
Introduction to codes
from a representation-theoretic perspective

David Joyner∗

5-12-2005

This expository paper deals with some selected topics belonging to the intersection of the
theory of error-correcting codes and the representation theory of finite groups. We shall see that
codes which exhibit unusual symmetry often times turn out to be very interesting objects of
study.

Notes of lectures given to undergraduate math majors at Harvey Mudd College, May 2005.

Contents

1 Lecture 1: Codes and groups 2
1.1 Finite fields . 2

1.1.1 Matrix representation . 2
1.1.2 Conway polynomials . 3

1.2 Linear codes: generalities . 4
1.3 Linear codes: examples . 8
1.4 Linear codes: automorphisms . 10

1.4.1 Application to decoding . 11

2 Lecture 2: Quadratic residue codes and other group codes 12
2.1 Cyclic codes revisited . 12
2.2 Non-abelian group codes . 14
2.3 QR codes . 14

2.3.1 Fourier transforms on finite fields . 14
2.3.2 Generalized quadratic residue codes . 16
2.3.3 Extended quadratic residue codes . 17

3 Lecture 3: Algebraic geometric codes for P1 18
3.1 The projective line . 18
3.2 Riemann-Roch spaces . 18
3.3 The action of G on L(D) . 19
3.4 The codes . 21

∗Math. Dept, USNA, wdj@usna.edu. I’d like to thank the Harvey Mudd Mathematics Department, especially
Mike Orrison, for their hospitality.

1

3.5 Memory application . 22

1 Lecture 1: Codes and groups

Let F denote a finite field. Since codes are vector spaces over finite fields, some very brief facts
about finite fields will be recalled first.

1.1 Finite fields

We introduce some terminology and background about finite fields. For details, see for example
[MS].

The prime fields: If p ≥ 2 is a prime then GF (p) denotes the field Z/pZ with addition and
multiplication performed mod p.

The prime power fields: Suppose q = pr is a prime power, r > 1, and put F = GF (p). Let
F[x] denote the ring of all polynomials over F and let f(x) denote a monic irreducible polynomial
in F[x] of degree r. The quotient E = F[x]/(f(x)) = F[x]/f(x)F[x] is a field with q elements.
One may think of F[x] as an analog of Z, f(x) as an analog of a prime p, and F[x]/f(x)F[x]
as an analog of Z/pZ. If f(x) and E are related in this way, we say that f(x) is the defining
polynomial of E. Any defining polynomial factors completely into distinct linear factors over
the field it defines.

All finite fields arise from one of the above two constructions. Up to isomorphism, there is
only one field of order q = pr,r ≥ 1, denoted GF (q). (Here “GF” stands for Galois field, named
after the French mathematician E. Galois who died after a sword fight at the age of 23)

For any finite field F, the multiplicative group of non-zero elements F× is a cyclic group. An
α ∈ F is called a primitive element if it is a generator of F×. A defining polynomial f(x) of
F is said to be primitive if it has a root in F which is a primitive element.

1.1.1 Matrix representation

Let E denote a field extension of the finite field F. Each element of E may be represented as
an invertible matrix with entries in F. Here’s how. Let α ∈ E denote a generator of the cyclic
group E×. Let f(x) denote the minimal polynomial of α (the lowest degree monic polynomial in
F[x] which has α as a root). Take the matrix associated to α, denoted A, to be the companion
matrix of f(x) (so the characteristic polynomial of A is f). If the degree of f(x) is m, then A is
an m×m matrix with coefficients in F (and the degree of E/F is m). If β ∈ E denotes any other
non-zero element, then we can write β = αi, for some i (because E× is a cyclic group). Take the
matrix associated to β to be B = Ai. The matrix associated to 0 ∈ E will be the m ×m zero
matrix. Therefore, there is a representation

ρ : E× → AutF(Fm)

induced by this action of the field E acting on itself, regarded as (an F-vector space identified
with) Fm.

Example 1 Taking F = GF (2) and E = GF (16) with defining polynomial f(x) = x4 + x3 + 1,
we can represent the non-zero elements of GF (16) as the following 15 matrices:

2

2
6666664

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 1

3
7777775

,

2
6666664

0 0 1 1

0 0 0 1

1 0 0 0

0 1 1 1

3
7777775

,

2
6666664

0 1 1 1

0 0 1 1

0 0 0 1

1 1 1 1

3
7777775

,

2
6666664

1 1 1 1

0 1 1 1

0 0 1 1

1 1 1 0

3
7777775

,

2
6666664

1 1 1 0

1 1 1 1

0 1 1 1

1 1 0 1

3
7777775

,

2
6666664

1 1 0 1

1 1 1 0

1 1 1 1

1 0 1 0

3
7777775

,

2
6666664

1 0 1 0

1 1 0 1

1 1 1 0

0 1 0 1

3
7777775

,

2
6666664

0 1 0 1

1 0 1 1

0 1 0 1

1 1 0 0

3
7777775

,

2
6666664

1 1 0 0

0 1 1 0

1 0 1 1

1 0 0 1

3
7777775

,

2
6666664

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 0

3
7777775

,

2
6666664

0 0 1 0

1 0 0 1

1 1 0 0

0 1 0 0

3
7777775

,

2
6666664

0 1 0 0

0 0 1 0

1 0 0 1

1 0 0 0

3
7777775

,

2
6666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7777775

.

Of course, matrix addition and multiplication corresponds to addition and multiplication of the
corresponding field elements.

1.1.2 Conway polynomials

There is no canonical choice of GF (q) but there is a “good” choice: take f(x) to be the Conway
polynomial over GF (p) of degree r. This is the default finite field constructed by GAP and
MAGMA.

We reproduce the definition on Frank Luebeck’s Conway polynomials web page [Lu], which
we refer to for further details and references.

A standard notation for the elements is given via the representatives 0, ..., p− 1 of the cosets
modulo p. We order these elements by 0 < 1 < 2 < ... < p− 1. We introduce an ordering of the
polynomials of degree r over GF (p). Let g(x) = grx

r + ... + g0 and h(x) = hrx
r + ... + h0 (by

convention, gi = hi = 0 for i > r). Then we define g < h if and only if there is an index k with
gi = hi for i > k and (−1)r−kgk < (−1)r−khk.

The Conway polynomial fp,r(x) for GF (pr) is the smallest polynomial of degree r with
respect to this ordering such that:

• fp,r(x) is monic,

• fp,r(x) is primitive, that is, any zero is a generator of the (cyclic) multiplicative group of
GF (pr),

• for each proper divisor m of r we have that fp,m(x(pr−1)/(pm−1)) ≡ 0 (mod fp,r(x)); that is,
the (pr − 1)/(pm − 1)-th power of a zero of fp,r(x) is a zero of fp,m(x).

