) under conjugation. If i = 2 then D(h, Hs) is a singleton
since in that case the notions of stable conjugacy and ordinary conjugacy
coincide.

Now let me turn to the twisted analogs of these notions. Although
PGL(n) has “no L-indistinguishabilty” it does have “twisted
L-indistinguishability”. In other words, it is possible for ¢;, g» € G(F)
to be stably o-conjugate (meaning that there is some g € G(F) such that
g1 = g 'g20(g)) but not o-conjugate over F. For g € G(F), the set of

10



o-conjugacy classes of g within the stable o-conjugacy class of ¢ is parame-
terized by

D,(g, G) := Gyo(F) \ Sto(g)/ Hi(F), (15)

where

Sty(9,G) :={x € G(F) | v 'gz € G(F)}

denotes those elements over I which leave invariant the stable o-conjugacy
class of g.

Lemma 6 There are isomorphisms (as pointed sets)

D,(g,G) = H'(F,G(g0)).

For the proof of this see, for example, [La2]. We will use this to compute
the cardinality of these sets later.

For fixed g € G(F) and arbitrary ¢’ € D,(g,G), all the twisted central-
izers G(g'c) are (well-defined and) isomorphic over F. When considering
the twisted orbital integrals ®(¢', wa(g0), wa), 9 € Ds(g,G), we will always
assume that the measures wg(y o) are determined from the given wg(ys) by
pulling it back via some isomorphism G(¢'c) = G(go). A similar remark
pertains to the orbital integrals attached to the h' € D(h, H;).

If Nyi(g) is regular, g € G(F') then define the stable twisted orbital
integral of ¢ € C°(G) by

"l g, 0):= Y (g, 9), (16)

9'€Ds(9,G)

where T denotes G(go). Similarly, if h € H;(F) is regular then define the
stable orbital integral of f € C°(H;) by

Tl(h, f) = Y (M, f), (17)

b €D(h,H;)

whete T; denotes the centralizer H;(h).
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Theorem 7 (Langlands, Fundamental Lemma for H;) If ¢ € H(G) and
f1 = Xi(¢) € H(Hy) then, for all non—trivial h € Ny(g), we have

(‘I)le(g7¢) = QTI’I(ha fl) (18)

We will prove this in §5 in the case where ¢ is the unit element of H(G)
and p # 2.

The analogous statement for Hy requires the introduction of “unstable”
orbital integrals. These are the same as stable orbital integrals except that
the sum is “twisted” by certain roots of unity (£1’s in our case). To define
these, we use the property that the elements g € G(F') with N;(g) = 1 have
the property that |D, (g, G)| = 2, and we can define a bijection of sets

k:Dy(g,G) — {£1}, (19)
by

)+ if G(go) is split over F,
wlg) = -1, if G(go) is non — —split over F.
If Ni(g) # 1 is regular then replace g by gs := (g + g)/2 to get a regular
element with N;(g;) = 1. In this case, define k(g) = k(gs). This depends only
on the o-conjugacy class of g. This sign is closely related to the Hilbert norm
residue symbol of E/F, where E is the quadratic extension obtained from

adjoining the eigenvalues of h € Ni(g) to F, see §5 below. The unstable or
k-orbital integral of ¢ € C°(G) is

" (g,8) = Y k()P4 9), (20)

9'€Ds(9,G)

where T := G(go).

Conjecture 8 (Fundamental Lemma for H,) Assume Ny(g) # £1. If
¢ € H(G) and fy := X3(¢) € H(Ha) then, for any h € No(g), we have

(g, 0) = 7(9)2(h, fo), (21)

where T 1s the transfer factor

7(h) = £|(1+ A1) (1 + B2) |2,
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denoting the eigenvalues of h by B1, Pa. The + sign will be explained in (49)
below.

This main result of this paper is, as mentioned earlier, the proof that this
holds when the residual characteristic of F' is greater than 2 and ¢ € H(G)
is the unit element.

3 The identities in the split case

3.1 Summary

The object is to briefly sketch, following [Lal], a proof of the stable and
unstable fundamental lemmas

" (g,¢) = @"(h, f), (22)
for h € Ni(g) N Ay (F) regular semi-simple, and

" (g, ) = [(L+B) (L + Bo)[2@(H, ), (23)

for i € Ny(g)NAy(F) regular, semi-simple. Here A;(F') denotes the maximal
split torus in H;(F); let A(F) denote the maximal split torus of G(F). The
norms have been defined in such a way that, if g € A(F') then N;(g)NA;(F) #
(). We use Satake transforms, a method which has the advantage of yielding,
for the split groups we consider, an explicit expression for the absolute value
of the transfer factor (the precise transfer factor is very difficult to predict in
general, see the recent work of R. Langlands and D. Shelstad [LS]).

3.2 2.2. Background on twisted integration formulas

All Haar measures in this subsection are normalized as in [C].

In this section, let G' = SL(n) or PGL(n) and consider the outer au-
tomorphism o(g) = J' - tg~' . J' where J' denotes the n x n skew—diagonal
matrix with alternating +1's on the skew—diagonal:

13



(-1

Let Ad denote the action of G'(F) on Lie(G"): Ad(g9)X := gXg~'. The Jaco-
bian of the change—of-variables n — nmn='m=! = exp[(1 — Ad(m)) logn],
where logn € Lie N' is given by explogn := n, is of course A(m) :=
|det(Ad(m) — 1)pie nv|r. Similarly, the Jacobian of n — nmao(n)~'m=! =
exp[(1 — Ad(m)o)logn] is A, (m) := |det(Ad(m)o — 1) e nt|p-

To be concrete, if «aq,...,®, are the simple roots of G’ then o acts
on their associated root groups via o(exp(tX,,)) = J(exp(tX,,))™'J =
(=1)"texp(—tJ'X,,J), or equivalently, via the action of 0 € Out(G') =
Aut(D) on the Dynkin diagram D of G'. For PGL(3), o exchanges the two
simple roots; on the level of the Lie algebra, it exchanges the root vectors
Xa,, Xa, and changes the sign of X, 14, in Lie N since Xy, 10, = [Xa;, Xas-
Therefore the analog to

d(nmn tm ) dn=A(m) ' [ é(n) dn (24)
N N
becomes

d(nmo(n)*m™) dn = A, (m)™ . é(n) dn (25)

NI

Let a € A'(F') belong to the maximal split torus of G'(F') and let ¢ be a

spherical function on G'(F'). As a straightforward application of (24)-(25),
we have

