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Abstract. Let K/F, be an elliptic function field. For every natural number n we
determine the number of prime divisors of degree n of K/E, which lie in a given
divisor class of K.

1 Introduction

If K is a number field it is well known that there exist infinitely many prime
divisors which belong to a fixed divisor class and that the (Dirichlet-)density
of the set of such prime divisors is 1/h where h is the class number of K [6,
89]. The proof of this theorem is similar to the proof of the theorem on
the number of primes in an arithmetic progression and proceeds roughly
as follows: One first separates the prime divisors in the different classes by
the characters of the class group and uses then orthogonality relations of
the characters together with the non-vanishing of the L-series at 1 (which
constitutes the deep part of the theorem). In fact, one of the approaches to
class field theory is based on the investigation of the Dirichlet-density of the
set of prime divisors lying in a given (ray-) class [6].

If K is an algebraic function field over a finite field, then we might simi-
larly ask for the number of prime divisors belonging to a fixed class. In this
situation there exist only finitely many prime divisors in each class since there
are only finitely many integral divisors in each divisor class. However, as it
will be shown in this paper, the method outlined above will prove successful
in answering this question for the case K is an elliptic function field over the
finite field F,.

Let K/F, be an elliptic function field and C be a divisor class of K.
Denoting by a(C) the number of prime divisors in the class C, we are thus
asking for the exact value of a(C) for all C. If C is a class of degree one for
example, a(C) = 1, since no two distinct prime divisors of degree one are
equivalent in K.

The group C of divisor classes of K is the direct product of the group Cy
of divisor classes of degree zero and the infinite cyclic group generated by [@]
where [@Q] is the class of an arbitrary divisor @ of degree one [5, pp. 64]. Let
us define a,,(Ch) for a class Cy of degree zero and an integer n by

an,@(Co) := a(Co[Q]")-
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For the ease of notation we shall suppress the dependency of a,, g on @
and write simply a,, instead. We can thus equivalently ask for the value of
an(Co) for all n and all classes Co of degree zero (where we can of course
confine ourselves to the case n > 1). This question will be answered in this
paper (Theorem 6).

Our question can be translated to the language of elliptic curves: let E be
an elliptic curve over the field F,. Denote by E([;» ) the group of F;» -rational
points of E. Let o denote the Frobenius automorphism of ;- over F,. We
define the trace map by

Tr: E(Fp) - E(E)
Po YL, P

where )" denotes the summation in the group E(F,). Denote the restriction
of Tr on E(Fyn ) \Ug|n, a<nE(Fa ) by tr. Suppose that @ is the neutral element
of E(F;). Let C be an arbitrary class of degree 0 of the function field K of
E. As a consequence of the Riemann-Roch theorem there exists a unique
P € E(F,) such that C = [P — Q]. Then a,(C) is equal to the cardinality of
the fiber of tr at P.

The method for obtaining a formula for a,,(C) (which resembles Dirichlet’s
proof of the existence of infinitely many primes in an arithmetic progression)
can be described as follows: First we introduce appropriate characters of the
class group C of K/F, which will “separate” the prime divisors belonging to
different classes. Then the corresponding L-functions are constructed. Taking
logarithms of the L-functions and applying the inversion formula for the
characters we will be able to obtain a recursion formula for a, (C) (Section 2).
Next we apply the principle of inclusion and exclusion to solve the recursion
(Section 3). The final formula for a,(C) involves the numbers I of prime
divisors of degree d of K/F, for different d (or equivalently the numbers Ny of
divisors of degree one of KF,a /F,a) and the number of classes C’' some power
of which equal C (Theorem 6). The next sections deal with the problem
of determining extremal values of a, for given m. It turns out that a, is
constant if n and the number A of classes of degree 0 of K, are coprime
(Lemma 7). Further a,, attains its minimum value at #, the principal class
of K (Theorem 16). The techniques developed in Section 5 can be utilized to
prove several results on the distribution of the numbers a,,(Cy) for a fixed n.
We have confined ourselves to mention some of the more interesting results
(compare also Theorems 27 and 29).

The interest of the author in the numbers a,,(C) arouse in the context of
optimal bilinear algorithms for multiplication in finite fields. For instance, the
results of this paper have been used in [9] to construct an efficient randomized
algorithm which produces optimal bilinear algorithms for multiplication in
certain finite fields (see also [10]). An example in this direction is given in
the final section of the paper.
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2 L-Functions

Let K/F, be an elliptic function field. By C we denote the class group and
by Co the group of classes of degree 0 of K/F,. Let P be a prime divisor
of degree one of K/F, and denote by [P] its class. It is well known (see the
introduction) that C = Co x [P]%. Any character x of Cy can be extended to
a character ¥ of C by setting x(A) := x(A — deg(A)P). By abuse of notation
we shall denote x by x.