These polynomials are not easy to compute but the fields F1,F2, ... constructed from a
sequence

fp,r1 , fp,r2 , fp,r3 , ... with ri|ri+1,

have “nice” embedding properties.
Sounds complicated but actually these fields are very easy to deal with using [Gap] or

GUAVA, GAP’s error-correcting codes package [G1] (see the online GUAVA manual or [G2]
for examples).

3

1.2 Linear codes: generalities

The theory of error-correcting codes was originated by Hamming in the late 1940’s, a math-
ematician who worked for Bell Telephone. Some of his codes actually arose earlier in various
isolated connections - for example, statistical design theory and in soccer betting(!). Hamming’s
motivation was to program a computer to correct “bugs” which arose in punch-card programs.
The overall goal behind the theory of error-correcting codes is to reliably enable digital commu-
nication.

A (linear error-correcting) code C of length n over F is a vector subspace of Fn and
its elements are called codewords. (When F = GF (2) it is called a binary code. These are
the most important codes from the practical point of view.) Think of the following scenario:
You are sending an n-vector of 0’s and 1’s (the codeword) across a noisy channel to your friend.
Your friend gets a corrupted version (the received word differs from the codeword in a certain
number of error positions). Depending on how the code C was constructed and the number of
errors made, it is possible that the original codeword can be recovered. This raises the natural
question: given C, how many errors can be corrected? Stay tuned...

A code of length n and dimension k (as a vector space over F) is called an [n, k]-code. In
abstract terms, an [n, k]-code is given by a short exact sequence

0 → Fk G→ Fn H→ Fn−k → 0. (1)

(“Short exact” means (1) the arrow G is injective, i.e., G is a full-rank k × n matrix, (2) the
arrow H is surjective, and (3) image(G) = kernel(H).) We identify C with the image of G. The
function

G : Fk → C,

~m 7−→ ~mG,

is called the encoder. Since the sequence (1) is exact, a vector ~v ∈ Fn is a codeword if and
only if H(~v) = 0. If Fn is given the usual standard vector space basis then the matrix of G is a
generating matrix of C and the matrix of H is a check matrix of C. In other words,

C = {~c | ~c = ~mG, some ~m ∈ Fk}
= {~c ∈ Fn | H~c = ~0}.

When G has the block matrix form
G = (Ik | A),

where Ik denotes the k × k idenity matrix and A is some k × (n− k) matrix, then we say G is
in standard form. By abuse of terminology, if this is the case then we say C is in standard
form.

The matrix G has rank k, so the row-reduced echelon form of G, call it G′, has no rows
equal to the zero vector. In fact, the standard basis vectors ~e1, ..., ~ek of the column space Fk

occur amongst k columns of those of G′. The corresponding coordinates of C are called the
information coordinates (or information bits, if C is binary) of C.

Aside: For a “random” k × k matrix with real entries, the “probability” that its rank is k is of course 1.
This is because “generically” a square matrix with real entries is invertible. In the case of finite fields, this is not
the case. For example, the probability that a “large random” k× k matrix with entries in GF (2) is invertible is

4

lim
k→∞

(2k − 1)(2k − 2)...(2k − 2k−1)
2k2 =

∞∏

i=1

(1− 2−i) = 0.288... .

For more interesting facts like these, see Lecture 7 in A. Barg’s EENEE 739C course (online [Ba]).
The Hamming metric is the function

d : Fn × Fn → R,

d(~v, ~w) = |{i | vi 6= wi}| = d(~v − ~w,~0).

The Hamming weight of a vector is simply its distance from the origin:

wt(~v) = d(~v,~0).

Question: How many vectors belong to the “shell’ of radius r about the origin ~0 ∈ GF (q)r?

Answer:
(

n
r

)
(q− 1)r. Think about it! (Hint: “distance r” means that there are exactly r non-

zero coordinates. The binomial coefficient describes the number of ways to choose these r coordinates.)
The minimum distance of C is defined to be the number

d(C) = min
~c6=~0

d(~c,~0).

(It is not hard to see that this is equal to the closest distance between any two distinct codewords
in C.) An [n, k]-code with minimum distance d is called an [n, k, d]-code.

Cyclic construction Let G denote the cyclic group of order n. Let p denote a
prime for which the finite field F = GF (p) contains a primitive n-th root of unity.
Assume that G acts on Fn by cyclically permuting the coordinates.

Pick a non-zero vector ~a ∈ Fn. Let C ⊂ Fn denote the vector space spanned by
the cyclic permutations g~a, g ∈ G. In general, there seems to be no easy way to
determine the minimum distance d = d(C) from ~a and G.

Let G∗ = {χ1, ..., χn} denote the dual group of G, where χi : G→ F×. (Since p is
a prime for which F contains all the n-th roots of unity, there are n such characters.)

The vector space C is G-invariant, by definition, so

C ∼= m1F[χ1]⊕ ...⊕mnF[χn],

as G-modules, where mi ≥ 0 is the multiplicity of the i-th character. This is analo-
gous to the fact that any “nice” complex-valued periodic function can be expanded
in a Fourier series using powers of a complex exponential function.

As far as I know, there is no easy way to determine the minimum distance
d = d(C) from the characters χi’s and the “Fourier coefficients” mi’s.

Example 2 Take F = GF (11), which contains all the 5-th roots of unity. Let α ∈ F
denote a 5-th root of unity (for example, take α = 4). Let σ : F5 → F5 denote the
cyclic shift sending (a, b, c, d, e) 7−→ (b, c, d, e, a) and let G = 〈σ〉. The F-valued dual
group of G, denoted G∗, is the set of functions χi = χi, where χ : G→ F× is defined
by

5

χ(σi) = αi, 0 ≤ i ≤ |G| − 1.

Let ~c = (1, 0, 2, 0, 3) ∈ F5 and let G denote the 4×5 matrix whose rows are the cyclic
shifts of ~c. The row-reduced echelon form of G is

1 0 0 0 5
0 1 0 0 3
0 0 1 0 10
0 0 0 1 3

 ,

so the code C whose generator matrix is G is a cyclic [5, 4, 2]-code over GF (11).
How does this code decompose as a G-module? First, we must determine G-

invariant basis vectors. To this end, let

~w1 = ~c+ σ(~c) + σ2(~c) + σ3(~c) + σ4(~c),
~w2 = ~c+ ασ(~c) + α2σ2(~c) + α3σ3(~c) + α4σ4(~c),
~w3 = ~c+ α2σ(~c) + α4σ2(~c) + α6σ3(~c) + α8σ4(~c),
~w4 = ~c+ α3σ(~c) + α6σ2(~c) + α9σ3(~c) + α12σ4(~c).

