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Abstract We investigate the question when a cyclic code is maximum distance
separable (MDS). For codes of (co-)dimension 3, this question is related to permu-
tation properties of the polynomial (z® —1)/(z — 1) for a certain b. Using results
on these polynomials we prove that over fields of odd characteristic the only MDS
cyclic codes of dimension 3 are the Reed-Solomon codes. For codes of dimension
O(,/q) we prove the same result using techniques from algebraic geometry and finite
geometry. Further, we exhibit a complete g-arc over the field F, for even q. In the
last section we discuss a connection between modular representations of the general
linear group over F,; and the question of whether a given cyclic code is MDS.

1 Introduction

A linear code C is called cyclic if (¢,—1,¢0,¢1,--. ,Cp—2) is in C whenever
(co,c1,...,cn—1) is. Let ¢ denote the morphism from Fg» to F,[z]/(z™ — 1)
sending (ao, . .. ,@n—1) to Y, a;z* mod (z™ —1). Then it is easy to see that a
subspace C of F;» is a cyclic code if and only if its image under ¢ is an ideal
of F,[z]/(z™ — 1) [7, Chap. 6]. Since every ideal in this ring is principal, the
image of C is generated by a polynomial g(z) dividing ™ — 1, unique up to
scalar multiples. This polynomial is called the generator polynomial of C
and the image of any codeword under ¢ is divisible by this polynomial. If n
and ¢ are co-prime, then g(z) is uniquely determined by the set of its roots,
which are also called the zeros of C'.

It is easily seen that C is of dimension n — deg(g). The determination of
the minimum distance of C' from the set of zeros of g is much harder, though
exact results on the complexity of this problem are not known. Typically,
most of the research on this problem has concentrated on obtaining good
lower bounds for the minimum distance in terms of the set of roots [8]. In this
paper, we concentrate on aspects of the problem of bounding the minimum
distance from above. Specifically, we discuss problems related to [¢—1, k,d],-
cyclic codes. (Here and in the following, an [n, k, d],-code is a code of block-
length n, dimension k, and minimum distance d over the field F,.) Since ¢
and ¢ — 1 are obviously co-prime, the code is uniquely identified by the set
{w?, ... ,w} of its zeros, where w is a generator of F)} which we assume to
be fixed throughout the paper. We also assume thoughout, except in a brief
remark in §2, that » > 1. We may hence identify the code with its exponent
set {ag,...,ar}. The question we want to investigate is whether the code
is maximum distance separable, i.e., whether it has the maximum possible



Cyclic MDS-Codes 203

minimum distance r + 2. If this is the case, then we call the exponent set
{ag, ... ,a,} ¢-MDS, or MDS for short, if g is obvious from the context.
If the exponent set {ag,...,a,} is not MDS, then there exists a poly-

nomial f = foz® + --- + f.z'r € F,[z] with pairwise different nonnegative
integers dg, . .. , % less than n such that f(w*) =--- = f(w?) = 0. This is
equivalent to

waoto ... ,a0tr fo
R ;| =0

wario ... yarir fr
The existence of a nonzero f with this property is equivalent to the vanishing
of the determinant of the above matrix. Let now

X(‘)"O . XTI}O
XS‘T . Xﬂr
where X, ..., X, are indeterminates over F,. Then it is easily seen that C

is MDS if and only if
det(X) € F,;[Xo,... ,X,]

has no zeros in (F))"+'\ A, where A C F/ ! is the zeroset of the discriminant
HKJ. (X; — Xj). It follows that for any a and b, b co-prime to ¢ — 1, all
exponent sets of the form {a,b+a,2b+a,...,rb+a} mod (¢—1) are ¢-MDS.
Indeed, for these sets the above determinant is essentially Vandermonde. The
corresponding cyclic codes are equivalent to Reed-Solomon codes [7, §6.8]. In
the sequel we call these sets “trivial.” One of the results of this paper is that
in many cases the only ¢-MDS exponent sets are the trivial ones, i.e., the
corresponding cyclic codes are essentially Reed-Solomon codes. We note in
passing that our results also solve some cases of a problem of Nick Reingold
and Dan Spielman posed by Andrew Odlyzko in [10, p. 399].