The L-function of a character x of C is defined by

L(s,x) == ) X(AN(A)~°
A

where the sum is over all integral divisors of K/F;, and N(A) denotes the
norm of the divisor A, i.e., N(4) = ¢4, L(s,x) has an Euler-product-
expansion [5, §24]

L(s,x) = [[@ = x(P)N(P)~*) (1)

P

where the product extends over all prime divisors of K /F,. If ¢ denotes the
principal character of C, we call L(s,¢) the {-function of K/F, and denote it

by ((s)-

For the rest of this paper we assume that Re(s) > 1 which implies that
the series encountered converge absolutely [5, Lecture 11].

While the (-function of an elliptic function field plays a great role in the
arithmetic theory, the L-functions attached to extensions of non-principal
characters of Co to C' are trivial:

Lemma 1. Let K/F, be an elliptic function field. Further let x be a non-
principal character of Co. Then L(s,x) = 1.

Proof. In [5, pp. 66, §25] it is proved that
(@=1L(s,x) = > x(C)g* ™.
CeCo

Now observe that dim(C) = 0 if C is not the principal class and dim(C) =1
if C' is the principal class. Since x is not the principal character, we have

Zceco x(C) = 0, hence
(g—1DL(s,x) =q—1
which yields the assertion. .

In order to get a formula for the numbers a,,(C) we first take the logarithm
of L(s, x) using formula (1):

log L(s,x) = >_ Y %

P m>1
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Taking into account that N (P) = ¢%°8(¥) this yields
log L(s, X) Z Z X ydes (P)m
P m>1

where we have followed the customary convention u := ¢~—°. Now we divide
the above sum into sums over prime divisors belonging to a fixed class:

log L(s, ) Z Z Z X wdes(P)m

ceC P m>1
[P]=C

The isomorphism C = Co x [Q]% allows to classify the classes according to
their degree:

log L(s, x) z z Z an(C u”m.

CeCypn>1m>1

The above sum is a power series in u. A trivial computation yields the fol-
lowing normal representation of this power series:

log L(s,x) Z (Z Z aq(C )u”. (2)

v>1 dlv C€eCo

Now let Cy € Cy be a fixed class and X denote the character group of Cy. We
have:

> x(CHlogL(s,x) = = (Zzad de(Calcﬁ))u”

XEX v>1 dlv CECo xeX

It is well known that if a is an element of a finite abelian group A and X
denotes the character group of A, then er x x(a) = 0 if a is not equal to
the identity-element of A, whereas this sum equals the cardinality of A if a
is the identity element of A. Applying this we get

S MGl 0 =Y (X Y w(@dn)w ()

XE€X v>1 d|lv C”C'/?iioco
where h = |Co| is the number of classes of degree 0 of K/F, (i.e., the number
of I, -rational points of the corresponding elliptic curve).
By Lemma 1, logL(s,x) = 0 for non-principal x. Hence, taking into
account Equation (2) and the fact that ), . @n(Co) = IIn, the above sum
equals

log L(s,¢) Z (Z Hdd) (4)

v>1
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Since the right hand sides of Equation (3) and Equation (4) are equal power
series we get

VCy€CoWr>1: Y Mad=3( D au(C))dh.

d|v d|v CeCo
cv/d=cq

This proves the following recursion formula:

Lemma 2. Letn be an arbitrary positive integer and Cqy be an arbitrary class
of degree zero of the elliptic function field K[F,. We have

1 1 d
an(Co) = 5 1o + dz”;(ﬁﬂd - CZ ad(C))E. (5)
d<n cn/d=cq

In the next section we shall solve this recursion.

3 Resolution of the Recursion

The principle of inclusion and exclusion is applied in this section to solve the
recursion (5).
For n € N and Cy € Cy define

1 d
11— (€)) = if dn
A(d;n,Co) = A(d) := (h ‘ CGZCO f )n

cn/d=cy
0 otherwise.

Further, let f(m;n,Co) = f(m) = 324 scam,n) A(d)- Our first aim is to
prove the following:

Lemma 3. If m|n, we have

f(m) = %ledndu— {C | Cm/m =y }).
d|m

Proof. We have

f(m) = (%Hm - Z am(c))% + Z (%Hd - Z ad(C))%.
d|m

cecy cecy
cn/m=cq a<m cn/d=cy
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By Equation (5) we get

o= (= 3 G X (3 T ) )7

CEeCy clecy

cnim=c, c'm/d=c
d
+Z( II; - Z ad(C))E
cecy
d<m cn/d=c,
- %;dﬂd(l— [{C | ™™ =Co}))
dlm
X(X X wo- ¥ owo)
CeCp Cclecy CeCy
d<m cn/m=cy ctm/d=c cn/d=cy

Now note that

YD alC)= D al).