(Since α5 = 1 some of these exponents can be reduced if desired.) Note that σ(~w1) =
~w1, σ(~w2) = α4 ~w2, σ(~w3) = α3 ~w3, and σ(~w4) = α2 ~w4. Therefore, these form a
G-invariant basis and we have

C ∼= F[χ0]⊕ F[χ1]⊕ F[χ2]⊕ F[χ3]⊕ F[χ4].

In this case, every representation of G occurs in C, each with multiplicity one.

Lemma 1 (Singleton bound) Every linear [n, k, d] code C satisfies

k + d ≤ n+ 1.

Note: this bound does not depend on the size of F. A code C whose parameters satisfy
k+ d = n+ 1 is called maximum distance separable or MDS. Such codes, when they exist,
are in some sense best possible.

proof: Fix a basis of Fn
q and write all the codewords in this basis. Delete the first d − 1

coordinates in each code word. Call this new code C ′. Since C has minimum distance d, these
codewords of C ′ are still distinct. There are therefore qk of them. But there cannot be more
than qn−d+1 = |Fn−d+1

q | of them. This gives the inequality. ¤
The rate of the code is R = k/n - this measures how much information the code can transmit.

The relative minimum distance of the code is δ = d/n - this is directly related to how many
errors can be corrected.

Lemma 2 If ~v ∈ Fn is arbitrary and 0 < r ≤ [d−1
2

] then the “ball” about ~v with radius r,

Br(~v) = {~w ∈ Fn | d(~v, ~w) ≤ r}
contains at most one codeword in C.

6

This follows easily from the fact that the Hamming metric is, in fact, a metric. Here is a
picture of the idea.

◦
•
•
◦
•
•
◦

•
•
•
•
•
•
•

•
•
•
•
•
•
•

◦
•
•
◦
•
•
◦

•
•
•
•

' $

& %

•
•
•

•
•
•
•
•
•
•

◦
•
•
◦
•
•
◦

Lemma 3 (sphere-packing bound) For any code C ⊂ Fn, we have

|C|
t∑

i=0

(
n
i

)
(q − 1)i ≤ qn,

where t = [(d− 1)/2].

proof: For each codeword of C, construct a ball of radius t about it. These are non-
intersecting, by definition of d and the previous lemma. Each such ball has

t∑
i=0

(
n
i

)
(q − 1)i

elements. The result follows from the fact that ∪~c∈CBt(~c) ⊂ Fn and |Fn| = qn. ¤
Suppose (a) you sent ~c ∈ C, (b) your friend received ~v ∈ Fn, (c) you know (or are very

confident) that the number t of errors made is less than or equal to [d−1
2

]. By the lemma above,
the “ball” about ~v of radius t contains a unique codeword. It must be ~c, so your friend can
recover what you sent (by searching though all the vectors in the ball and checking which one is
in C) even though she/he only knows C and ~v. This is called the nearest neighbor decoding
algorithm:

1. Input: A received vector ~v ∈ Fn.

Output: A codeword ~c ∈ C closest to ~v.

2. Enumerate the elements of the ball Bt(~v) about the received word. Set ~c =“fail”.

3. For each ~w ∈ Bt(~v), check if ~w ∈ C. If so, put ~c = ~w and break to the next step; otherwise,
discard ~w and move to the next element.

4. Return ~c.

Note “fail” is not returned unless t > [d−1
2

], by the above lemma.

7

Definition 1 We say that a linear C is t-error correcting if |Bt(~w) ∩ C| ≤ 1.

Note that t ≤ [d−1
2

] if and only if d ≥ 2t+ 1.
The general goal in the theory is to optimize the following properties:

• the rate, R = k/n,

• the relative minimum distance, δ = d/n,

• the speed at which a “good” encoder for the code can be implemented,

• the speed at which a “good” decoder for the code can be implemented.

There are (sometimes very technical) constraints on which these can be achieved, as we have
seen with the Singleton bound and the sphere-packing bounds.

1.3 Linear codes: examples

We shall consider as an example one of the first codes constructed - one of an infinite family of
codes called Hammming codes.

The Hamming [7, 4, 3] binary code: Let F = GF (2). The code C in this example has
check matrix defined by

H =

1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

 (~H1, ~H12, ..., ~H7) =

~h1

~h2

~h3

and generator matrix by

G =

1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0

 =

~g1

~g2

~g3

~g4

 .

This code C is the GF (2)-linear span of the rows ~g1, ~g2, ~g3, ~g4 of G.
Now try the following experiment: have a friend secretly pick c1, c2, c3, c4 ∈ F, compute

~c = c1~g1 + c2~g2 + c3~g3 + c4~g4 ∈ C ⊂ GF (2)7, and tell you the 7 bits of ~c, lying once. Suppose
that they tell you ~v = (v1, v2, ..., v7). You can not only determine when they lied to you, but
what the “secret” values c1, c2, c3, c4 ∈ F are.

Magic? No, but it is a neat trick. Here are 2 ways to do it.

Idea 1 (Syndromes): Compute the vector ~s = H~v (this vector is called a “syndrome”). Since
the columns of H consist of all possible non-zero 3-tuples of 0’s and 1’s, if ~s is non-zero
then it must be one of the columsn of H, say the ith one. The vector ~c is the same as ~v
but with the ith bit flipped. Moreover, the first 4 coordinates of ~c are the “secret” values
c1, c2, c3, c4 ∈ F.

8

Why does this work? First, if ~c ∈ C then, by definition of H, we must have H~c = ~0. Let
~H1, ~H2, ..., ~H7 denote the seven columns of H and let ~e1, ~e2, ..., ~e7 denote the standard basis
vectors of F7. Note that

H~v = H(~c + ~ei) = H~c + H~ei = ~0 + ~Hi,

for each 1 ≤ i ≤ 7. Since your friend lied in exactly one place, the column number of the
syndrome is the place where the lie was made.

Natural questions:

(a) How does this construction generalize? Does this decoder generalize?

(b) Are there any “better” one error-correcting codes?

(c) Are there analogous two error-correcting codes?

Hamming constructed a more general family of one error-correcting binary codes of length
n = 2r − 1, r = 2, 3, 4, The example above is the case r = 3. The decoder generalizes
as well. There are no better one error-correcting codes. To some people, the “two error-
correcting BCH codes” [MS] are the analogs of these Hamming codes. However, what
family of linear two error-correcting codes have the best paramaters is still an open question
in general.