/ bz go(x)) dz
G'(go,F)\G'(F)

= / Ag(m)~ ' A(m) ¢(z~"'mz) dzd,
G'(go, F)\A'(F) AN(F\G'(F)
(26)

where m := t 'ac(t). Notice that the outer integral on the right is a finite
sum. This fact will be used in a later subsection.
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The remainder of this subsection is devoted to the calculation of the
twisted Jacobian A,(m), when G' = G = PGL(3). Write Lie N = F - X,,, ®
F-X,, ®F - Xa+a, and identify its elements as column vectors. In terms
of this basis, o is represented by the matrix

-1
-1

and Ad(a) is represented by the matrix

a1 (a)
as(a) ,
(O!l + 012) (U,)

where of course a;(a) = a1/az, as(a) = as/as, (o1 + az)(a) = a;/as. Com-
bining this together, we find that det(Ad(a)o — 1)rieny = (a1/az)? — 1. In

e
particular, with a = m = t~'go(t) ( yoty? , where 7; denote

73t1—1t;1

the eigenvalues of a representative of g € A(F), we find that
Ag(m) = [1 = (11/73)*|r- (27)
3.3 The Satake transform on PGL(3), SL(2), PGL(2)

There are, as we mentioned already in §2, L-maps

)\1 : LH1((C) — LG(C), LH1 = 50(3)
)\2 : LHQ((C) — LG(C), LH2 = SL(?),

given on the maximal split torus by



Define the Satake transform by

d(t):= > a(MA(t), te"AC),

AeX*(LA)

L) =Y Bulmwu(), terA(C) (28)
pex=(LAy)

LU= Y B@w), te"4(C).
veX*(LAs)

Here
a(A) = AG(g)/ (z~"gz) dT, (29)
A(F\G(F)

where A is that element A = A(g) = A(ky, ko, k3) € X*(FA) = Z3 is that
element corresponding to (ki, ko, k3) € Z3 for k; given by

u17r’“1

— k X
g= UgT ™2 , u; € Op.
’U,3’/Tk3

We also define A¢(9) == [ L rootsa |1 — a(g)"? =1 = v /7|1 = 12 /7s[1 -
Y1 /7slvs/71|- Similarly, for Hi(F') we have

m () = A, (h) / o, 1) 5 (30)

where p = pu(h) = u(m) € X*(*H,) = Z corresponds to

_ 51 B ul ™
= (M )= (7 )

where u; € OF. Here we define Ag, (h) := 1.1 roonea |1 — @(R)[2 = |1 —

B1/Ba|B2/ Br|M?. For Hy(F) we define Ag, (h') = [T rooma |1 — @(B)|Y? =
11— pBi[|8]| /2, and

() = A, (1) / (e W) dF, (31)

Az (F)\H2(F)

where v = v(ny,ny) € X*(LHs) corresponds to
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r_ /\B{ _ Ulll =
h - ( A - ul/,n_nz )

where u) € Oj. Here the pair (ni,ns) € Z? is not well-defined but n; — ny
is.

Note that, via the induced map A\ : X*(¥A4) — X*("A,), two A(ky, ko, k3),
A(K, kb, k%) belonging to X*(“A) have the same image if and only if k; —k3 =
ki — kj. Similarly, via the induced map A\; : X*(*A) — X*(*Ay), two
A(ky, ko, k3), Ak}, kb, k%) in X*(“A) have the same image if and only if
ki + ko = k| + k), = 2ks = 2k},

Lemma 9 (a) For fi and ¢ spherical, the following are equivalent:

(i) fr = Ai¢g,
(i) fi(t) = d(\i(t), te€ " Hy,
(111)
Yo ad) =mp), Yu=pm).

A:A(kl ,k2 7k3)
k1—ks=m

(b) For fo and ¢ spherical, the following are equivalent:
(7’) f2 A§¢;

(ii) fo(t) = 6(Xs(t)), ¢ € “H,
(113)

A=A(k1,k2,k3)
ki=n1, ka=ngo

The proofs are omitted.

3.4 The fundamental identities in the split case

We may always represent ¢ € A(F') by a diagonal matrix in GL(3, F') whose
middle entry ¢, is 1. This gives

st
t7lo(t) = 1

i
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Because of this, the right side of the expression in (26) is

A(m) Y Slgt o ()9t (1))

t (mod ANK)

= |y3/m| 7 Ag(m) ™ > a(A+A), A=Ag),

N=A'(k,0,k)ex*(TA)
kez

since Ag(gt™'o(t)) ' A(gt™ o (t)) = |y3/7|™". By the previous lemma, the
left side of (26) is

A (m) s/l m ()
= Ay (m) " Hys/ml M1 = 51/52”52/51\1/2/ fi(z 'hx) dz,

Ar(F)\H1(F)

where h = ( N/ s/ ) € Ni(g). Since B1/Bs = 73 /73, these equations
3/
combine to give, for g € A(F) and h € Ny(g) N Hy(F),

/ b(z g0 (z)) dT = / (@)@ ha) dr.  (32)
G(go,F)\G(F)

Hi(h,F)\H1(F)

This proves the SL(2)-fundamental lemma in the split case since the stable
conjugacy class of h contains only one element.

Y1/
For the SO(3)—-fundamental lemma, we have b’ = 1 €

Y3/ 71
Ni(g). (We identify SO(3) with PGL(2) via (3).) Due to the symmetry un-
der the Weyl group, we can replace the sum

Z aA+ M) = Z a(A+ M),

M=M(k,0,k) M=M(0,k,0)
kEZ kEZ

by a sum over the end coordinate: (0,0, k). By Lemma 9, this sum satisfies

Ba(v) = E al(A+ M).
M=M(0,0,k)
keZ
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A simple computation verifies that A, (m) ' |ys/y1| 71 — Bu]| B 7Y% = |(1 +
B1)(1 4 B2)|7/2. From this, (30), and the above expression for A', we have

©(g,9) = [(L+B1) (L + o) [T 2@ (W, X39), (33)

for h' € Na(g) N Hy(F'). This proves the SO(3)-fundamental lemma in the
split case.

4 The reduction in the non—split case to build-
ings
4.1 Summary

R. Langlands [Lal], [La3] has shown how to exploit buildings to prove fun-
damental lemmas (see also R. Kottwitz [Kol], [Ko2]). Following [Lal], this
section is concerned with reducing the individual terms of the identities

O™ (h, N(9), wn) = @7 (g, ¢, wy), (34)

and

(I, X5(9), wi) = £[(L+ B1) (L + o) [22T(g, ¢, wy), (35)

down to finite sums, in case ¢ is the characteristic function of a double coset
KtK, where t € A(F) and K := G(Op). We will only be interested in the
case t = 1 but the simple reduction below is just as easy to carry out for
general ¢. For background, some references are [La3] and [Kol].