CeCy clecy Ccecy
cn/m=cy grm/d=c cnld=cy
Hence the assertion follows. a

Denote by Ny, the number of prime divisors of degree one of KFm /Fm
It is well known that Ny, =) dlm IT4d. Thus the following corollary follows:

Corollary 4. We have

Jm) = N1 = [{C] €7/ = Gy }).

Now we apply the principle of inclusion and exclusion:

Lemma 5. Let S be a finite set, S1,...,Sy subsets of S and A: S — 7Z a
mapping. For T C S let Ax(T) := ) ,cr A(t). Then we have

Ax(S\ UL S;) ZAE + > Ag(SinS))
1<i<j<k
— Z AE(SiﬂSjﬁSl)+
1<i<j<I<n

+(=1)*As(S1 NSy N---NSk).
Proof. This is a straightforward generalization of [1, Theorem 5.31]. O

Theorem 6. Let K/F,; be an elliptic function field, Co be the group of divisor
classes of degree zero of K, Cy € Cy and n an integer greater or equal to zero.
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Then
an(@0) = 1 (T == 3 u(5) N1 = [{ 0| €V = Gy }])

d|n
d<n

= LS u(B) Nal{C e = o)l

d|n

Proof. Let n = Hle p;* be the prime factor decomposition of n. Set S :=
{d | djn} and S; := {d | d|[t} for i = 1,... k. Then S\ UL,S; = {n}.

Applying Lemma 5 with A(.) = A(.;;n,Cy) we get
1 n
=Ty —an(Co) = Y (%) £(d).

d|n

Now note that f(n) = 0. So applying Lemma 3 we get the first equality.
The second equality follows from the first by observing that application of
Mébius-inversion to 3 ;,, Iad = Ny, yields I, = + 3=, Na p(n/d). O

Before going into elaborate estimates of the above sums, let us derive first
a simple lemma from Theorem 6. Let Cy € Cy and consider a1 (Cp). As was
remarked in the introduction a;(Cy) = 1 = II; /h for all Cy in Cy. Can we
expect a,(Cy) = II,/h for all n and all Cy € Cy (at least as long as I, is
a multiple of h)? The following lemma gives a sufficient condition for this to
be the case.

Lemma 7. Suppose that n and h are coprime. Then a,(Co) = II,/h for all
Co € Cp.

Proof. Since (n, h) = 1, the homomorphism Cy — C¥ is an automorphism of
Co. Hence |{ C | cnd =y }| =1 for all Cy € Cy. The assertion follows now
from Theorem 6. O

The following example shows that the condition in the preceding lemma
is not necessary:

Example 8. The elliptic function field K = Fy(z,y),y?> +y = 2° + 1 has 9
prime divisors of degree one [2]. The group of divisors of degree 0 of K is easily
computed to be the direct product of two cyclic groups of order 3 (note that
Co is isomorphic to the group of F;-rational points of the corresponding elliptic
curve). K has ITg = 648 prime divisors of degree 6. Further, Ny = N7 = 9 and
{C | C? = Cp}| = 1 since (2,9) =1, and |[{C | C® = Co}| = {C | C® = Cp}]
for all Cy € Cy. Applying Theorem 6 we get

1
aa(C()) = §H6 =172 for all Cy € Co.

Example 8 is actually an exception. In Section 5 we will prove a partial
converse to Lemma, 7 (see Theorem 29).
In the next sections we investigate the extremal values of the function a,.
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4 Some Tools

In this section we shall gather some well known results about abelian groups
and elliptic function fields. This will serve as a toolbox for the computations
in the next section.

To begin with, let us introduce a notation: If A is an abelian group and
n an integer, we define A" := {a™ | a € A}. The following lemma is almost
trivial:

Lemma 9. Let A be a finite abelian group and n,m integers. Then A™ N
Am — Alcm(n,m) and A" A™ :Agcd(n,m)'

Proof. Let A be the direct product of B and C. Then A" N A™ = (B™ x
c™)yn(B™ x C™), so A"NA™ = (B"N B™) x (C™ N C™). Analogously
A"A™ = (B™"B™) x (C™C™). Since the assertion of the lemma is easily
verified for cyclic groups, the general case follows by decomposition of A into
cyclic factors. O

Let A be a finite abelian group, n an integer and 72: A — A" a + a™.

Lemma 10. If A is a finite abelian group, m,n are integers and 7/ is as

above, we have:

| ker 72| | ker 74|
A |
ged(n,m)

A
| ker 71-lcm(m,n)l = | ker

Proof. Application of Lemma 9 yields:

" _ 14
|ker 7Tlcm(m,n)l - W

A A
|An| |Alcm(m,n)|

_ |A| |Agcd(m,n)|
An[ A

_ A] |A] |Asedtmm)]
|An[]A™] - [A]
| ker 2| | ker w24 |

= TerrA | U

|
ged(n,m)

~ |kermw
We immediately get the following corollaries whose proofs are obvious.
Corollary 11. If A is a finite abelian group and m,n are coprime integers,

we have
|ker 74 | = | ker 7|| ker w2 |.
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Corollary 12. Let A be a finite abelian group and m,m coprime integers.
Then
HAnm :HAnHAm,

where Hyy is denotes the characteristic function of the set M.