Idea 2 (Tanner graphs): Construct the bipartite graph Γ whose vertices V are labeled by the

coordinates of the code (so |V | = n) and whose edges are labeled by the rows ~hi of a check
matrix H of C (so |E| = n− k). In the above example, it is this following graph:

¹¸

º·
x5

~h1
~h2

~h3

¹¸

º·
x4 ¹¸

º·
x6

¹¸

º·
x3 ¹¸

º·
x1 ¹¸

º·
x2

¹¸

º·
x7

y©©©©©©©©©

HHHHHHHHH

y¡
¡

¡
¡¡

@
@

@
@@

@
@

@
@@

¡
¡

¡
¡¡

y¡
¡

¡
¡¡

@
@

@
@@

@
@

@
@@

¡
¡

¡
¡¡

The check equations correspond to the solid black vertices, the coordinates of the codes to
the labeled vertices, and the edges correspond to the terms occurring in the parity check
equation. This is called a “Tanner graph” ([Ta], §B).

9

For each check vertex, add up the incident coordinate vertices (mod 2). The error position
is determined by the following table:

parity failure region(s) error position
none none

~h1, ~h2, ~h3 1
~h2, ~h3 2
~h1, ~h3 3
~h1, ~h2 4
~h1 5
~h2 6
~h3 7

Natural questions:

(a) Which bipartite graphs arise as a Tanner graph of a binary code?

(b) The theory of bipartite graphs is extensive. Does the theory have useful coding-
theoretic implications?

(c) How does the Tanner graph depend on the choice of the check matrix H for C?

See [Ta] for details and references in this direction. See also N. Sloane [S] for some unsolved
problems associated with other graph-theoretic connections with coding theory.

1.4 Linear codes: automorphisms

What is an automorphism of a code? How do you construct a code with a “large” number of
automorphisms? Can any finite group be realized as the automorphism group of a code? This
section will address these questions.

To avoid some minor complications, we shall only deal with the simplest case of automor-
phisms of binary codes.

Let Sn denote the symmetric group on n letters. The (permutation) automorphism
group of a code C of length n is simply the group

Aut(C) = {σ ∈ Sn | (c1, ..., cn) ∈ C =⇒ (cσ(1), ..., cσ(n)) ∈ C}.
There is a more general definition of the automorphism group of a linear code over F. In

general, (a) the permutation automorphism group is always a subgroup of the full automorphism
group, and (b) in the case of a binary linear code the two groups agree. For simplicity, here
we only deal with the permutation automorphism group, which, for brevity, we simply call the
automorphism group of C.

If C1 and C2 are two codes of length n and if there is a permutation σ ∈ Sn for which
(c1, ..., cn) ∈ C1 if and only if (cσ(1), ..., cσ(n)) ∈ C2, then we say C1 and C2 are permutation
equivalent. This will be written

C1
∼= C2.

10

It is a general fact that permutations preserve dimension and minimum distance: if C1
∼= C2

then dim(C1) = dim(C2) and d(C1) = d(C2).
Recall that the generator matrix G of an [n, k, d]-code has rank k, and that the row-reduced

echelon form of G, call it G′, has no rows equal to the zero vector. One immediate consequence
of the row-reduction process is that one can permute the columns of G′, if necessary, to obtain
a matrix of the form

G′′ = (Ik | A),

where Ik denotes the k × k idenity matrix and A is some k × (n − k) matrix. We have just
verified the following result.

Lemma 4 Any linear code is permutation equivalent to a code which is in standard form.

Let C be a code, let G = Aut(C) ⊂ Sn denote the (permutation) automorphism group,
and let AutF(C) denote the automorphism group of C as an F-vector space. We have a group
homomorphism

ρ : G→ AutF(C) ∼= GLk(F),

defined as follows: an element in G is associated to the linear transformation which permutes
the coordinates in the “obvious way”,

σ 7−→ ((c1, ..., cn) ∈ C 7−→ (cσ−1(1), ..., cσ−1(n)) ∈ C).

Because of this, C is a representation space of G. Representation theory raises her head!

1.4.1 Application to decoding

We discuss permutation decoding - a decoding method which only works when you have a group
action on the code.

Here is an extremely useful lemma.

Lemma 5 Suppose ~v = ~c + ~e, where ~c ∈ C and ~e ∈ Fn is an “error vector” with Hamming
weight wt(e) ≤ t. The information coordinates of ~v are correct if and only if wt(H~v) ≤ t.

See [HP], §10.2.
Let G denote the permutation automorphism group of C. The permutation decoding

algorithm is:

1. Input: A received vector ~v ∈ Fn.

Output: A codeword ~c ∈ C closest to ~v.

2. For each g ∈ G, compute wt(H(g~v)) until one with wt(H(g~v)) ≤ t is found (if none is found, the
algorithm fails).

3. Extract the information symbols from g~v, and use G to compute codeword ~cg from them.

4. Return g−1 ~cg = Decode(~v).

11

This is implemented in GUAVA.
For example, if G acts transitively then permutation decoding will correct at least one error.
The key problem is to find a set of permutations in G which moves the non-zero positions

in every possible error vector of weight ≤ t out of the information positions. (This set, called a
PD-set, will be used in step 1 above instead of the entire set G.)

Natural questions:

(a) Are there any interesting (useful and practical or “merely” mathematically beautiful)
examples?

(b) How does C decompose as a G-module?

(c) Does its character contain interesting coding-theoretic information?

(d) Is there a permutation list-decoder?

In the next lecture, question (a) is addressed. For (a)-(c), I refer to [JK1]. For a basic
introduction to list decoding, see [Le].

2 Lecture 2: Quadratic residue codes and other group

codes

In this lecture, we give several group-theoretical constructions which lead to codes having lots
of extra symmetry.

2.1 Cyclic codes revisited

One of the simplest “group codes” is the family of cyclic groups, introduced in a very naive way
in the last lecture. Here we use a more algebraic approach.

Let G denote a cyclic group of order n with generator σ. Suppose G acts on the set
{0, 1, ..., n − 1} by σ(i) = i + 1 mod n. Consider a finite field F and let us identify σ with the
cyclic shift sending σ : Fn → Fn sending (a1, ...an−1, an) 7−→ (an, a1, ..., an−1) and let G = 〈σ〉.

Definition 2 A linear code C of length n is a cyclic code if whenever c = (c1, ..., cn) is a
codeword then so is its cyclic shift c′ = (c2, ..., cn, c1).

Example 3 Consider the binary code C with generator matrix

G =

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Clearly these four rows ~g1, ~g2, ~g3, ~g4 are obtained from the previous by a shift to the right. Also
notes the shift of ~g4 to the right is equal to ~g5 = ~g1 + ~g3 + ~g4. The shift of ~g5 to the right is
~g6 = ~g1 + ~g2 + ~g3. And the shift of ~g6 is ~g7 = ~g2 + ~g3 + ~g4. The shift of ~g7 is ~g1. Therefore, the
linear code generated by G is invariate under shifts to the right. Therefore C is a cyclic code.