We start our investigation in the next section by studying exponent sets
of size three. We show that these sets are MDS if and only if the polyno-
mial z°°1 4+ --- + 2 + 1 is a permutation polynomial over F,, where b is an
integer obtained from the exponent set in question. This problem has been
investigated by Matthews [9] in case of odd ¢. Using his results, we show
that ¢-MDS exponent sets of size three are trivial for odd ¢. In Section 3 we
investigate exponent sets whose sizes are “small” relative to ¢ , and use some
algebraic geometry as well as results about arcs in projective spaces to show
that they are MDS if and only if they are trivial. Section 4 deals with the spe-
cial exponent set {0, 1,...,r—1,m} for some m satisfying r <m < g—2. We
show that if r is not large compared to ¢, then these exponent sets are MDS
only if they are trivial. Then we will proceed by exhibiting an explicit family
of complete g-arcs over fields of even characteristic. The last section of the
paper deals with an unexpected connection between the minimum distance
of cyclic codes and certain modular representations of GL,(Fp).



204 M. A. Shokrollahi

Many thanks go to E.F. Assmus, D. Spielman, and M. Zieve for pointing
out to me the references [12], [10], and [9], respectively.

2 Small Exponent Sets

Exponent sets if size two are easy to handle: obviously, {0,a} is ¢-MDS iff
ged(a,q — 1) =1 and {a, b} is ¢-MDS iff ged(a — b,g— 1) = 1.

Exponent sets of size three are slightly more difficult to investigate. Let
I :={0,a,b} be an exponent set. We may without loss of generality assume
that a divides ¢ — 1 and that a < d := ged(b,q — 1). I is ¢-MDS iff for every
z,y € FY \ {1},  # y we have

111
det [ 12292 | =2 =1)(y* —=1) = (2® = 1)(y* = 1) #0.

1 .’L’b yb
If a > 3, then we may take for z and y two different ath roots of unity in
Fy, both unequal to one, to see that I is not MDS. The same argument
works if d > 3. If a = 2, then necessarily d = 2 and we may take z =
—1 to see that I is not MDS. Hence, we are left with the case a = 1. We
may without loss of generality assume that b < ¢/2, since we may replace
{0,1,b} by {¢ — 0,¢ — 1,¢ — b} = {1,0,q — b}. Hence {0,1,b} is MDS if
and only if the polynomial (z* —1)/(z — 1) = 2~ + ... + 1 is injective
on F, \ {0,1}. This implies that the size of the image of this polynomial
considered as a polynomial function over I, is at least ¢ — 2 which is larger
than ¢ — (¢ — 1)/(b — 1). Hence, we deduce by Wan’s Theorem [15] that
2'~1 + ...+ 1 is a permutation polynomial. A result of Matthews’ [9] yields
that b = 2 if ¢ is odd.

Proposition 1. For odd q, g-MDS exponent sets of size three are trivial.
Equivalently, a cyclic code of block length ¢ — 1 and co-dimension three over
F, is MDS if and only if it is equivalent to a Reed-Solomon code.

The above assertion does not hold for even ¢. For instance, the exponent
set {0,1,8} is not trivial but it is 32-MDS. To see the latter, note that the
polynomial (z® + 1)/(z + 1) is a permutation polynomial over Fs», since the
change of variable y := x + 1 transforms it into 7. (Table 1 gives all values
of b such that (z° +1)/(z + 1) is a permutation polynomial over F, for some
small values of ¢.) Further, a small calculation shows that existence of a and
b such that {0,1,8} = {a,a + b,a + 2b} leads to a contradiction; hence the
exponent set is nontrivial. (Details are left to the reader.) In general, MDS
exponent sets of size three over finite fields of characteristic two correspond to
certain ovals in finite Desarguesian planes of even order, for which a complete
description has not yet appeared. (See [9, Section 4].)