Now we want to investigate some elementary problems related to elliptic
function fields.

Lemma 13. Let K/F, be an elliptic function field, ¢ > 5, and n, k be positive
integers, k > 2. Then

qn(k72)Nn < Nnk < anNn-
Proof. We apply the well known Hasse- Weil-inequality
|Nn —¢" — 1] < 2v/g"

to get

(o =172 _ N (Va®+1)?
W +17 = Ny = (Jam 1)

Now note that if a > /5 is a real number and & is as above, we have

(aF 1) > g2(k—2)

(a+1)
(a* +1)? < a2k,
(a—1)2 —
Putting a = /q™ we get the assertion. O

REMARKS. (1) The first inequality in the above lemma is also valid for
g = 4. It is even sharp for ¢ = 4,n = 1,k = 2 (as can be seen in the case of
the function field K = Fy (z,y), =3 +y° = 1).

(2) The inequalities given are very crude for big q. Nevertheless we shall
not need more refined estimates for the computations in the next section.

Now let K/F, be an elliptic function field and Cy denote the group of
divisor classes of degree 0 of K. For a nonnegative integer n we denote the
homomorphism 7$° simply by m,,. The kernel of 7, (also called the group of
n-division points) plays an important role in the formulas of Theorem 6 as is
apparent from the following

Lemma 14. Let Cy € Cy and n be a positive integer. Then
H{C' | C™ = Co}| = Hey (Co)| ker 7y .

Proof. Trivial. O
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The order of ker 7,, depends on n and the structure of Cy. However, since
Co is always of the type C; x C,,, with I|m (See e.g. [8]), we get the following
(well known) estimate:

Lemma 15. With the above notations we have | ker m,| < n?.
Proof. If Cy = C; x Cy, we have |ker 7| = ged(n, 1) ged(n,m) < n?. O

With these tools at hand, we are now able to derive some lower and upper
bounds for the numbers a,,(Cp). This will be done in the next section.

5 Some Estimates for a,(C))

The aim of this section is to prove the following

Theorem 16. Let K/E, be an elliptic function field, ¢ > 7, and n be an

integer satisfying n < 27" Denote by Co the group of divisor classes of
degree 0 and by H the principal class of K. For Cy € Cy let a,(Co) be defined
as above. Then we have

(].) an(H) = mincoeco an(C()).

(2) Letm denote the squarefree part of n. Then an(Co) = an(H) if and only
if Co € Coﬁ

(3) Suppose there exists Co € Co such that Co & C& for all p|n. Then an(Co) =
maxcyeco 4n(Co) = 7 Na-

Before starting with the proof of this theorem, let us state an immediate
corollary:

Corollary 17. With the same notations as above we have a,(H) < II,,/h.

Proof. We have

I, = Z an(CO) > Z an(H) = han(H) o

Co€Co Co€Co

The proof of Theorem 16 requires some preliminary discussions. It is based
on the investigation of a,(H) — a,(Co) for arbitrary Cy € Cp. Application of
Theorem 6 and Lemma 14 yields the following formula for this difference

an(H) = n(Co) = 7 5" Nap(5) et ayal(1 = Hegrs(Go)). (6)
d|n

Let us agree upon the following notations for the rest of this section:
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Notation 51. K/F, is always assumed to be an elliptic function field. Co is
the group of divisor classes of degree 0 of K and h denotes its order. For an
integer m, Ny, is the number of prime divisors of degree one of KFym [Fym
and IT,,, is the number of prime divisors of degree m of K ; the homomorphism
an" of the last section is simply denoted by mp,.

n is always a positive integer which satisfies n < 20" (for technical
reasons). P = {p1,...,pr} is the set of distinct prime divisors of n; for
0<I<r—1wesetv :=p1...p and u; := Pry1-..pr (note that vo = 1).
If P C P we denote by np the number [[,.pgq (ng =1). For a non-negative

integer i, (E’) denotes the set of subsets of P of order i.
The following lemma is the heart of the estimates following.

Lemma 18. Let m be an integer such that g™ > 7. Further let | be an integer
satisfying 0 <1 <r — 2. Then we have

r
Z qmul/pkpi <qm(u1—2)_
k=l+1

Proof. Let us first replace ¢™ by t. Observe that the function f(z) = /%22
decreases monotonically for £ < aln(t)/2, hence also for z < a (note that
t > 7). The proof is divided in two cases:

CASE 1.1 < r — 3. In this case u; > 2-3-5 = 30. Further p; < u;/2 < uy,
hence t%/Prp? < 4t%/2 by the above observation. So we get

T
Z t”’/p’“pi < 4rp/?
k=l+1

< 4logy(n)t"/?