12

Cyclic codewords are conveniently represented as polynomials modulo xn − 1. In fact, if
~c = (c1, ..., cn) then let

c(x) = c1 + c2x+ ...+ cnx
n−1

denote the associated codeword polynomial. In this notation the cyclic shift ~c′ = (c2, ..., cn, c1)
of ~c corresponds to the polynomial xc(x) (mod xn − 1). In other words cyclic shifts correspond
to multiplication by x. Since cyclic shifts leave cyclic codes invariant, multiplication by any
power of x modulo xn − 1 corresponds to a codeword in C. Since C is a linear code, the sum
of any two such codeword polynomials is another codeword polynomial. Therefore, in fact,
the product of any codeword polynomial times any polynomial in x modulo xn − 1 is another
codeword polynomial.

Denote by Rn the ring of polynomials with coefficients in F modulo xn − 1:

Rn = F[x]/(xn − 1). (2)

Define an ideal I of Rn to be any subset of Rn closed under addition and multiplication by an
arbitrary element of Rn:

• If f, g ∈ I then f + g ∈ I, and

• If f ∈ I and r ∈ Rn then rf ∈ I.
In other words an ideal in Rn is simply a subset closed under addition and multiplication by
an arbitrary polynomial modulo xn − 1. In particular, the collection of codeword polynomials
associated to a cyclic code is an ideal of Rn.

Lemma 6 There is natural one-to-one correspondence between cyclic codes of length n over F
and ideals of Rn.

This can be found in any book on coding theory, for example MacWilliams and Sloane [MS].
In fact GUAVA allows you to easily pass back and forth between codewords as vectors and

codewords as polynomials.
In order to define the generator polynomial of a cyclic code we need the following mathe-

matical fact.

Lemma 7 Every ideal I of Rn is of the form g(x)Rn. In other words every element of I is a
multiple of g(x) for some polynomial g(x) in Rn.

Ideals which are of the form I = g(x)Rn are called principal ideals and g(x) is called a
generator of the ideal I.

Proof Suppose not. Let s(x) be a non-zero element in I of smallest degree. Pick an arbitrary
non-zero element f(x) in I. By the division algorithm, we can write f(x) = q(x)s(x) + r(x)
where q and r are polynomials and the degree of r(x) is strictly less than the degree of s(x).
Notice that r(x) = f(x)− q(x)s(x) belongs to I by definition. This contradicts the assumption
that s(x) has smallest degree unless r(x) = 0. Therefore every element of I is a multiple of s(x).
Take g(x) = s(x). ¤

Definition 3 Let C be a cyclic code of length n. Let I be the ideal corresponding to C by Lemma
6. We call g(x) a generator polynomial of C if it is a generator of I.

13

Example 4 We continue with Example 3. Let g(x) = 1 + x2 + x3. This is the codeword
polynomial associated to the top row of the generator matrix. g(x) is the generator polynomial
of the cyclic code C. Note that x7 − 1 = (x+ 1)(x3 + x2 + 1)(x3 + x+ 1).

2.2 Non-abelian group codes

The following construction generalizes the above example in an abstract way but will but be
needed later.

Let G be any finite group and let F be any finite field.
Here is a very general construction of a code C whose automorphism group contains G.
If x is an indeterminate and g ∈ G then we let the formal symbol xg denote “g-th power” of

x. The group algebra

F[G] = {
∑
g∈G

cgx
g | cg ∈ F}

is a left G-module under the action

λ(g)(xh) = xgh, g, h ∈ G.
(Note: λ(g1)λ(g2)(x

h) = λ(g1)x
g2h = xg1g2h = λ(g1g2)(x

h), for g1, g2, h ∈ G.) Therefore, λ
defines an action of G on F[G] called the regular representation. Let the dimension of F[G] be
denoted n (so n = |G| is simply the size of G since the “coordinates” of an element of F[G] are
indexed by G).

Now, pick any element a ∈ F[G] and consider the the G-orbit of a

G · a = {λ(g)(a) | g ∈ G}.
If a =

∑
h∈G chx

h then λ(g)(a) =
∑

h∈G chx
gh =

∑
h∈G cg−1hx

h. Finally, let C be the vector
subspace spanned by G · a:

C = Span({λ(g)(a) | g ∈ G}) = Span({
∑

h∈G

cg−1hx
h | g ∈ G}).

In this case, G acts on C the left by permuting coordinates via the left action of G on itself, so
G ⊂ Aut(C). More generally, one may take C to be any G-submodule of F[G].

2.3 QR codes

Usually quadratic residue codes are constructed as a special type of cyclic code. However, here
we define them using Fourier transforms. (For the usual definition, see for example [MS].)

2.3.1 Fourier transforms on finite fields

There is a finite field analog of the usual Fourier transform

f(x) 7−→
∫

R
f(x)eixy dx,

14

on the additive group of field of real numbers R. (It is doubtful that Fourier had finite fields in
mind in the early 1800’s when he used Fourier series to solve the heat equation!) First, for the
analog of eixy, we need to know how to construct the additive characters of F.

Let p > 2 denote an odd prime and let (a
p
) denote the Legendre character:

(
a

p
) =

1, a 6= 0 quadratic residue mod p,
−1, a 6= 0 quadratic nonresidue mod p,
0, a = 0.

By quadratic reciprocity, if p > 2 we have (2
p
) = (−1)

p2−1
8 . If p, ` are both odd primes then

we have (`
p
)(p

`
) = (−1)

(p−1)(`−1)
4 . In particular, 2 is a quadratic residue of p if and only if p ≡ ±1

(mod 8).
Let F = GF (p) and let F = GF (`), where ` is a prime different from p which is a quadratic

residue of p. For example, we shall take ` = 2 and p ≡ 1 (mod 8). If ξ is a p− th root of unity
in a field containing F then every w ∈ F (ξ) can be uniquely written as

w = w0 + w1ξ + w2ξ
2 + ...+ wp−1ξ

p−1, wi ∈ F.
Addition in F (ξ) is as usual but multiplication is to be “performed (mod ξp − 1)”. We think
of F (ξ) as the analog of the field of complex numbers.

Define an additive character ψ1 : F → F (ξ)× by ψ1(a) = ξa, a ∈ F. Clearly, ψ1(a1 + a2) =
ξa1+a2 = ξa1ξa2 = ψ1(a1)ψ1(a2), for all a1, a2 ∈ F, so ψ1 is an additive character. For any b ∈ F,
define

ψb(a) = ψ1(ab).