Notation

Recall H, := SL(2) and Hy := PGL(2). Let

Q(t) = Q(A) = Q(kl, kz,kg) = KtK,

where T' € A(F') is represented by a diagonal matrix with entries t; €
F* |t;| = ¢%, and A € X*("A) is the character associated to the triple
(k1, k2, k3) by duality. We assume that the entries have been ordered in such
a way that k; > ko > ks. Of course, the triple (ki, ko, k3) € Z3 is only
well-defined up to translation by (n,n,n), n € Z. Let
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¢ = (meas Q(A)) ‘char Q(A),
fin = Al(@a),
fan = A3(@n),

(A) == ®TY(h, f1.4),
b(A) := (R, fo,n),
A(A) = 3" (g, ¢n),
B(A) == +|(1 4 B1)(1 + B2)*®""(g, $n),
r(A) := meas(Hy(h, F) N Hy(Op))Qq¢M *3a(A),
s(A) :== meas(Hy (', F)° N Ho(Or)) Qg™ *2b(A),
R(A) :=meas(G(go, F) N G(OF))Qq™ 7 A(A),
S(A) := meas(G(go, F) N G(Or))Qq™ ™ B(A),

where Q := (1 +¢7!)(1+ ¢! 4+ ¢72) and where the + sign will be explained
in (49) below. In terms of the above notation, the object of section 6 of this
paper is to prove that S(0) = s(0).

4.2 The reduction

To reduce a(A) and b(A) down to finite sums, one may use Macdonald’s
formula [M] and Plancherel’s formula for the Satake transform, following
[Lal]. The only special case of this we shall need is the following

Lemma 10 Suppose that both h € H,(F) and h' € Hy(F) are elliptic regu-
lar. In the notation above, we have

(0) = Q|Fix(h)|, if £ = F(f,) is unramified,
| 27'QIFix(h)|,  if E is ramified,
and
r(0), if A(h)=A(K),
s(0) =40, if A’ has no fixed points,
Q, otherwise.
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I shall indicate two different proofs of the first part of Lemma 10 (the
first is Lemma 11 (b) and the second is (43)-(45) below).

The proof of the following lemma, due to R. Langlands, provides an
interesting application of the Macdonald and Weyl character formulas to the
computation of the number of fixed points in the unramified case.

Lemma 11 First, assume that E/F is unramified, where E := F[h] = F[}]
denotes the splitting field of the torus Ty := H, j determined by h.

(a) If fi € H(SL(2)), h € GL(2,Op) then

11 _ 1 poaat+1 A(h) ! 1 2
P ) = s T(Or) lS(C) fl(s)q - 1[ q q|c(8)| J ds

where the notation (11, LS, ¢(s)) is explained below.

(b) If fi = fi 000 % the characteristic function of SL(2,Or) divided by
the measure of SL(2, Or) then

@4 (h, f1) = QIFix(h)].

Notation Here 7} denotes the centralizer of h in H; and “S(C) is the
maximal compact subgroup of “H;(C) consisting of all s € “H;(C) with
eigenvalues a,b having the same absolute value. The Haar measure of S(C)
is normalized so that its total volume is 1. Also, here

(s) = 1—qtab™!
c(s) =
is the p-adic analog of the Harish-Chandra c—function for SL(2) ([M], p. 51),

so that the Plancherel measure is given by

1+4¢71t

L e(s)| s

(see [M], p. 65, [La3], p. 46).

proof: (of Lemma 11)

(a) Substitute Lemmas 5.3 and 5.5 into Lemma 5.6 of [La3], observing
that ®T01(h, f1) = A(h)"LF(h, f1) (in the notation of [La3], p. 48).
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(b) We want to calculate the Satake transform of fi n, A = (ki, ko, k3) €
Z3, ki > ky > k3, in the case where A = (0,0,0). By Macdonald’s formula
[M], p. 52,

flA( ) (8116181;28/;3 H w) Q 1 ks (36)

o 1—a(s)?

where the product runs over all positive roots of s/(3) and S is the symmetry
operator on polynomials in the s; defined by

S(P(s1, 82, 53)) Z P(545(1); 50(2)5 50(3)), (37)

0€ES3

where S3 denotes the symmetric group on three letters. Let A denote the
anti-symmetry operator defined by

A(P(s1, 52, 53)) = Z(sgn 0)P(8501), $5(2)> So(3)) (38)
0ES3
so that
A(oP) = (sgn 0)A(P), o€ S;s. (39)

Let p denote half the sum of the positive roots. Observe that the Weyl
function,

a(s) = p(s) [ [(1 —als)™)
a>0 (40)

= 51853 (57 '82)(1 — 53" 83)(1 — 57 '53),

is anti-symmetric in the sense of (39) and, by the Weyl character formula,

1

1—qla(s) 1y _ A(p() [aso(l — ¢""a(s) ™)
s(11 1—a(s)? )= p(8) [aso(1 —als)™) (41)
= Q - tr (Ttrivial) = Qa

a>0

where 744 is the trivial representation on L H;. (In fact, for arbitrary A, f
can be expressed as a linear combination of characters of finite dimensional
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representations of “H.) The result now follows from (43) (or Lemma 14)
below and Plancherel’s formula [La3], Lemma 5.4. O

For the moment, E//F need not be unramified. Let h € SL(2, F) be non—
split, so E/F is quadratic and T := H;(h) = Hy(h)° is a non—split Cartan.
We have

1
fr000) (@™ ha) dT = 7/ fr000) (@ ha) dT
/T(F)\Hl(F) ©00) meas T(F) Ju,(p) ©00

1
-~ ___|Fi
meas T(F)‘ xo(h)]

(42)

where, in the notation of [Ko2],

Fixg(h) := {z € Xy, (0) | hz = x}.
If h° € D(h), T? the associated Cartan, for some § € GL(2, F'), then

1
—116 : 4
/ hz) dxr = Fixy(h
/T5(F)\H1 (F) L(0.00) ($ ) v meas T(F) ‘ ' 0( )"

since the Haar measures on T and T° have been chosen so that meas T'(F) =
meas T°(F) (we have T° = T over F and the Haar measure on T is defined
by the pull-back of that on T).