In the next section we will derive similar assertions for other exponent sets
of small size. The method is different from the one used in this section, as it
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L a | b |
4 2
8 2,4,6
16 2,8,14
32 2,4,6,8,10, 16, 22, 24, 26, 28, 30
64 2,32, 63

128 | 2,4,6,8,16, 20, 22, 32, 42, 52, 64, 76
86,96, 106,108, 112, 120, 122, 124, 126
256 | 2,8,32, 74,128, 182, 224, 248, 254

Tablel. Values of b such that (z” 4+ 1)/(z + 1) is a permutation polynomial over
F,.

employs techniques from the theory of finite geometries and some algebraic
geometry.

3 Arcs and Normal Rational Curves

We denote the r-dimensional projective space over a field K by P"(K).
A point P with projective coordinates xg,...,z, is denoted by P =
(zo: -+ : ). We start by introducing some definitions and recalling some
basic facts about projective spaces over finite fields. A good reference for
these subjects is Hirschfeld’s book [4].

A k-arcin P"(F;) isaset S of k > r+1 points such that no r+1 of them
lie on a hyperplane. For any point in S we consider a representative in IF;“
and form the (r+1) x k-matrix G s whose columns are these points. Obviously
S is an arc if and only if any (r + 1) x (r + 1)-submatrix of Gg is invertible.
(This condition is independent of the choice of the representatives for the
points.) So, for ¢ > r + 2 the subset S(F;) of P"(F,) consisting of the points
(1:a%: ---:a%), a € Fy,is a (¢ — 1)-arc if and only if {0,a1,...,a,} is
g-MDS.

A standard example of arcs is given by the set of points of a normal
rational curve. A rational curve C), of order n in P"(F,) is the set of

points (go(to,t1): ---: gr(to,t1)) where to,t; € F, and each g; is a binary
form of degree n and a highest common factor of gg, ..., g, is 1. The curve
C, may also be written as the set of points (fo(t): ---: fu(t)), where f;(¢) :=

gi(1,t), t € F} :=F, U{oo}, and f;(o0) is by definition the coefficient of t" in
fi- As the g; have no nontrivial common factor, at least one f; has degree n.
The curve C), is called normal if it is not a projection of a rational curve Cj,
in P"*!(F,), where C!, is not contained in any r-dimensional hyperplane of
P™+1(F,). A projective equivalence in P"(F,) is a self-mapping of P"(F,)
which associates to a point (zg: ---: z,) the point (yo: --- : y,) where

)T )T

(yo,---,yr) =A-(x0,...,T,
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for a nonsingular (r + 1) x (r + 1)-matrix A. The basic facts about normal
rational curves can be summarized as follows, see [5, Chapter 21].

Theorem 2. Let Cp, be a normal rational curve in P"(Fy) not contained in
a hyperplane. Then

(i) ¢>r;
(i) n=r;
(iii) C, is projectively equivalent to

{7t 1) [ teF

(iv) C, consists of ¢+ 1 points no r + 1 of which lie on a hyperplane.
(v) If ¢ > 7+ 2 then there is a unique C, through any r + 3 points of P (F,)
no r + 1 of which lie on a hyperplane.

Much of the research on arcs has concentrated on the following three
problems posed by B. Segre in 1955 [11]: (1) For given r and ¢ what is the
maximum value of k for which there exists a k-arc in P"(IF;)? (2) For what
values of r and ¢, with ¢ > r + 1, is every (g + 1)-arc of P"(FF,) the point set
of a normal rational curve? (3) For given r and ¢ > r+ 1, what are the values
of k for which every k-arc of P"(F,) is contained in a normal rational curve
of this space?

Theorem 3. (1) (THAS [14]) For odd q every k-arc in P™(F,) with k >
q— /q/4+ 1 —7/16 is contained in a unique normal rational curve of
this space.