In particular, ψ0 = 1. Since ψb(a1 + a2) = ψb(a1)ψb(a2), for all a1, a2 ∈ F, it follows that ψb too
is an additive character.

Lemma 8 (a) (Orthogonality) As elements of F , we have

∑

c∈F
ψa(c)ψb(c) =

{
p, a+ b = 0,
0, a+ b 6= 0.

(Note: if ` = 2 then here p = 1 in F .)

(b) If ψ : F→ F (ξ) is any additive character of F (i.e., satisfies ψ(a1 + a2) = ψ(a1)ψ(a2), for
all a1, a2 ∈ F) then there is a unique b ∈ F such that ψ = ψb.

The first part is a special case of “Schur orthogonality”. The second part is a special case
of the duality between elements of an abelian group and its dual group of characters. A proof
(which the interested reader who knows a little group theory might try on his/her own) can be
found many books on group theory or finite fields.

Let f : F→ F (ξ) be any function. The Fourier transform of f is the function

FTf (b) =
∑

a∈F
f(a)ψb(a), b ∈ F.

15

Lemma 9 (Fourier inversion) If f : F→ F (ξ) is any function

f(a) = |F|−1
∑

b∈F
FTf (b)ψb(−a), a ∈ F.

(Recall, |F|−1 is to be regarded as an element of F (ξ).)

This is a consequence of orthogonality.

2.3.2 Generalized quadratic residue codes

If “useful and practical” fought “mathematically beautiful” in a battle over the quadratic residue
codes, “mathematically beautiful” would win. These codes seems to have reasonably fast en-
coders and decoders but lack good parameters1. However, they have striking mathematical
properties, especally as related to representation theory. We follow [MS], §16.4-16.5.

Again, let `, p be primes with p > 2 and ` ≥ 2 a quadratic residue of p.
Let Q denote the set of quadratic residues in F× and N denote the set of nonquadratic

residues in F×. In other words, a ∈ Q if and only if (a
p
) = 1 and a ∈ N if and only if (a

p
) = −1.

Since (...
p
) defines a non-trivial character of F×, orthogonality implies

∑
a∈F×(a

p
) = 0. This

implies |Q| = |N |, so |Q| = 1
2
|F×| = |N |.

Let us enumerate the elements of F = GF (p) in some way, say F = {0, 1, ..., p − 1}. Now
identify GF (`)p with the vector space of function values

{(f(0), f(1), ..., f(p− 1)) | f : F→ GF (`)}.
The generalized quadratic residue code is the subspace of functions in the kernel of the
Fourier transform on Q:

CQ(F, F) = {(f(0), f(1), ..., f(p− 1)) | FTf (a) = 0, ∀a ∈ Q}.
There is an analogous code for the nonresidues:

CN(F, F) = {(f(0), f(1), ..., f(p− 1)) | FTf (a) = 0, ∀a ∈ N}.

Though tempting, this last one is not called the generalized quadratic nonresidue code! Instead,
usually these two are simply referred to as the generalized quadratic residue codes.

Let Q = {a1, ..., ar} (so r = p−1
2

). From this definition, we see that a check matrix for
CQ(F, F) is

H =

ψa1(0) ψa1(1) ... ψa1(p− 1)
ψa2(0) ψa2(1) ... ψa2(p− 1)

...
...

ψar(0) ψar(1) ... ψar(p− 1)

 =

1 ξa1 ... ξa1(p−1)

1 ξa2 ... ξa2(p−1)

...
...

1 ξar ... ξar(p−1)

1Although there are some extremely interesting but conjectural results in Bazzi-Mittel [BM] which use QR
code-like constructions to construct related codes whch seem to have very good parameters.

16

Lemma 10 The parameters [n, k, d] of the generalized quadratic residue codes satisfy

n = p, k =
p+ 1

2
, d ≥ √

p.

Determining d for a quadratic residue code with p “large” is a very hard problem. For
example, recently M. Grassl published some tables extending those in chapter 16 of [MS] of
values [n, k, d] for quadratic residue codes with ` = 2, 3 and p ≤ 167. Another apparently hard
problem for these codes is to determine which coordinates the information bits lie in.

Let CQ(F, F) denote the code generated by CQ(F, F) and the all 1’s vector and CN(F, F)
denote the code generated by CN(F, F) and the all 1’s vector.

Definition 4 If C is any [n, k]-code over F then the dual code C⊥ is a [n, n− k]-code defined
by the vector space of all n-vectors orthogonal every codeword:

C⊥ = {~v ∈ Fn | ~v · ~c = 0, ∀~c ∈ C},
where

~v · ~w = v1w1 + v2w2 + ...+ vnwn ∈ F,
where ~v = (v1, ..., vn), ~w = (w1, ..., wn). A code satisfying C⊥ = C is called self-dual.

Dual codes are often useful to have lying around. One nice property they have: a parity
check matrix of C is a generating matrix for C⊥.

Lemma 11

CQ(F, F)⊥ =

{
CQ(F, F), p ≡ 1 (mod 4),
CN(F, F), p ≡ −1 (mod 4),

CN(F, F)⊥ =

{
CN(F, F), p ≡ 1 (mod 4),
CQ(F, F), p ≡ −1 (mod 4),

(This is proven in §16.4 in [MS].) In other words, if p ≡ 1 (mod 4) then all the codewords
in the code C = CQ(F, F) are orthogonal to themselves! (Such a code is sometimes called
“self-orthogonal”.)

2.3.3 Extended quadratic residue codes

Define the extended quadratic residue codes by

ĈQ(F, F) = {(c1, ..., cp, c∞) | (c1, ..., cp) ∈ CQ(F, F), c∞ = α

p∑
i=1

ci},

ĈN(F, F) = {(c1, ..., cp, c∞) | (c1, ..., cp) ∈ CN(F, F), c∞ = α

p∑
i=1

ci},

where 1 + α2p = 0 (either choice of sign will work). These codes are self-dual if p ≡ 1 (mod 4)
and are the dual of each other if p ≡ −1 (mod 4).

Even more interesting is the fact that these codes have large automorphism groups.

17

Theorem 1 (Gleason-Prange) Assume ` = 2 and p ≡ ±1 (mod 8). The automorphism group
Aut(ĈQ(F, F)) contains a subgroup isomorphic to PSL(2, p).

See [MS], §16.5 for a proof of this and more details on how the permutation automorphism
acts on the code (see also §6.6 of [HP]). This theorem says that ĈQ(F, F) may be regarded

as a representation space of PSL(2, p). The action of G = PSL(2, p) on C = ĈQ(F, F) is
reminiscent of the Weil representation of SL(2) over a p-adic field, one of the more remarkable
representations in mathematics. See Ward [W] for more of this fascinating story.