The following facts (which can be found in [Bl], ch. 1), play a role here:
if h splits over a ramified extension, then the fixed points of h (or of %) in
the tree of H(F') are those less than a certain distance from a certain point
in the first barycentric subdivision of X, (y; if A splits over an unramified
extension then the fixed points are those less than a certain distance from
a certain vertex in Xy (r). In the ramified case the fixed points occur in
pairs, one in X (0) and the other in X (1). In particular, if 7" is ramified then
[Fixg(h)| = |Fixe(h%)| and |Fix; (h)| = |Fix; (h°)|. Writing

Fix(h) = Fixe(h) U Fix;(h), (disjoint union),
where Fix;(h) := X, () (i) N Fix(h), we have in the unramified case

Fixo(h)] = [Fixi (%)), [Fixo(h%)| = [Fixy (),
and therefore, by (17),
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1
o™ (h ~ meas T(F)
( ,fl,(0,0,0)) meas T(F)

A similar result holds for ®g, (A, f2,0,0,0)), where h' € Ny(g) N Hy(F).

Suppose |det h| = |7|*", for some n € Z. This is necessary for Fix(h) # 0.
If E/F is ramified then the orbits on X, under T'(F) are twice as large as
the orbits under T'(F) N H1(O), so that

IFix(h)|. (43)

meas T(F) = 2-meas(T(F)N H,(OF)) (44)
(see [La3], p. 52); if E/F is unramified then

meas T(F) = meas(T(F) N Hi(OF)). (45)

These follow from the classification of the Cartan subgroups of Hi(F') in
terms of the extensions of F'. Recall that Haar measures have already been
choosen so that

meas(G(go, F) N G(OF)) = meas(Hy(h, F) N H1(OF)).

This proves the first part of (10). The second part of (10) follows along
similar lines.

Langlands’ proof that R(A) = r(A) uses the identity (actually a facsimile
thereof, given below)

RA) =@ ™ ST S (46)

g€Dlo) Inv(g’a(l;),P):A

where
1, k1 > ko > k‘g,
QA)=q1+q¢ ", ki = ky,orky = k3, but k; # ks, ,
Q’ A = (0507 0)7

and the inner sum runs over the vertices in the building for G(F) (the inner
sum is independent of the representative ¢’ choosen for the o—conjugacy
class). In case N;(g) has distinct eigenvalues not in F', by explicitly analyzing
the proof of Lemma 6 one can show that, as sets,

D,(9) = H'(F,G(g0)) = F*/N, . (EY), (47)

/F
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where E denotes the quadratic extension determined by the eigenvalues of
Ni(g). Very briefly, one uses (47) to parameterize D,(g) in terms of certain
representatives g,, a € F'*. One can show that this parameterization satisfies
the following property: two such g,, g, belong to the same class in D,(g)
if and only if a- N .(E*) =b- N, .(E*). Rather than (46), it is actually
necessary to use the more general identity

R(A) = ﬁ DY Z 1, (48)

acF*/U Inv(gaa( ),P)=A

where U C N, .(E*) C F* is a compact open subgroup of finite index.

Similarly, we have

S(N) = g (14 A1+ A QU S VD IR

In'u(gao(P) P)=A
(49)
where  : D,(g) — {+1} is defined to be +1 on the element of H'(F,G(g0))
corresponding to the split inner form of G(go)) and to be -1 on the other
element. The =+ sign is choosen so that +x(g,) = (a, €)2, where E = F( /)
and (, )2 denotes the quadratic Hilbert symbol attached to F. The sign &
satisfies the following property:

Lemma 12 For any ¢', ¢" € G(F), we have k(g') = k(g") if and only if ¢’
and g" belong to the same class in D,(g).

The expressions (48), (49), and those in Lemma 10 constitute the desired
reductions.

5 The buildings for PGL(3) and SL(2)

For background, see for example [Kol] and [T]. The results (and pictures) in
this section are, as mentioned earlier, due to R. Langlands [Lal]. We assume
p # 2 throughout this section.

Fix a vector space V over F' of dimension either 2 or 3. We may consider
the buildings B(G), B(H;) for G, H; as graphs of lattice classes; if L is a
rank two or three Op—lattice in V then its class is denoted by [L]. Recall that
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two vertices [L;], [Ls] are to be joined by an edge if and only if there exist
A1, A9 € F* such that

7T)\1L1 g )\2.[12 Q )\1L1. (50)

The edge from [L,] to [L] is positively directed if (4.1) holds and if
MLi/AoLy is a module of rank one over the residue field. Three vertices
Ly, Ly, Lj are the vertices of a 2-simplex or chamber of B(G) if and only
if there exists A, Ay, A3 € F* such that

7T)\1L1 g )\3L3 g )\QLQ g )\1L1. (51)

To describe the action of G on B(G) one must first represent g € G(F)
by a matrix A € GL(3,F). The point is that the definition of the lattice
class implies that the center acts trivially, so the action of g = A - Z(F) is
well-defined, where Z(F') denotes the center of G(F'). Explicitly, the action
of G(F) on B(G) is given by g : [L] — [AL]. The action of H; on B(H,)
is simpler: h € H;(F) sends [A] to [hA]. These actions send vertices to
vertices, edges to edges, chambers to chambers (in the case of B(G)), preserve
orientation and are automorphisms of the buildings.

The action of o on B(G), however, does not preserve orientation. This
“anti—automorphism” sends a lattice L to its dual lattice

Li={veV|w-ve€Op W eL}. (52)
If L = gAy, where Ay denotes the lattice class of 0%, then this means

o gho — tgT A,

The composition go acts by sending [L] to [AL]. It is the fixed point set of
go in B(G) that we want to describe.

Lemma 13 (a) Suppose that the number of fized points of h € Hi(F) in
B(H,) is finite: |Fix(h)| < oo. (This is the case if h is elliptic regular,
i.e., the eigenvalues of h generate a quadratic extension of F.) Then,
for any v € H\(F), we have |Fix(h)| = |Fix(z~'hz)|, i.e., the number
of fized points depends only on the conjugacy class of h.

(b) Suppose that the number of fized points of go in B(G) is finite: |Fix(go)| <
oo. (This is the case if Ni(g) is elliptic reqular.) Then, for any
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r € PGL(3, F), we have |Fix(go)| = |Fix((x go(z))0o)|, i.e., the num-
ber of fixed points of go depends only on the o—conjugacy class of g.

