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Abstract

We show that in many cases, the automorphism group of a curve
and the permutation automorphism group of a corresponding AG code
are the same. This generalizes a result of Wesemeyer [W] beyond the
case of planar curves.

1 Introduction

The construction of AG codes uses the Riemann-Roch space L(D) associated
to a divisor D of a curve X defined over a finite field [G]. Typically X has
no non-trivial automorphisms, but when it does we may ask how this can be
used to better understand AG codes constructed from X.

Conversely, we may ask how the permutation automorphism group of an
AG code corresponds with the automorphism group of the curve used to
construct the code. In this paper we show that, in some cases, the auto-
morphism group of a curve and the permutation automorphism group of a
corresponding AG code are in fact the same.

We thank Jessica Sidman for the reference in the proof of Corollary 3 and
Will Traves for many helpful conversations.
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2 The Riemann-Roch space L(D) and the as-

sociated AG code.

Let X be a smooth projective curve over a finite field F , and let F (X)
denote the field of rational functions on X. If D is any divisor on X, the
Riemann-Roch space L(D) is a finite dimensional F -vector space given by

L(D) = LX(D) = {f ∈ F (X)× | div(f) +D ≥ 0} ∪ {0},
where div(f) denotes the (principal) divisor of the function f ∈ F (X). It is
well-known that these have an F -rational vector space structure [Sti], [TV].
More precisely, if D̄ denotes the corresponding divisor over the algebraic
closure F̄ , then L(D̄) = L(D)⊗ F̄ .

Let P1, ..., Pn ∈ X(F ) be distinct points, and let E = P1 + . . . + Pn be
the associated divisor. Let D be a divisor of positive degree on X such that
D and E have disjoint support. Let C = C(D,E) denote the AG code

C = {(f(P1), . . . , f(Pn)) | f ∈ L(D)}. (1)

This is the image of L(D) under the evaluation map

evalE : L(D) → F n,
f 7−→ (f(P1), . . . , f(Pn)).

(2)

The kernel of the map evalE is contained in L(D − E), which is empty
if n > deg(D). Thus for n > deg(D), evalE defines an isomorphism between
L(D) and the code C(D,E).

3 From curve automorphisms to code auto-

morphisms.

Now let G be a group of automorphisms of the curve X, and assume that D
and E are both stabilized by G. Then G also acts on the code C, as follows.

The action of Aut(X) on F (X) is defined as:

ρ : Aut(X) −→ Aut(F (X)),
g 7−→ (f 7−→ f g)

where for any P ∈ X, f g(P ) = (ρ(g)(f))(P ) = f(g−1(P )).
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Note that Y = X/G is also smooth and F (X)G = F (Y ).
Of course, Aut(X) also acts on the group Div(X) of divisors of X, de-

noted g(
∑

P dPP ) =
∑

P dPg(P ), for g ∈ Aut(X), P a prime divisor, and
dP ∈ Z. It is easy to show that div(f g) = g(div(f)). Because of this, if
div(f)+D ≥ 0 then div(f g)+g(D) ≥ 0, for all g ∈ Aut(X). In particular, if
the action of G ⊂ Aut(X) on X leaves D ∈ Div(X) stable then G also acts
on L(D). We denote this action by

ρ : G→ Aut(L(D)).

Assuming that n > degD, the isomorphism evalE : L(D) → C will send this
action to an action of G on C. Specifically, each g ∈ G acts by

(f(P1), f(P2), . . . f(Pn)) 7→ (f g(P1), f
g(P2), . . . , f

g(Pn))

= (f(g−1(P1)), f(g−1(P2)), . . . f(g−1(Pn))).

If we also assume that G leaves E stable, then G acts by permutations on
the set {P1, . . . , Pn}. Thus (g−1(P1), g

−1(P2), . . . , g
−1(Pn)) is a permutation

of the points (P1, P2, . . . , Pn), and the above action on C simply permutes
the corresponding coordinates.

Definition 1 The permutation automorphism group of the code C ⊂
F n is the subgroup of Sn (acting on F n by coordinate permutation) which
preserves C.

4 From code automorphisms to curve auto-

morphisms.

Now we would like to answer the question: when does a group of automor-
phisms of the code C induce a group of automorphisms of the curve X? We
will show that automorphisms of the code C(D,E) induce curve automor-
phisms whenever D is very ample and the degree of E is large enough. In
proving these facts, we generalize some results of Wesemeyer [W], who dealt
with the planar case.

Theorem 2 Let X be an algebraic curve, D be a very ample divisor on X,
and P1 . . . Pn be a set of points on X disjoint from the support of D. Let
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E = P1 + . . .+Pn be the associated divisor, and C = C(D,E) the associated
AG code. Let G be the group of permutation automorphisms of C. Then
there is an integer r ≥ 1 such that if n > r · deg(D), then G can be lifted to
a group of automorphisms of the curve X itself.

proof: First, note that since n > degD, evalE : L(D) → C is a vector
space isomorphism. Thus the action of G on C can be pulled back to an
action on L(D). Next, we use D to embed X into projective space Pd,
where d = dimL(D) − 1. If we let Y0, . . . , Yd be a basis for L(D), then the
embedding is given explicitly by

φ : X → Pd,

P 7−→ [Y0(P ) : . . . : Yd(P )].