< 4q12tul/2

<g®t? (g>7)
<t (8> g, w > 30).

CASE 2. ] =r — 2. This condition implies u; > 2 -3 = 6. Hence we get

T

Z tul/pkpi S 4tuz/2 _|_9tu1/3
k=I+1
= ¢u/2(4 4 9t~ /)
SH”M+$) (
<tu/2t
S tu172 (Ul

7)

u > 7)
7).0

Lemma 19. Let ¢ > 7.
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(1) Ifo<i<r—2, we have

T
~Noju + Y Nojupopi <0-
k=Il+1

(2) _Nn/vr_l + Nn/vrp% < 0.

Proof. (1) Applying Lemma 13 we get

T T
o — nu o,
_Nn/vl + E Nn/(’l}lpk)pi < Nn/vr (_q v (ur—2) + E qerPe pZ) .
k=Il+1 k=l+1

The right hand side of the inequality is less than zero by Lemma 18.
(2) Let g := wvy. Then N/, _, = Ngp,. Applying the Hasse-Weil-
inequality we obtain

Nop, S gt +1 — 2qrer/?
N, = gqt+1+2qn/?
gt =1) _ gqulpr/2-1)
14 g+ 2q1/2

> gqu(prﬂ—l) (qupr/2 —-2) (¢>7)
23 =
2
230 -2 (h22)
>p; (¢>5).0

Lemma 20. Let ¢ > 7 and 0 <1 <r —1. Then

T
—Nn/vl|kerﬂ'vl| + Z N"/(Ulpk)| kermlp,c| < 0.
k=Il+1

Proof. We have

-
—Np /v | ker my, | + Z Ny j(oip) | ket Ty, | =
k=l+1

,
= |ker7rv,|(—Nn/vl + Z Nn/(vlpk)|ker7rpk|) (by Corollary 11)
k=1+1

< |ker7rvl|(_Nn/vz + Z Nn/(Ulpk)pi) (by Lemma 15)
k=l+1
<0 (by Lemma 19). O
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Corollary 21. Let i be an integer satisfying 0 <i<r—1and ) #P C (1;))
(note that P = {0} # 0 if i = 0). Then we have

Z(_N#|ker7rnp|—|— Z N"n?|ker7rnp,|) <0.
PeP P’e(iil)
pPCP/!

Proof. Let P € (1:) Rearranging P if necessary, we can assume that v; = np.
Further, for every P’ € (iil) with P C P’ there exists a unique p; with
k > 1+ 1 such that np: = v;pg. Now the assertion follows from Lemma, 20.

O

Corollary 22. Assumptions being as in Lemma 20, let Cy € Cy we have

- Z N » |kermn, |+ Z N$|ker7rnp,| <0

re(?) pe(L)
Hcgp(00)=1 Hcgpl (Cop)=1

with equality holding if and only if both sums are empty.
Proof. First of all note that by Corollary 12 we have
Hcgpl (Co) =1=VP Q PI : HC(T)'P (Co) =1.

Hence, if the left sum is empty, both sums are empty and so the given term
equals 0. If the left sum is not empty and the right sum is empty, the given
term is trivially < 0. So assume that the right sum is not empty (which
implies that the left sum is non-empty as well). We get

Given term < Z (—NLP|ker7rnP| + Z N_n_|kermy,, |) <0
n "Pl

PE(I:) Ple(i£1)
H np(Cp)=1 pPCP!
o
by the previous corollary. O

Lemma 23. For all 1 <i<r —1 we have

—Sumpe(};)N% | kerﬁnp |(1 — HCSP (Co))
+EP’€( Pl) Nnn?|ker7rnp, |(1 — HCSP' (C())) <0

it

with equality holding if and only if Co € C§ for all p|n.

Proof. Of course the given sum equals 0 if Cy € C§ for all p|n. So suppose
that there exists p|n such that Cy ¢ CZ. It follows that for all k there exists
P € (}) such that Co & C3*. Let

(Pl,...,P.Y={P' CP||P|=i+1,C&C"}.
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So by Corollary 12 there exist pairwise distinct Py,... , P, such that |P| =i
for 1 <1 < k and such that each P, is a subset of at least one of the P,
1 <t < m. Hence the sum in question is less or equal to

k
Z(—N#|ker7rnpl| + Z Nnn?|ker7rnp,|) <0

=i pe()
P CP!

by Corollary 21. O

REMARK. Note that the condition ¢ > 1 is crucial in this proof. It is easily
seen that the assertion of Lemma 23 is false for i = 0.

Lemma 24. With the assumptions of Lemma 23 we have

—Y Ne|kerm,|(1— Here (Co)) + Y N_o_|kermy,, |(1— Herer (Co))

Pe(‘.’) Pe(.ly)
Z Nn | ker 7y, | + Z N~ |ker7rnp,|
Pe(?) Pe(h)
with equality holding if and only if Co & C3® for all P € (IZ) U (ifl).