Remark 2 The proof of this lemma is easy, hence is omitted. If h, h' are
stably conjugate but not conjugate over F' one may have |Fix(h)| # |Fix(h')|,
and a similar statement holds for o—conjugacy.

The following result is well-known.

Lemma 14 Let h € GL(2, F) be an elliptic reqular element with Ag,(h) =
g%, for some k > 0. Let E/F denote the quadratic extension generated by
h.

e If E/F is unramified then

k1 ok
. " +q" =2
F =
Fix()] = T,
e If E/F is ramified then
2(¢" — 1
Fix(h)| = 24—V
qg—1

(We have used the fact that the conductor of E/F, as defined in [B],
is 1 in the ramified case.)

We now describe an embedding

B(H,) — B(G).

First, replace the tree B(H;) by the product of itself with the affine line:
replace all vertices by lines (copies of V4 running perpendicular to the edges,
as visualized in three dimensions) and all edges by strips. This figure may be
regarded as B(GL(2)). In order to embed this into B(G), one must impose
a simplicial structure on it compatible with that of B(G). Each line A of
B(GL(2)) associated to a vertex A of B(H;) must first be provided with its
own vertices. We define the vertices on A to be Ay == 77"Op + A, for fixed
embeddings 77"Op — V4, A — Wy. Here V, Wy are as in subsection
1.3. Given two neighboring vertices A, A’ of B(H;) we obtain neighboring
lines A, A’ and the vertices of these lines are joined by an edge if they are
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neighbors. This simplicial structure on B(GL(2)) defines an embedding of
B(H,) into B(G) whose image we denote by Z = Z(V4, W4). Let

TAA C XA CAA,

and let L’(n) =7"0p + A, L :=7"Op + A. The band in Z associated
to the edge joining A and A" in B(H;) is represented by a picture of the
following sort:

AI

Figure 1: The band in the apartment

The lines in Z have been drawn in such a way that the positive direction on
them is from left to right. As mentioned earlier, the action of Auty(Wy4) —
Autp(Wa + V4) on Z preserves orientation. The action of o on B(G) does
not even restrict to an action on Z = Z(Vy, Wy). However, the action of go,
with g = [A] € G(F) represented by A € GL(3, F), does send Z(Vy, Wy)
to Z(AW4, AVE) = Z(Va,Wa), reversing orientation. Here we have used
the fact the AW = V4 and AV{ = (PA71V,)4, by definition of W4. As we
shall see, thanks to Corollary 5 it turns out to be sufficient for our purpose of
relating fixed points of go in B(G) with fixed points of h € Ny(g), h € H{(F),
in B(H;) to assume that the matrix A in GL(3, F) = Autp(Va + Wy4) is in
(1,2)-block form. For such matrices, it is possible to explicitly realize the
action of go on Z in terms of the geometry described above. In fact, this is
what we do next.

In [Lal], R. Langlands introduced the notion of a “characteristic leaf”
to understand explicitly vertices in B(G) not in Z in terms of vertices in
Z. This notion is very useful for relating fixed points of go in B(G) to
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fixed points of h € Ny(g) in B(H;). Given L := m"Op + 1°Op + 7°Op, let
M, = m"Op, M, = 7°Op, M; := 7 °0Op. Consider the vertices of the
characteristic leaf for L:

LI = M1+M2+M3 EZ,
L:=7"M, + My + M; ¢ Z, (53)
L" =7 My + 7 My + M, € Z,

depicted in Figure 2.

Figure 2: A characteristic leaf

The vertices of the simplices forming the equilateral triangle are given by
7T My + 7" My + M3, 0 < ny < ny < b. The segment of length |b| joining L'
to L" is called the characteristic base or segment. This base degenerates
to a vertex if L € Z and otherwise it may be regarded as an equilateral
triangle, under a suitable metric structure on B(G).

Lemma 15 ([Lal]) Suppose g € G(F) is such that N1(g) is elliptic regular.
Then the following hold.

(a) go sends the characteristic leaf of L to the characteristic leaf of gL.
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(b) For each vertex A in B(H;), go sends the line {m "Orp + A | n € Z}
of Z with positive orientation to another line {m™Or +A' | m € Z} in
Z with reversed orientation.

(c) go sends the characteristic base of the leaf for L to the characteristic
base (with orientation reversed) for gL;

(d) For any h € SL(2, F) representing N1(g), the action of h on Z is the
same as the action of (go)? restricted to Z.

Remark 3 The h € H(F) in (d) is fized for the rest of this section.

proof: We may assume by Corollary 5 that g is represented by a (2, 1)-
block matrix A € GL(3, F) in the basis giving the embedding Z. From this
the four statements (a)-(d) follow without difficulty from simple facts about
buildings. [

In particular, (d) implies that if A’, A” are lines associated to two fixed
points A, A" of h € N;(g) and if the endpoints L', L" of the vertices of the
characteristic base lie on A/, A”, respectively, then go “flips” L and its leaf
about a certain “dotted” line D4 (which depends only on A, not on L, L', L",
and lies in the first barycentric subdivision of B(G) but does not necessarily
lie in B(G)):

A =~N

AII — ,YAII

Figure 3: Flipping characteristic leafs
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If Ni(g) does not contain a unipotent then by Corollary 5 we may assume
that the matrix A € GL(3, F) = Autp(Va + Wa) representing g = [A] is in
block form:

A:<W C), CeGL(2,F), ue OF, ce L. (54)

(Here [A] is the matrix in Corollary 5 which belongs to the same stable o—
conjugacy class as [A].) In this case, Ao sends the lattice 7 "Op + A in Z
to " Op + A’, for some A’'. If we parameterize the vertices in the lines
in Figure 2 by the integers then, in a sense, D4 may be thought of as the
“c/2-line”. It belongs to B(G) if and only if ¢ is even. Suppose that c is even
and that

Ao : [17"Op + Al — [7°T"Op + A'], (55)
Ao : [17"Op + N — [r“T"Op + A
It can be shown without much effort that, in this case, [A], [A'] in Z corre-
spond to two fixed points of h € N;(g) in B(H;). Also, it is not hard to see
that,

Lemma 16 Suppose c is even and L is a fized point of [A]o whose charac-
teristic base has endpoints lying on the lines A’ # A". Then the following
hold.

(a) D, intersects the lines N, A" at the two vertices which determine the
endpoints of the characteristic base of L and

(b) The lines N, A" in Z correspond to two fized points of h in B(H,).