The vector space action of G on L(D) induces an action on the polynomial
ring F [Y0, . . . Yd] and a projective linear action on Pd. The question now is
whether this action preserves the image of X in Pd.

The coordinates Yi obviously satisfy some homogeneous polynomial rela-
tions defining the image ofX. Let R1(Y0, . . . , Yd) = 0, . . . , Rk(Y0, . . . , Yd) = 0
denote a set of polynomials of minimal degree that define the ideal of X in
Pd, so that its projective coordinate ring is

F [Y0, . . . , Yd]/(R1, . . . , Rk).

Since R1, . . . , Rk are polynomials in Y0, . . . , Yd, and Y0, . . . , Yd are in L(D),
the R1, . . . , Rk will be in L(rD) for some r ≥ 1. In particular if we let r
be the largest degree of the Ri’s in the Yj’s, then each Ri will be in L(rD).
(Often this is true for a smaller r, in fact).

Now let T ∈ G be an automorphism of the code, and consider the image
T (X) of X under the induced action on Pd. The ideal of T (X) is generated
by T (R1), . . . , T (Rk), where T (Ri)(Y0, . . . Yd) = Ri(T (Y0), . . . , T (Yd)). If we
can show that these functions are also in the ideal of X, for any T ∈ G,
then the ideals will be equal and we will have given an action of G on X, as
desired.

Let Ri ∈ L(rD) be one of the minimal degree generators of the ideal of
X. Since Ri ∈ L(rD) and Ri is in the ideal of X, Ri vanishes at every point
of X, including P1, . . . , Pn. Since D and E are both stable under the action
of G, T (Ri) will also be in L(rD), and will also vanish at E. This means
that T (Ri) is in L(rD−E). But if n > r ·deg(D), then rD−E is a divisor of
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degree < 0 and L(rD − E) is the trivial vector space, so T (Ri) must vanish
identically on X. Thus T (Ri) is in the vanishing ideal associated to X, for
each Ri and for every T ∈ G. ¤

The result below is actually slightly stronger than the corresponding re-
sult of Wesemeyer (Corollary 4.9 [W]) for elliptic curves and elliptic codes.

Corollary 3 Let X be a smooth projective curve of genus g > 0. Let D be a
divisor on X with degree 2g + 1 < degD and let E be a collection of at least
(1 + g) degD points on X disjoint from the support of D. Then the group of
permutation automorphisms of the code C = C(D,E) is isomorphic to the
group of automorphisms of X that fix both D and E.

proof: Assume for the moment that F is algebraically closed. If the image
of X is not contained in any hyperplane in Pd, then Gruson, Lazarsfeld, and
Peskine [GLP] (since F is algebraically closed) give the maximum degree of
the R′is as degD+ 1− d in most cases, or degD+ 2− d if X has genus zero
and its image is smooth and has a degD + 2 − d-secant line. In our case,
where d = dimL(D)− 1 and D is non-special, this means that r ≤ 1 + g, if
the genus g of X is greater than zero, and r ≤ 2 if X is rational and there is
a line in Pd which intersects X in two points.

Now we indicate how the hypothesis that F is algebraically closed may be
removed. Suppose that the image of an embedding X ↪→ Pdeg D defined over
F is defined by multivariate polynomial relations R1 = 0, ..., Rk = 0 over
F . By “base-change”, we see that the image of the associated embedding
X ↪→ Pdeg D defined over F is defined by the same multivariate polynomial
relations R1 = 0, ..., Rk = 0 over F (and hence over F ). This observation is
all that is needed to show that the bound on the degrees of the Ri’s in the
non-algebraically closed case. ¤

Remark 1 The length of C is n = degE, dimension is k = degD + 1− g,
and minimum distance d ≥ degE − degD (see for example Corollary II.2.3
[Sti]).

Example 4 The bounds in the hypotheses to the above Corollary are not
sharp. For example, let F = GF (49) and let X denote the curve defined by

y2 = x7 − x.

This has genus 3. The automorphism group AutF (X) is a central 2-fold cover
of PGL2(F ): we have a short exact sequence,
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1 → H → AutF (X) → PGL2(7) → 1,

where H denotes the subgroup of AutF (X) generated by the hyperelliptic in-
volution (which happens to also be the center of AutF (X)). For details, see
[G], Theorem 1.