Proof. The left hand side of the inequality equals

Z N#|ker7rnp|+ Z Nnn?|ker77np,|=: A.

PE(}:) P’E(iil)
HCSP (Cp)=0 Hcgpl (Cp)=0

By Corollary 22 we have

A
I ~

A>A- 3 Nafkemy|+ Y No|kerm,|

re(f) rre(;fa)
chp(co) 1 " nP,(co) 1
=— Z Now | kermp, | + Z N~ |ker7rnp,|
Pe(?) Pre(i)

with equality holding if and only if the sums under the bracket are empty,
i.e., if and only if Cy ¢ CJ* for all P € (1:) U (HF_’I). O

Lemma 25. Assumptions being as above, we have

ZNdp( ) 1¥er mal(1 = Hynr4(Co)) <0

with equality holding if and only if Hez(Co) =1 for all p|n.
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Proof. The above sum equals

[r/2]
Z (— Z N#|ker7rnp|(1 — Here (Co))
=1 Pe(y2,)

+ Z N%|ker7rnp|(1 — HCSP (CO))) -9

Pe(3)
where § = N, /,, |kermy, |(1 — Hn/v, ) if 7 is odd and 6§ = 0 if r is even.
0
So by Lemma, 23
Given sum < —§ <0
with equality if and only if § = 0 and for all ) # P C P we have Cy € CJ7,
i.e., if and only if Co € C§ for all p|n. O

Lemma 26. Assumptions being as above we have

> Nan(%) Iker myal (1 = Hyzra(Co)) 2 Y- Nap (% ) [ker oyl

d|n d|n
d<n

with equality holding if and only if Co & C§ for all p|n.

Proof. Resolving the sum on the left hand side of the above inequality as in
the proof of the preceding lemma and applying Lemma 24 we get

Lr/2]
Given sum > Z (— Z N#|ker7rnp|
=1 |P\=P2i—1
+ Z N#|ker7rnp|) -6
\P|=P2i—1
n
=) Ndﬂ(a) | ker 7y, /4l
din
d<n

with equality holding if and only if
VO#APCP: Co¢gCi? < Co ¢&C¥ for all pjn. O
Now we are able to prove Theorem 16:

Proof. (Of Theorem 16) (1) and (2) follow from Lemma 25 and Equation (6),
(3) follows from Lemma 26, Equation (6) and Theorem 6. O

REMARK. The assertion of Theorem 16 can be extended to ¢ = 4,5 by
more careful estimations.

With the tools developed in this section we are able to prove several
properties of the function a,. The next two theorems serve as examples in
this direction.



16 M. A. Shokrollahi

Theorem 27. Notations and conditions being as in 51 we have a,(Cp) > 0.

Proof. In view of Theorem 16 it suffices to show that a,(H) > 0 for the
principal class H of K. Now

an(M) = % ZNdu(g) | ker 4]

din
The above sum equals

1 L(T§/2J( Z N |kermp, | — Z N |kern |) + i(S'

S el T ek
where §' = 0 if r is odd and ¢' = N/, |kerm,, | if r is even. But

Z N#|ker7rnp| - Z N#|ker7rnp|
Pe(3) Pe(,5,)

is greater than zero by Lemma 23 (if ¢ > 0) and Lemma 21 (if i = 0). O

REMARK. The above theorem states in other words that under the con-
ditions stated the mapping tr defined in the introduction is surjective.

The following example shows that the assertion of Theorem 27 need not
be true for ¢ < 5:

Ezample 28. We consider again the elliptic function field
K =F(z,y), v’+y=2"+1

Let n = 3 and H be the principal class of K. An easy computation shows
that N3 = 24. Application of Theorem 6 yields

a3(’H)=%(24—%-9-8) =0.

The next theorem is a partial converse to Lemma 7.

Theorem 29. Notations and conditions being as in 51 we have: a,(Cy) =
II,/h for all Co € Co if and only if gcd(n, h) = 1.

Proof. In view of Lemma 7 we have to prove that for gcd(n,h) # 1 there
exists a class Cyp € Cy such that a,(Co) # an(H) where H is as usual the
principal class of K. Now if gcd(n,h) # 1, there exists a prime number p
such that p| ged(n, h). Hence there exists a class Cy ¢ C5. Lemma 25 implies
now a,(H) — a,(Co) < 0. O

Example 8 shows that the assertion of Theorem 29 need not be true for
g<5.
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6 An Optimal Algorithm for Multiplication in Fy7 /T3

This section gives an application of the results of this paper to the problem of
determining optimal bilinear multiplication algorithms for finite extensions
of finite fields. For a background on the bilinear complexity theory, we refer
the reader to [3, Chap. 14].