Remark 4 There is a simpler version of this dealing with the case A’ = A".
In this way, we will obtain a “2-1” correspondence, when c is even, between
pairs of fized points of h in B(Hy) and fized points of [Alo in B(G). One
important point to bear in mind is that when c is odd then the line D 4 cannot
intersect B(G) and therefore there can be no fized points of [A]o in this case.
So far we have only shown that (when c is even) given a fized point of [A] in
B(G) there are associated two fized points of h in B(Hy).
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From the reduction of §4 one sees that it is also necessary to know what
happens when A in (54) is replaced by a matrix A’ stably o—conjugate to A
but not o—conjugate to A over F. Of course, N1([A]) = N1([A']) so A’ may be
put in (1, 2)-block form as in (54), for some ¢’ € Z, C' € GL(2, F), v’ € Oj.
If moreover the eigenvalues of h determine an unramified extension of F' then
¢ and c have different parity. On the other hand, if A’ and A are o—conjugate
over F' then ¢ and ¢’ do have the same parity, so we have the following result.

Lemma 17 The parity of ¢ depends only on the stable o—conjugacy class
of [A]. If the eigenvalues of h determine an unramified extension of F (the
“unramified case”) and A, A" are stably o—conjugate but not o—conjugate
over F' then either ¢ or ¢ is even (but not both).

By the previous paragraph, in this “unramified case”, there is either a
fixed point of Ao (and A’c has no fixed point) or a fixed point of A'c (and
Ao has no fixed point).

The problem now is to deal with the converse of Lemma 16: given a pair
of fixed points of h € N;(g), associate to them fixed point of Ao. Instead of
proving this, we shall prove that this holds “on average”, which is sufficient
for our purposes. For this the following lemma is crutial, but first we need
some notation: Let d be the maximum distance between two fixed points
of h, let the eigenvalues of h determine a quadratic extension E of F', and
suppose that

U(d) == Uyr*® := {z € OF | x = Imod n%}7?% C Ny, (E*)  (56)

is finite index in F'*. Let S denote the set of a € F* for which P’ # P" exist
(for a fixed p', p") and satisfying (ai)-(aiv) in the lemma below. Here A,
is defined to be a representative of g,, where g, is defined in the paragraph
following (47) and A is our representative of g choosen at the beginning of
this section. We may, by Corollary 5, choose all the A, to be in block form
as in (54). Ao may have no fixed points; however, if it does, let Py denote
one of them. Let U,, denote the stabilizer of the action of T, := (A,0)(Ac) ™
on Py, for some n > 0, with U, as in (56).

Lemma 18 (/Lal], Lemma 5.1) Suppose that p', p" are vertices in B(H)

(possibly p' = p") and that [Alo “flips” the lines in B(G) associated to p', p”
onto each other. Then:
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(a) For each a € F* there exists at most one pair P', P" of vertices in
B(G) with
(i) P' lying on the line associated to p/,
(ii) P" lying on the line associated to p",
(#ii) In the notation of §4, A,o(P') = P", A,0(P") = P'.

(iv) P', P" form the extreme vertices of a characteristic segment.

(b) Suppose a € F* is such that a pairp', p" exists for A,. Then a pair ex-
ists for Ay (for the same p', p") if and only if aN . (E*) = bN, . (E*).

E/F

(c) Let S, Py, and U, be as above, and assume that n > 1. Then n < d
and there are [Op : Uy,] distinct P’s with segment (P', P") such that
(Ago)P = P.

(d) If |[Fix(A.0)| # 0 then |Fix(Ag0)| = 0, for E/F unramified.

(e) In the notation of part (c),

1 1
o Uy 2 D N AR 2

eFX/U(d P EFX /U P
¢ /uid) A,oP=P ¢ /um) Aq,oP=P
P has segment (P',P") P has segment (P',P")

There is an obvious “k—analog” (see (49)) of the above equation whose
statement is left to the reader.

Remark 5 (a) When applying this lemma to (48) or (49), one uses the fact
that

%[FX :U(n)] = [OF : Unl.

(b) For the situation in Lemma 16(c) when n = 0, see §6. The “matching”
is then P = P'= P" +—— p' = p".

Let me now sketch the proof of this lemma. Consider the situation de-
scribed by the following diagram:
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QI Pl

Pl’ PII’ QI’ QII c Z

PII QII

Figure 4: Another band in the apartment

In this case, as we’ve noted above, there are three rank one Op—modules
My, M,, Mj such that

= [My + My + Ms], P"=[n"My + n"M, + Ms],
Q' = [m"My + My + Ms], Q"= [M;+n" M+ Ms).

Lemma 19 (a) The vertices P in B(G) with characteristic segment (P, P"),
P' # P", correspond to rank three lattices L + M3, where L is a lattice
satisfying
() My + 7°My C L C My + My,

(”) b— lM +7Tb 1M2¢L
(139) L ¢ wMy + 7Ms,

()L ¢ mMy + My =: M,
(’U) L ¢ M1 + 7TM2 =: M".

(b) If u € OF then the action of T, = (Ay0)(Ac)™" on Z induces an
action of O on the lattices L in (a). This action agrees with that
defined by the matriz

u 0
0o 1)’

and, moreover, it is transitive on the set of L’s.

proof: (of Lemma 19) The stabilizer of any point P with segment (P, P")
under the action of O via T, is of the form Uj, for some b > 1. Thus
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P'= AoT,(P) = T,Ac(P) = A,o(P) = P, (57)

for some u € Op uniquely determined modulo U,. In other words, if P has
segment (P', P") then there is a u € O such that AoT,(P) = P and

!
(l(; (1)>7UIEUIJ7

not only stabilizes Ao(P) but also commutes with 7,,, u € Ox. O
From these facts, Lemma 18 follows. As a corollary, we obtain r(0) =
R(0), using Lemma 10 and (48).

6 The buildings for PGL(3) and PGL(2)

Recall H, := SL(2), Hy := PGL(2), G := PGL(3), and N;, N, denote the
Jacquet-Shalika norms (9). We assume p # 2 without further mention.

Let h € Ni(g) N Hi(F) have eigenvalues 8, B, = B;' and let h' €
Ns(g) N Hy(F) be represented by a matrix B € GL(2, F') having eigenvalues
ABi, A, for some A € F~. Recall B(H;) = B(H>) and that the action of
H,y(F) on B(H,) is defined analogously to the action of G(F') on B(G). Let
E/F denote the extension of F' obtained by adjoining the eigenvalues of h;
we may assume E/F is quadratic since the split case was handled in §3.
Since the tree B(H) has no closed loops, one can easily show that A has
fixed points only if ¢f; € O, for some ¢ € F*.