Next, we recall some consequences of §3.2 in [JT]. There are |X(F )| =
2 · 72 − 7 + 1 = 92 F -rational points1:

X(F ) = {P1 = (1 : 0 : 1), P2 = (0 : 0 : 1), . . .}.
The automorphism group does not act transitively on X(F ) but has 2 orbits:
the orbit C1 of P1 and the orbit C2 = X(F )−C1. We have |C1| = 7 + 1 = 8
and |C2| = 2 · 7 · (7− 1) = 84.

Let G = Stab(P1, AutF (X)) denote the stabilizer of P1. The group G is
a non-abelian group of order 2 · 7 · (7− 1) = 84

It is known (Proposition VI.4.1, [Sti]) that, for each m ≥ 1, the Riemann-
Roch space L(mP1) has a basis consisting of monomials,

xiyj, 0 ≤ i ≤ 6, j ≥ 0, 2i+ 7j ≤ m.

Let D = mP1, E = X(F )− C1 = {Q1, . . . , Q84}, and let

C = C(D,E) = {(f(Q1), . . . , f(Q84)) | f ∈ L(D)}.
This is a [n, k, d] code over F , where n = deg(E) = 84, k ≤ dim(L(D)). If
m > 2g−2 = 4 then the Riemann-Roch theorem implies dim(L(D)) = m−2,
so C is an [84,m− 2,≥ 84−m]-code over GF (49). In fact, if the evaluation
map f 7−→ (f(Q1), . . . , f(Q84)), f ∈ L(D), is injective then k = dim(L(D)).
Since G fixes D and preserves S, it acts on C via

g : (f(Q1), . . . , f(Q84)) 7−→ (f(g−1Q1), . . . , f(g−1Q84)),

for g ∈ G.
Let P denote the permutation group of this code. Taking r = 1 in Theorem

2, we see that if 4 < m < n = 84 then P = G. According to the Corollary, if
m > 7 and n > 4m then P = G. Therefore the bounds in the above Corollary
are not sharp.

1MAGMA views the curve as embedded in a weighted projective space, with weights
1, 4, and 1, in which the point at infinity is nonsingular.
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Next, a non-example to show that the hypothesis that X(F ) has “suffi-
ciently many points” cannot be dropped.

Example 5 Let F = GF (7) and let X denote the curve defined by

y2 = x7 − x.

This has genus 3. The automorphism group AutF (X) is a central 2-fold cover
of PSL2(F ): we have a short exact sequence,

1 → H → AutF (X) → PSL2(7) → 1,

where H denotes the subgroup of AutF (X) generated by the hyperelliptic in-
volution (which happens to also be the center of AutF (X)).

There are 8 F -rational points:

X(F ) = {P1 = (1 : 0 : 0), P2 = (0 : 0 : 1), P3 = (1 : 0 : 1), . . . , P8 = (6 : 0 : 1)}.
The automorphism group acts transitively on X(F ). Consider the projection
C → P1 defined by φ(x, y) = x. The map φ is ramified at every point in
X(F ) and at no others.

Let G = Stab(P1, AutF (X)) denote the stabilizer of the point at infinity
in X(F ). All the stabilizers Stab(Pi, AutF (X)) are conjugate to each other
in AutF (X), 1 ≤ i ≤ 8. The group G is a non-abelian group of order 42
(In fact, the group G/Z(G) is the non-abelian group of order 21, where Z(G)
denotes the center of G.)

It is known (Proposition VI.4.1, [Sti]) that, for each m ≥ 1, the Riemann-
Roch space L(mP1) has a basis consisting of monomials,

xiyj, 0 ≤ i ≤ 6, j ≥ 0, 2i+ 7j ≤ m.

Let D = 5P1, S = C(F )− {P1}, and let

C(D,S) = {(f(P2), . . . , f(P8)) | f ∈ L(D)}.
This is a [7, 3, 5] code over F . In fact, dim(L(D)) = 3, so the evaluation
map f 7−→ (f(P2), . . . , f(P8)), f ∈ L(D), is injective. Since G fixes D and
preserves S, it acts on C via

g : (f(P2), . . . , f(P8)) 7−→ (f(g−1P2), . . . , f(g−1P8)),
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for g ∈ G.
Let P denote the permutation group of this code. It a group of order

42. However, it is not isomorphic to G! In fact, P has trivial center. The
(permutation) action of G on this code implies that there is a homomorphism

ψ : G→ P.

What is the kernel of this map? There are two possibilities: either a subgroup
of order 6 or a subgroup of order 21 (this is obtained by matching possible
orders of quotients G/N with possible orders of subgroups of P ). Take the
automorphisms γ1, γ2 with a = 2 and γ3. If we identify S = {P2, . . . , P8}
with {1, 2, . . . , 7} then

γ1 ↔ (2, 7)(3, 6)(4, 5) = g1,

γ2 ↔ (2, 5, 3)(4, 6, 7) = g2,

γ3 ↔ (1, 2, . . . 7) = g3.

The group ker(φ) = N = 〈g2, g3〉 is a non-abelian normal subgroup of G =
〈g1, g2, g3〉 of order 21.
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