A bilinear algorithm of length r for the multiplication in a finite dimen-
sional k-algebra A consists of r triples (f;, g;, w;) where f; and g; are k-linear
forms on the vector space A, and w; € A, such that

Ya,be A: a-b= Zf,'(a)gi(b)wi.
i=1

(a - b is the product of a and b in A.) The aim is to obtain for an algebra A
a bilinear algorithm of minimal length.

As an example, consider the algebra A := k[z]/(x? — a), for some a € k.
A basis for this algebra is given by (1, z), where we identify polynomials with
their residue classes modulo 2 — a. The naive way of multiplying elements
in this algebra is by implementing the following formula:

(A+ Bzx)(C + Dz) = (AC + aBD) + (AD + BC)z.

Let fi(a + B7) = gi(a + Bz) = a, fo(a+ Bz) = g2(a + fr) = B, wy := 1,
we := z, and w3z := a. Then, it is easily verified that

(fl’gliwl)’ (f17927w2)a (fQngan)J (ang23w3)

is a bilinear computation for A of length 4. Another, more efficient algorithm
is derived from

(A+ Bz)(C + Dz) = (AB +aBD) + ((A+ B)(C + D) — AC — BD)z

which gives rise to a bilinear algorithm of length 3: let f;,9;, i = 1,2 be as
above, and let f3(a + Bz) = gs(a + Bz) := a + (. Further, let wy := 1 — =z,
we = a — x, and ws := x. Then

(f1,91,w1), (f2,92,w2), (f3, 93, w3)

is a bilinear computation for A of length 3.

The bilinear complexity does not measure the number of addi-
tions/subtractions, or scalar multiplications. (This is expressed by the fact
that the additions and scalar multiplications necessary for evaluating f; and
gi are not counted.) However, for many important problems like the matrix
multiplication, the asymptotic complexity can be measured in terms of the
bilinear complexity only [3, Chap. 15]. Furthermore, in some situations, using
bilinear algorithms recursively leads to overall savings in the running time.
For instance, the Toom-Karatsuba method of multiplication [7, Chap. 4.3.3]
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can be seen as recursively using the multiplication algorithm of length 3 in
the algebra A above (for suitable A).

An important class of k-algebras are simple field extensions. Multiplica-
tion in these algebras can be reduced to polynomial multiplication, which in
turn can be accomplished using Lagrange interpolation. One can prove that
if |k| > 2n — 2, then the bilinear complexity of multiplication in a simple field
extension of degree n over k is exactly 2n— 1, and that it is larger than 2n—1
otherwise [3, Th. 17.29 and Rem. 17.30].

In [4] the authors describe an algorithm for multiplication in extensions
of small finite fields, i.e., in extensions of degree n of a finite field k with
|k] < 2n — 2. In a nutshell, Goppa’s idea is used to replace the Lagrange
interpolation by interpolation on algebraic curves. The algorithm was slightly
modified in [10] for elliptic curves. In particular, it was proved there that the
bilinear complexity of multiplication in Fp is 2n if 1 +1 < n < im(q)
where m(q) is the maximum number of points of an elliptic curve over F,. In
a subsequent work [9], it was described how to obtain these algorithms using
arithmetic properties of elliptic curves.

In this section, we apply by way of an example some of the results of this
paper to obtain an optimal algorithm for multiplication in the field extension
Fa7 of F5. Note that this case is not covered by [9]. The similar case of Fa56 /Fy
was solved in [2].

For the following computations we present F3 as F3 = {0,1,2}. We assume
familiarity with [9].

In order to compute the optimal algorithm we are looking for, we follow [9,
Algorithm IV-B] with minor modifications. In particular, we will compute
two matrices A € Fo*% and B € F$*® and a basis (fo, f1, f2) of Far /Fs
with the following properties: the multiplication of xgfo + z1 f1 + z2f2 and
Yofo + y1f1 + ya2fa is given as zg fo + 21 f1 + 22 f2 where

(zo,zl,z2) = (X0YE), . ,X5Y},)B,

(X()Xg,) - ($0,$1,$2)A
Yo... Y5 Yo,y1,y2)

Hence, A and B completely determine the multiplication in Fy;.

To obtain these two matrices, we first compute an elliptic curve E over F3
having 7 F3-rational and compute its set of points E(Fs). Next we determine
prime divisors ® and p, both of degree 3, such that L(D — p) = 0, where
by L(A) we denote the linear space of the divisor A. Notice that this is
equivalent to requiring [®] # [p], where [A] denotes the class of the divisor
A. Afterwards we compute a basis {fi, ... , f¢} of L(2D) such that {f1, f2, f3}
is a basis of L(®). In order to compute the matrices I" and A of Step (v)
of [9, Algorithm IV-B], we first need to compute a set of points Py,... ,Ps
of E(F3) such that

[PL®-® P — Q] # [ — 3Q]
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where @ is the neutral element of E(F3). Next we perform Steps (vi) and (vii)
of [9, Algorithm IV-B] to obtain the matrices A and B which are the final
outputs.