(2) (BRUEN ET AL. [1], STORME AND THAS [13]) For even g > 4 and r > 4
every k-arc of P"(F,) with k > q+7r—./q/2—3/4 is contained in a unique
normal rational curve of this space.

We remark that the the bound in Part (1) of the above theorem can be
improved considerably if g is a prime, see [13].

Using the above results and the Bézout Inequality we will be able to
prove that certain MDS exponent sets are essentially trivial. For the proof of
the following lemma we assume familiarity with the concept of degree of an
algebraic variety, see, e.g., [3, Lecture 18].

Lemma 4. Let ay,... ,a, be pairwise different positive integers, and K be
an algebraically closed field. Suppose that d := ged(ay, - .. ,ar) is not divisible
by the characteristic of K. The Zariski-closure X of the image of the map
K — K", t— (t*,...,t%) is a rational curve of degree A/d, where A :=
max; a;.

Proof. Obviously X is a rational curve. Further, as d is not divisible by
the characteristic of K, X is the closure of the image of the map t +—
(tr/d, . t%/1) So we may suppose that d = 1. In addition, we may as-
sume that a1 < a; < --- < a,. The degree of X is the maximum of the
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numbers |X N H|, where H runs over all hyperplanes of P"(K) such that
X N H is finite. (For this and other characterizations of degree see, e.g., [3,
Lecture 18].) Let zo, ... ,z, be the coordinates of P"(K), and let H be the
zeroset of agxg + ...+ a,z.. Then

T
XﬂH:{(l:T‘“: e 7)) a0+2air‘“ :0}.
i=1

In particular, |X N H| < a,. We thus need to show that there is some H
such that | X N H| = a,. Suppose first that ged(char K, a,.) = 1, and let H be
the zeroset of zy — x,.. Then X N H consists of the points (1: *: ---: (%),
where ¢ runs over all the a,.th roots of unity. These points are all different, as
ged(aq, ... ,a,) =1, 50 [ X N H| = a,. Suppose now that gcd(char K, a,) # 1.
Then there is some a; such that char K does not divide a;. The polynomial

X% + X% + 1 has £ := a, different roots 71,... ,7¢ in K, as it is relatively
prime to its derivative. Since ged(aq, - .. ,a,) = 1, each of these roots gives
rise to a different point (1: 7' : ---:7/") in X N H, where H is the zeroset
of zg + z; + x. O

The main theorem of this section is now as follows.

Theorem 5. Let I := {0,a1,...,a,} be qg-MDS, where the a; are pair-
wise different positive integers, and suppose that ay divides ¢ — 1. Further,
suppose that r(max;a;) < q— 1. If r < (/q/4+ 9/16 and q is odd, then
I ={0,1,2,...,r}. If 4 < r < ,/q/2 —1/4 and q > 4 is even, then
I=40,1,2,...,7}.

Proof. We may suppose that r > 1. Let d := ged(ay, - - - , ar). By assumption,
the cyclic code over F; with the zeroset {1,w®!,... ,w?") is MDS, hence has
minimum distance r + 2. But this is not possible if d # 1, as this code
contains the codeword z(4=1/4 — 1 of weight 2 < r + 2. So d = 1. Further,
S:={(l:am:---:a%) | a € Fy} is a (¢ — 1)-arc. By Theorem 3 we
deduce that S is contained in a normal rational curve C, of P"(F,). On
the other hand, S is contained in the set of F;-rational points of the curve
X :={(1:t*: ---:¢%) | t € KT}, K being the algebraic closure of F,. By
the Bézout Inequality and the last lemma we have deg(XNC).) < r(max; a;) <
q—1, hence X = C,., as C, is irreducible. We thus obtain max; a; = r, which
gives I = {0,1,...,r}. O

4 The Special Exponent Set {0,1,... ,r —1,m}

Consider a cyclic code with exponent set {0,1,...,7 — 1,m}. Its minimum
distance is at least r + 1 since it is contained in a Reed-Solomon code of
dimension n — r. Hence, if the code is not MDS, then its minimum distance
is 7+ 1. The result of Theorem 5 can be somewhat sharpened for this special
exponent set in the following way.
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Theorem 6. Let v and m be positive integers satisfying r < m < q — 2.
Further, suppose that r < \/q/4+ 7/16 if q is odd, and 4 <r < ,/q/2+3/4
if ¢ > 4 is even. Then {0,1,...,7 — 1, m} is ¢-MDS if and only if m =r or
m=q-—2.