As was mentioned above, these codes seem to lack good parameters. However, work is still
being done to improve estimates on the minimum distance d of these QR codes (see for example
Voloch [V] and recent work of M. Grassl referenced there).

3 Lecture 3: Algebraic geometric codes for P1

Let F = GF (q) denote a finite field and let F denote an algebraic closure of F.
In the early 1980’s a Russian mathematician Goppa discovered a way to associated to each

“nice” algebraic curve defined over a finite field a family of error-correcting codes whose length,
dimension, and minimum distance distance can either be determined precisely or estimated in
terms of some geometric parameters of the curve you started with. Rather than going into
detail about Goppa’s general construction, we shall focus on a very special case where these
constructions can be made very explicitly.

We must first build up some geometrical background before these codes can be introduced.

3.1 The projective line

What exactly is the projective line P1? The analogy to keep in mind is that P1 is analogous to
the complex plane compactified by adding the point at infinity, i.e. the Riemann sphere Ĉ.

Algebraically, in a rigorous treatment points are replaced by places - “valuations” on the
function field F (P1). We shall, for reasons of space (pun intended), emphasize intuition over
precision. What is a point? P1 (as a set) may be thought of as the set of lines through the origin
in affine space F 2. We say two points in F 2 − {(0, 0)} are “equivalent” if they lie on the same
line (this is an equivalence relation). If y 6= 0 then we denote the equivalence class of (x, y) by
[a : 1], where a = x/y. If y = 0 then we denote the equivalence class of (x, y) by [1 : 0]. This
notation is called the projective coordinate notation for elements of P1.

The group GL(2,C) acts on the Riemann sphere by linear fractional (“Möbius”) transfor-

mations, z 7−→ az+b
cz+d

,

(
a b
c d

)
∈ GL(2,C). This action factors through PGL(2,C) since scalar

matrices act trivially. Similarly, PGL(2, F) acts on X = P1. In fact, Aut(X) = PGL(2, F).

3.2 Riemann-Roch spaces

The only meromorphic functions on the Riemann sphere are the rational functions, so we focus
on the F -valued rational functions on the P1, denoted F (P1). Let f ∈ F (P1), so f(x) = p(x)

q(x)
is a

18

rational function where x is a “local coordinate” on P1 and p(x), q(x) are polynomials. In other
notation,

F (P1) = F (x).

For example, a polynomial f(x) of degree n in x is an element of F (P1) which has n zeros (by
the fundamental theorem of algebra) and a pole of order n at “the point at infinity”, denoted
∞. (What this really means is that f(1/x) has a pole of order n at x = 0.)

A divisor on P1 is simply a formal linear combination of points with integer coefficients,
only finitely many of which are non-zero. The divisor of f is the formal sum of zeros of f
minus the poles, counted according to multiplicity. These sums include any zero or pole at the
“point at infinity” on P1. For any given divisor D, the set of points occuring in the formal sum
defining D whose integer coefficient is non-zero is called the support of D, written supp(D).
The divisor of a rational function f is denoted div(f). If f is, for example, a polynomial of
degree n in x then div(f) = P1 + ...+ Pn − n∞ and supp(div(f)) = {P1, ..., Pn,∞}, where the
Pi’s denote the zeros of f . Since divisors are merely formal integral combinations of points, the
sum and difference of any two divisors is another divisor. The abelian group of all divisors is
denoted Div(P1).

Let X = P1 and let F (X) denote the function field of X (the field of rational functions
on X). If D is any divisor on X then the Riemann-Roch space L(D) is a finite dimensional
F -vector space given by

L(D) = LX(D) = {f ∈ F (X)× | div(f) +D ≥ 0} ∪ {0},
where div(f) denotes the divisor of the function f ∈ F (X). These are the rational functions
whose zeros and poles are “no worst than those specified by D”. Let `(D) denote its dimension.

Let ∞ = [1 : 0] ∈ X denote the point at infinity. In this case, the Riemann-Roch theorem
becomes

`(D)− `(−2∞−D) = deg(D) + 1.

It is known (and easy to show) that if deg(D) < 0 then `(D) = 0 and if deg(D) ≥ 0 then
`(D) = deg(D) + 1.

3.3 The action of G on L(D)

Let X = P1/F , so Aut(X) = PGL(2, F), where F is algebraically closed.
The action of Aut(X) on F (X) is defined by

ρ : Aut(X) −→ Aut(F (X)),
g 7−→ (f 7−→ f g)

where f g(x) = (ρ(g)(f))(x) = f(g−1(x)).
Note that Y = X/G is also smooth and F (X)G = F (Y).
Of course, Aut(X) also acts on the group Div(X) of divisors of X, denoted g(

∑
P dPP) =∑

P dP g(P), for g ∈ Aut(X), P a prime divisor, and dP ∈ Z. It is easy to show that div(f g) =
g(div(f)). Because of this, if div(f) +D ≥ 0 then div(f g) + g(D) ≥ 0, for all g ∈ Aut(X). In

19

particular, if the action of G ⊂ Aut(X) on X leaves D ∈ Div(X) stable then G also acts on
L(D). We denote this action by

ρ : G→ Aut(L(D)).

A basis for the Riemann-Roch space is explicitly known for P1. For notational simplicity, let

mP (x) =

{
x, P = [1 : 0] = ∞,

(x− p)−1, P = [p : 1].

Lemma 12 Let P0 = ∞ = [1 : 0] ∈ X denote the point corresponding to the localization
F [x](1/x). For 1 ≤ i ≤ s, let Pi = [pi : 1] denote the point corresponding to the localization
F [x](x−pi), for pi ∈ F . Let D =

∑s
i=0 aiPi be a divisor, ak ∈ Z for 0 ≤ k ≤ s.

(a) If D is effective then
{1,mPi

(x)k | 1 ≤ k ≤ ai, 0 ≤ i ≤ s}
is a basis for L(D).

(b) If D is not effective but deg(D) ≥ 0 then write D = dP +D′, where deg(D′) = 0, d > 0,
and P is any point. Let q(x) ∈ L(D′) (which is a 1-dimensional vector space) be any
non-zero element. Then

{mP (x)iq(x) | 0 ≤ i ≤ d}
is a basis for L(D).

(c) If deg(D) < 0 then L(D) = {0}.

The first part is Lemma 2.4 in [Lo]. The other parts follow from the definitions and the
Riemann-Roch theorem.

In general, we have the following result.