Our strategy is to prove, in the notation of §4, that s(0) = S(0) in the
following manner.

(a) If |1+ B1|g = 1 then we prove r(0) = s(0), R(0) = S(0).
(b) We prove that the case E/F ramified and |1 + 31| < 1 cannot occur.
(c) If |1 4+ B1|r < 1 then we prove s(0) = |Fix(h')| =1 and S(0) = 1.

Thus, in case (c), we may assume that E/F is unramified. (That the case
(b) cannot occur was pointed out to me by R. Kottwitz.) The + sign in (49)
has been choosen in such a way that S(0) > 0 though we won’t prove this
until later.

Lemma 20 (a) s(0) < r(0).

35



(b) Assume that |1 + B1| = 1. Then the number of fized points of h is
equal to the number of fized points of b, i.e., r(0) = s(0). Moreover,
1S(0)] < R(0) =r(0).

proof: Part (a) follows immediately from Lemma 10. For part (b), recall
Ap,(h) == [1=B}[|Bi|7" = [1=Bu[|[1+51]| B1]7" and Ag, (I) := [1=Bu]| 6] 7172,
by the definitions in §3. The lemma now follows immediately from the count-
ing formulas (48)-(49) for R(0) and S(0) and the hypothesis. [J

Lemma 21 (a) The set Fix(A,0) is in one—to—one correspondence with
the L’s such that

L=[{veV |- 'A7t v € Op, W' € L},
i.e., the class of L is self-dual with respect to the bilinear form of *A7.

(b) Assume |Fix(Ao)| # 0, [L] € Fix(4,0), v € Of, and [L] ¢ Z. Then

u=v?, for some v € OF, and in particular (u,€)s =1 (in the notation

of (49)).

proof: (a) This is a simple calculation using (52): since Ao sends [L] to
[ALY], [L] is fixed if and only if L belongs to the same class as

ALY ={Av eV |'w-v' € Op, V' € L}
={v, €V | v, = Avand 'v - v' € Op, Vo' € L}.

It is easy to see that this is equivalent to the statement in part (a).

(b) We may rephrase the problem in terms of self-dual lattice classes. Let
P be an 'A~'-self-dual lattice class. By (a) above and Lemma 17, the
transitivity of T, implies that there is an a € Op such that [L] = T,P.
It follows that [L] is both Ay '-self-dual and *A_",—self-dual, since T, and
Apo commute. This implies, by (a), that [L] corresponds to a fixed point
of T,42. However, by Lemma 19 and the discussion following (56), we know
that the stabilizer of Ty42 is U,, where n > 1 is the distance between [L]
and its projection [L'] in Z (by hypothesis, [L] # [L']). Since, by definition,
U, C {squares in Oy}, for n > 1, we conclude that u is a square in Of. O
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Lemma 22 Let w := (_; 1), and let Ay := Or & Or & Or denote the
standard rank 3 lattice written in terms of a fixed basis for Vo & Wy. The
action of Aqo on B(G) is given on Z by

[(T C'>A°]*_’

where r € F*, C' € Autp(Wy) 2 GL(2, F).

Remark 6 This follows from (52) and the fact that C~! = (det(C)) ' {(w™ Cw).
This description of the twisted action on the building is especially useful when
the action of A.o is restricted Z.

Lemma 23 Assume that Ni(g) doesn’t contain any unipotent element. If
Fix(Ac) contains a verter not in Z and if Fix(Ao)NZ = 0 then |3} /685+1| <
1, where 3} are the eigenvalues of Cw.

proof: By hypothesis, we may assume that A is of the form c )

thanks to Corollary 5. Suppose that there is an [L] € Fix(Aco) not in Z.
Lemma 18 implies that we can find [L'], [L"] € Z forming the characteristic
segment of [L] such that [AcL'| = [L"], [AcL"] = [L'].

Denote by p/, p” the vertices of B(SL(2)) associated to L', L”, where
Aw(p') = p", Aw(p") = p'. These are depicted by the lines in Figure 2. We
may consider the midpoint py of p’, p” in the first barycentric subdivision
of B(SL(2,F)) as a vertex of the tree over E, since E/F is ramified. By
Lemma 22 and a well-known result on trees, py in B(SL(2, E)) is a fixed
point of Cw (Cw acts without inversion on the first barycentric subdivision
of B(SL(2, F))). By Lemma 22, this midpoint is associated to a fixed point
[Lo] over E of (Ao and) A - ( 1 w ) By hypothesis [Ly] ¢ Z.

Let p1, p2 be two neighbors of py, with p; a vertex in B(SL(2, F)) and
with Cw(p1) = pe, Cw(p2) = p1. There is an apartment containing p;, p, in
which we can write
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P = [7Tb1+1610F + 7Tb2€20F],

(58)
po = [1"e10p + 12e,0F],

for some b; € Z and a suitable basis {e;, e2}. It follows that Cw is conjugate

1 by —

UL U
over F' to (Wf,,rbl,l s

b1 —b2

" ), for some u; € O, hence projectively conju-

2(b1 —b2)+1

ULm U T
' by ) If by —by < —20r by —by > 1

us UyTr
then the quotient of the eigenvalues of this matrix are equal to —1 + ¢, for
some |e|] < 1. In this case, from Lemma 14 we find that Cw can have at
most one fixed point in the tree over E, and none in the tree over F. In
this case, we conclude that there is no fixed point of Ao in Z. The cases
by — by = —1 and by — by = 0 are similar: if by — by = —1 then p; = [Aq] and
p2 = [17le1Op+Ag]. Tt follows that Cw is conjugate over F to (1 »2r~" ), for
some u; € O, and the same conclusion may be drawn. The case by — by, =0
is similar and therefore omitted. [J

gate over F' to

Proposition 24 If |1+ 5i|g =1 then |S(0)| = s(0).

proof: Again, by hypothesis, we may assume that A is of the form
( 1 c ), thanks to Corollary 5.

Note that by the reduction formulas and Lemma 21(b), we have

R(0) — |S(0)] < 2Q(|Fix(Ao) N Z| + |Fix(4,0) N Z]), (59)

where A and A, represent D,(g) (see (19)). Thus if Fix(Ao) N Z = () were
true, Lemma 20 would imply the result. Moreover, since [S(0)| < R(0) =
r(0) = s(0), we may immediately dispose of the case R(0) = 0. We may
therefore assume that A(h) < 1, so that |1 — ;| < 1 and that |Fix(Ao)| > 0.