The if-part being clear, we continue with the only-if-part. Let
Srm ={(1:a:a®: ---:a" ' a™) |a€F)}.

We need to show that under the above conditions on r the set Sy, is an arc
if and only if m = r or m = ¢ — 2. Obviously S;,,, is an arc if and only if
K = Kpm := Spm U{P} is, where P = (0: ---: 0: 1). Suppose that K is an
arc. Using Theorem 3 we deduce that X lies on a normal rational curve. For
the rest of this section we concentrate on proving that m =r orm = ¢—2, or,
equivalently, that K does not lie on a normal rational curve if r < m < ¢ —2.
This would complete the proof of Theorem 6. To proceed with the proof, we
need some notation and some auxiliary results.
Let C, be a normal rational curve of P"(F,) given by

Cr = {(go(t07t1)3 Ttk gr(tO:tl)) | to,t1 € Fq}-

Let 8; denote the differential operator 8/9T; of the bivariate polynomial ring
F,[To,T1]- The line g through the points R := (go(to,t1): ---: gr(to,t1))
and (Oogo(to,t1): -+ - : Oogr(to,t1)) is called the tangent line to C,. at R.
Let zo,...,z, be the coordinates of P"(F,) and let P"~'(F,) = IT be the
hyperplane given by z,, = 0. The projection of C, from P onto II together

with the point R* := ¢g N II is a normal rational curve C} of P"~!(F,),
see [6, Lemma 7]. Now let C, be a normal rational curve containing K. Then
Cr ={(Q:t: ---:t""1:0) | t € F}}, since the projection of K is clearly

contained in C and this normal rational curve of II is uniquely determined
by r + 2 < ¢ of its point by Theorem 2, Part (v).

Proposition 7. Let C be a normal rational curve of P"(Fy) containing P =

(0: ---:0:1). Suppose that the projection of C from P onto II is the curve
C*={(1:t: ---:t"': 0) |t € F} }. Then C is one of the following curves:
— (Type 00) C = {(1:t:t%: ---: "7 2 pu(t)) | t € B} } for some p € Fy[X]

with deg(u) =r.

— (Type B, B € Fy) C={(t: t(t+ B): ---: t(t+ B) e n(t)) |t € FS} for
some 1 € Fy[X] with deg(n) < r and n(0) # 0.

Moreover, C is of type v, v € ]F(']*', if and only if the tangent line to C' at P
intersects C* at the point corresponding to t = 7.

Proof. Suppose that the tangent line to C' at P intersects C* in the
point (0: ---: 0: 1: 0). For every ¢t € I, there exists 7 € F, such that
(1:¢: ---:t"71:7) € C. Hence, C = {(1:¢t:#2: -2 t"Lopu(t) | t €



Cyclic MDS-Codes 209

F,} U {P}, where p is a polynomial of degree < ¢ — 1. As C is an arc,
deg(p) > r. Hence, C = {(1: t: t*: ---: ¢"1: u(t)) | t € F}}. Since C is
normal, deg(u) =

Suppose now that the tangent line to C' at P intersects C* at the point
(1: B: B2%: ---: Br=1: 0), for some B € F,. Notice that