It is easily verified that the curve E : y? = 22 — x + 1 has 7 Fz-rational
points and E(Fs) = {Q, Py, ..., Ps}, where

P = (0a2); P, := (05 1)7 Py = (1a );
Py:=(1,1), P :=(2,2), Ps :=(2,1).

For the sake of simplicity we choose for ® a prime divisor of degree 3. The
representation of prime divisors is the same as described in [9, Section 3.6],
i.e., a prime divisor is given by (g, h) where g is an irreducible polynomial of
degree 3 and h is a polynomial of degree at most 2 such that h? = 2° —z +
1 mod g. We use [9, Algorithm ITI-F] to compute two random prime divisors
® and p. This is the place where we use the results of this paper. Namely,
for a random choice of ® and p, the probability that they belong to the same
divisor class is % by Theorem 29. Hence, with high probability, we will pick
two prime divisors that do not belong to the same class. In fact, after one

guess we obtain
D = (2® + 202 + 22 + 2,22° + 1), p = (2% + 222 +1,22% + 22).
The class finding algorithm [9, Algorithm ITI-E] gives

[0 -3Q] =[P - @, [p—3Q] =[P - @, (7)

which shows that ® and p belong to different classes. The function (z + 1)
has the divisor Ps + Ps — 2Q. Hence (7) implies that ® + Ps — 4Q is a
principal divisor, i.e., the divisor of a function, say u. Observe first that
u € L(4Q). Since 1,z,y,z? is a basis of L(4(Q), u is a linear combination
of these functions. Further, ordg(v) = —4, hence w.l.o.g. we may assume
that u = 22 + ax + by + ¢ with some constants a,b,c € F3. Now u(®D) = 0,
hence computing with z as X mod (X3 + 2X? + 2X + 2) and with y as
(2X? + X) mod (X? + 2X? + 2X + 2), we obtain

(1+20)X%+(a+b)X +C =0.

This gives u = 22 + 2z +y. We claim that

B;={1,”’+1 (x+1)2 (z+1)% (z+1)>° (m+1)4}

T VR 7> 72 V2

is a basis of L(2®) and that the first three elements of B form a basis of L(®):
first, B C L(29) and the first three elements of B belong to L(®) (simply
compute their divisors!). In order to prove linear independence, we evaluate
the representation matrix of the linear morphism

v: (B) = T
v = (U(Pl)a" . 7U(P6))'
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We will show that rk () = 6, which implies that B is a basis of L(29). For
this, it is sufficient to show that

I' = (v(P))veB,1<i<6

has full rank. First, we have to explain how to evaluate the function in B at
the point Pg, since u(Pg) = 0. Observe that

ordp, ((z + 1) /u), ordp, ((z + 1) /u?), ordp, ((z + 1)* /u?) > 1,

which implies that these functions vanish at Ps. Setting v := (z 4+ 1)/u, we
thus have to compute v(Ps). Note that ¢ := (x + 1) is a local parameter for
P, i.e., ordp,(t) = 1. We obtain the following power series expansion for v
in Fs[[t]]:
v = t
24+24+ V3 +2t+1

Hence v(Ps) (which equals the constant term of v € Fs[[t]]) is 1. Thus,

=1+t+2t2+---.

111111
211201
212100
111101
112200
111100

It is easily seen that I' is invertible. Hence B is a basis of L(2D).
Let us denote the elements of the basis B by vy ... ,vg (in the order given
above). We first compute a matrix 7' such that

vy mod p 1
: =T | z | mod (23 + 22 +1).
ve mod p a?

Now u mod p =  mod (22 + 222+ 1), hence 1/u mod p = 222 + z mod (2 +
222 +1). Hence,

100

112

222

211

100

110

Let T' be the matrix consisting of the first three rows of T'. As is shown in [9,
Section 4.4] T" is non-singular and C = T'(T")~!. Further, B = I'"'C. This
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yields
221
021
122
020
001
111

Finally, the matrix A is given by the first three rows of I, i.e.,

111111
A=1(211201
212100

The multiplication algorithm is thus as follows: to compute the product
of (zg,x1,T2) and (yo,y1,y2), first compute

Xo =20+ 221 + 229 X1 := 29 + 21 + T2 Xo := 29 + 21 + 229

X3 =1z + 221 + 22 Xy =19 X5 :=z0+ 21
Yo=yo+2y1+2y2 Yii=yo+uyi+y2 Yo:i=yo+y1+ 2y
}/3:=y0+2y1+y2 n:zyo }/5:=y0+y1‘

The product is given by (2, 21, 22), where

zg = 2XOYE) + X2Yv2 + XSY%;
z1 1= 2XoYo + 2X1Y1 +2XoYs 4+ 2X3Y5 + X5Y5,
29 1= XOYO =+ Xl}/l + 2X2Yé + X4Y4 + X5)/5
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