Suppose for the moment that Fix(Ao) C Z. By Lemma 18(b) it follows
that Fix(A,0) = 0, so we have S(0) = R(0).

Suppose next that Fix(Ac) is not a subset of Z. Since Fix(A,0) C Z
would contradict Lemma 18, we must then have that Fix(A,0) is not a subset
of Z. From Lemma 18 we have that Fix(Ao) N Z # 0 or Fix(4,0) N Z # (.
Suppose with out loss of generality that Fix(Ao)NZ # (). By (19) and Lemma
18(b), if E/F was ramified then we may take a € Oy (since F*/N(E*) is
represented by a unit in the case of a ramified extension E/F). In this case,
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Lemma 21(b) implies all the signs in (49) are the the same, so |S(0)| = R(0).
On the other hand, if E/F were unramified then a ¢ Oy by Lemma 17 and
then Lemma 18(d) forces Fix(4,0)NZ = (). Then Lemma 23 implies that Cw
has no fixed points, which by Lemma 22 would contradict our assumption.
U

Next we must consider the case where |14 ;| < 1 and E/F is unramified.
In this case, A(h') = 1, so by the formula for the number of fixed points
we have |Fix(h')| = 1. On the other hand, the same formula implies that
|Fix(h)| > 1, so it is clear that in this case 7(0) > s(0). We of course want
to show that the sum in the formula for S(0) is equal to 1, so s(0) = Q). We
want to show that, if |1+ 8;| = ¢-™ with m > 0 and |Fix(Ao)| # 0 then

5(0) := ]|( +B8)A+ )Y > w4l =1. (60)

[F> »
U (Aao(P),P)=0

In other words, we want to show that

g Y Y g XY

(‘fj; U tnv(Aao(P),P)=0 U inv(Aao(P),P)=0

(61)
For this it clearly suffices to prove that

Z Z 1:qm+1+qm_2+R, (62)

aeFX/U q— 1
(a,€)2=+1 InV(Aacr(P) P)=0

(the “unramified case”), and

Z Z 1:%+R, (63)

(‘;Eei U tnv(Awo(P),P)=0
(the “ramified case”) for some R. These are due to the fact that every fixed
point P of A gives rise to a characteristic leaf by Lemma 18, hence to a fixed
point in the first barycentric subdivision of B(SL(2, F')). The difference of
(62) and (63) merely counts the difference between the sets of fixed points in
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the first barycentric subdivision of B(SL(2, F')) in the unramified case and in
the ramified case, respectively. The number of such fixed points is as stated
in (62) by Lemma 14(a), in the unramified case, and by Lemma 14(b) in the
ramified case.

It remains to dispose of the case |1+ ;| < 1 and E/F ramified. Although
one must be able to deal with this case by a more direct argument, I will
give the following geometric proof. Since |1 — ;| = 1 and E/F is ramified,
it follows from [La3], p. 50, for example, that A’ has no fixed points. This
implies that s(0) = 0 and (by the proof of Lemma 23) that Ao has no fixed
points in Z. Thus each fixed point of Ao, which we may assume exists,
is associated to a characteristic base which is not a vertex. By the remarks
preceeding Figure 3, the fact that Ao has no fixed points in Z implies that, in
the notation of (59), A,o will have fixed points in Z (since E/F is ramified,
there is an element of valuation one in Ng/p(E*) and therefore we may take
A, to correspond to this element; the midpoint of the characteristic base isn’t
a vertex, whereas the midpoint of the dotted line D, associated to the fixed
point L of Ao in Figure 3 is a vertex in Z since the valuation of a is one).
By Lemma 22, this implies that, in the notation of the proof of Proposition
24, Cw has fixed points. By Lemma 22, this contradicts the fact that Ao
has no fixed points in Z.

This completes the proof that S(0) = s(0).

References

[Bl] C. Blondel, “Les représentations supercuspidales des groupes
métaplectiques sur GL(2) et leurs caractéres”, Bull. Soc. Math. de
France, (Memoire 18) 113(1985)

[Bor|] A. Borel, “Automorphic L-functions”, in Proc. Symp. Pure Math., vol
33, part 2, AMS, Providence, RI, 1979

[C] P. Cartier, “Representations of p—adic groups”, in Proc. Symp. Pure
Math., vol 33, part 2, AMS, Providence, RI, 1979

[F] Y. Flicker, “On the symmetric square: orbital integrals”, Math. Ann.
279(1987)173-191

[GJ] S. Gelbart and H. Jacquet, “A relation between automorphic forms on
GL(2) and GL(3)”, Ann. Sci. Ecole Norm. Sup. 11 (1978)471-552

40



[JPSS] H. Jacquet, I. Piatetski-Shapiro, and J. Shalika, “Automorphic forms
on GL(3), I, IT”, Ann. Math. 109 (1979) 169-258

[KS] R. Kottwitz and D. Shelstad, in preparation (since appeared as Foun-
dations of twisted endoscopy, Asterisque, vol 255, 1999)

[Kol] R. Kottwitz, “Orbital integrals on GL(3)”, Amer. J. Math. 102 (1980)
327-384

[Ko2] R. Kottwitz, “Unstable orbital integrals on SL(3)”, Duke Math. J.
48(1981)649-664

[LL] J.-P. Labesse and R. P. Langlands, “L-indistinguishability for SL(2)”,
Can. J. Math. 33(1979)

[L] S. Lang, Algebra, 2"¢ ed., Addison-Wesley, 1984

[Lal] R.Langlands, “Some identities for orbital integrals attached to GL(3)”,
manuscript

[La2] R. Langlands, Les Debut d’une Formule des Traces Stable, Publ.
Math. Univ. Paris VII, 1980

[La3] R. Langlands, Base Change for GL(2), Ann. Math. Studies, Princeton
Univ. Press, 1980

[LS] R. Langlands and D. Shelstad, “On the definition of transfer factors”,
Math. Ann. (1987)219-271

[M] I. Macdonald, Spherical Functions on a Group of p—adic Type, Publ.
Ramanujan Inst., no. 2, Madras, 1971

[Sh] G. Shimura, “On the holomorphy of certain Dirichlet series”, Proc. Lon-
don Math. Soc. 31 (1975) 79-98

[T] J. Tits, “Reductive groups over local fields”, in Proc. Symp. Pure Math.,
vol 33, part 1, AMS, Providence, RI, 1979

41