Theorem 2 Let X, F , G ⊂ Aut(X) = PGL(2, F), and D =
∑s

i=0 aiPi be a divisor as above.
Let ρ : G→ Aut(L(D)) denote the associated representation. This acts trivially on the constants
(if any) in L(D); we denote this action by 1. Let S = supp(D) and let

S = S1 ∪ S2 ∪ ... ∪ Sm

be the decomposition of S into primitive G-sets.

(a) If D is effective then
ρ ∼= 1⊕m

i=1 ρi,

where ρi is a representation on the subspace

Vi = 〈mP (x)`j | 1 ≤ `j ≤ aj, P ∈ Si〉,

satisfying dim(Vi) =
∑

Pj∈Si
aj, for 1 ≤ i ≤ m. Here 〈...〉 denotes the vector space span.

(b) If deg(D) > 0 but D is not effective then ρ is a subrepresentation of ρ : G→ AutF L(D′),
where D′ is a G-equivariant effective divisor satisfying D′ ≥ D.

20

proof: (a) Fix an i such that 1 ≤ i ≤ m. Consider the subspace Vi of L(D). Since G
acts by permuting the points in Si transitively, this action induces an action ρi on Vi. This
action on Vi is irreducible since the action on Si is transitive, by definition. Clearly ⊕m

i=1ρm is a
subrepresentation of ρ. For dimension reasons, this subrepresentation must be all of ρ, modulo
the constants (the trivial representation).

(b) Since D is not effective, we may write D = D+ −D−, where D+ and D− are non-zero
effective divisors. The action of G must preserve D+ and D−. Since L(D) is a G-submodule of
L(D+), the claim follows. ¤

3.4 The codes

Let D be a divisor in X(F) stabilised by G whose support is contained in X(F). Let P1, ..., Pn ∈
X(F) be distinct points and E = P1 + ...+Pn ∈ Div(X) be stabilized by G. This implies that G
acts on the set supp(E) by permutation. Assume supp(D)∩ supp(E) = ∅. Choose an F-rational
basis for L(D) and let L(D)F denote the corresponding vector space over F. Let C = C(D,E)
denote the algebraic geometric code

C = {(f(P1), ..., f(Pn)) | f ∈ L(D)F}. (3)

This is the image of L(D)F under the evaluation map

evalE : L(D) → F n,
f 7−→ (f(P1), ..., f(Pn)).

(4)

These are also called “classical Goppa codes”. The group G acts on C by g ∈ G sending

c = (f(P1), ..., f(Pn)) ∈ C 7−→ c′ = (f(g−1(P1)), ..., f(g−1(Pn))),

where f ∈ L(D). First, we observe that this map, denoted φ(g), is well-defined. In other words,
if evalE is not injective and c is also represented by f ′ ∈ L(D), so c = (f ′(P1), ..., f

′(Pn)) ∈ C,
then we can easily verify (f(g−1(P1)), ..., f(g−1(Pn))) = (f ′(g−1(P1)), ..., f

′(g−1(Pn))). (Indeed,
G acts on the set supp(E) by permutation.) This map φ(g) induces a homomorphism of G into
the permutation automorphism group of the code Aut(C), denoted

φ : G→ Aut(C). (5)

Let P be the permutation automorphism group of the code C = C(D,E) defined in (3).
In many cases it is known that the map φ : G → P is an isomorphism (see [JK2], [We]). In
any case, using (5), we regard C as a G-module. In particular, the (bijective) evaluation map
evalE : L(D) → C in (4) is G-equivariant. Since G acts (via φ) as a permutation on C, we have
proven the following result.

Proposition 1 Under the conditions above, the representation ρ of G on L(D) is equivalent to
a representation ρ′ with with property that, for all g ∈ G, ρ′(g) is a permutation matrix.

21

3.5 Memory application

If C is an linear code with non-trivial permutation group then this extra symmetry of the code
may be useful in practice. In order to store the elements of C, we need only store one element
in each G-orbit, so this symmetry can be used to more efficiently store codewords in memory
on a computer.

Acknowledgement: Parts of these notes have been copied verbatim from joint work with my
colleague W. Traves [JT] and with my students W. Irons [I] and J. McGowan [Mc].

References

[Ba] A. Barg, UMCP web page, http://www.enee.umd.edu/~abarg/

[BM] L. Bazzi and S. Mitter, Some constructions of codes from group actions, preprint, 2001.

[Gap] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4;
2002, (http://www.gap-system.org).

[G1] GUAVA home http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/

[G2] GUAVA examples http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/GUAVA_examples.html

[HP] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge
Univ. Press, 2003.

[I] W. Irons, A polynomial-time probabilistic algorithm for the mini-
mum distance of an arbitrary linear non-binary error-correcting code,
http://cadigweb.ew.usna.edu/~wdj/irons/

[JK1] D. Joyner and A. Ksir, Modular representations on some Riemann-Roch spaces of modular
curves X(N), in Computational Aspects of Algebraic Curves (Editor: T. Shaska),
Lecture Notes in Computing, World Scientific, 2005.

[JK2] —— and ——, Automorphism groups of some AG codes, to appear (in PAMS?)

[JT] —— and W. Traves, “Representations of finite groups on Riemann-Roch spaces,” 2003
preprint, available at
http://front.math.ucdavis.edu/math.AG/0210408

[Lo] D. Lorenzini, An invitation to arithmetic geometry, Grad. Studies in Math, AMS,
1996.

[Le] C. Lennon, List-decoding of generalized Reed-Solomon codes Using Sudan’s algorithm,
http://cadigweb.ew.usna.edu/~wdj/lennon/

[Lu] F. Luebeck, Conway polynomials page,
http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol/index.html

22

[MS] F. MacWilliams and N. Sloane, The theory of error-correcting codes, North-Holland,
1977.

[Mc] J. McGowan, Implementing generalized Reed-Solomon codes and a cyclic code decoder in
GUAVA, http://cadigweb.ew.usna.edu/~wdj/mcgowan/

[S] N. Sloane, Unsolved Problems in graph theory arising from the study of codes, in Graph
Theory Notes of New York 18 (1989), pp. 11-20.

[Ta] R. M. Tanner, A transform theory for a class of group-invariant codes, IEEE Trans. Infor.
Theory 1988

[vLM] J. van Lint, F. J. MacWilliams, “Generalized quadratic residue codes,” Proc. IEEE Trans
Info Theory 24(1978)730-737.

[V] J. Voloch, Computing the minimum distance of cyclic codes, preprint available on the web-
page
http://www.ma.utexas.edu/users/voloch/preprint.html

[W] H. N. Ward, Quadratic residue codes and symplectic groups, J. Algebra 29(1974)150-171.

[We] S. Wesemeyer, “On the automorphism group of various Goppa codes,” IEEE Trans. Info.
Theory., 44(1998)630-643.

23