C*={(r"': (148 2: (1 +B7)2r" 3 - (14+B81)" 1 0) | T € ]F;}

The tangent line at P intersects C* in the point corresponding to 7 = oo.
Hence,

C={(""1 L4+ Br)r" 2 - L+ )" e p(n)) | T € F, }U{P},

for some polynomial p € Fy[X]. As before, we obtain deg(x) = r, and hence
C={(r: (A +Br)r"=2: -+ (L+ 7)™ : (7)) | T € F} }. Thus

c:{( L 1+5/t, ---:(1+ﬂ/t)T_1:u(1/t)) ‘te]FqX}

tr—l tr—2

U{P}U{(0: 0: ---:1: u(0))}
:{(t: (t+B)t: - (t+ B) "L " u(1/8)) |teF;}
U{P}U{(0: 0: ---:1: pu(0)}
={(t:(t+ﬂ)t: L (t+ B) Myt ‘te]F+

where 7(X) = X"u(1/X) is the reversal of u. Note that n(0) # 0 as deg(u) =
r, and that deg(n) <r. O

The last step in the proof of Theorem 6 is the following result.

Proposition 8. Suppose that r < m < g—2. Then the set K, ,, does not lie
on a normal rational curve.

Proof. Suppose that K = K, lies on a normal rational curve C. By Propo-
sition 7, C'is of type ~y for some v € Ff.

Assume first that v = oo. Then there exists a polynomial p of degree r
over F, such that C' = {(1: ¢: ---:¢"7': p(t)) | t € F} }. As K lies on C, we
deduce that the polynomial X™ — (X)) has ¢—1 different roots over F,, hence
is zero. But this implies that X™ = u(X), hence m = r, a contradiction.

Suppose now that v = . Then there exists a polynomial i over F, of
degree <, and for all 7 € F} there exists ¢t € F* such that

(1: 7: B AL ™) =0:(t+8): ---: (t+ﬂ)r_1: n(t)/t).

Hence, 7 =t + 8 and (t + 3)™ =n(t)/t for all t € F;. Thus, the polynomial
X(X + p)™ — n(X) has ¢ — 1 zeros in F,. Since deg(n) < r < m, this
polynomial is not zero, and is of degree m + 1. Hence, m + 1 > ¢ — 1, which
is a contradiction to m < ¢ — 2. This proves the proposition and completes
the proof of Theorem 6. O
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5 Complete g-Arcs over F,, g Even

In this section we will prove that the set
Kg:={(1:a: ---:a"%:a'%) [a e F/ \ {0}}

is a complete g-arc in P4 4(FF,), i.e., it is a g-arc which cannot be extended
to a ¢ + l-arc. We remark that Storme and Thas [12] have determined all
values for k for which there exists a complete k-arc in P"(F;), ¢ —2 > r >
q—/G—11/4.

The exponent set corresponding to this arc is {0,1,...,¢—5,¢— 3} which
turns out to be the set {2j +1 | j = 0,...,¢ — 3} which is clearly trivial.
Hence, the corresponding set of (¢ — 1) points in the projective space lies on
a normal rational curve. However, the particular one-point extension of this
set given by K, does not lie on a normal rational curve even though it is an
arc.

Theorem 9. For g > 8 a power of two the set K, is a complete g-arc in
PI4(F,).

Proof. We first prove that K := K, is a g-arc. Let P := (0: 0: ---: 0: 1).
K is a g-arc iff K’ := K \ {P} is. Suppose that there exist pairwise different
ai1,... ,0aq-3 € FY such that the corresponding points in K’ lie on a hyper-
plane, i.e., such that the matrix M := (a;;), a;; = ag fori=1,...,q—3,
j=20,...,9—5,and a;_3; = a‘;-_3, is singular. Let V' denote the Van-
dermonde matrix V = (a{), i =1,...,4g—-3,75 = 0,...,9g — 4. Then
0=detM/detV =aq + ---+ ay_3, which is a contradiction, as the sum of
all the elements of F, is zero. Hence, K’ and K are arcs.

Let us now show that K is complete. Suppose not, and assume that there
is a point I' :== (yo: Y1t ---: Yg—5: Yq—a) such that K" := KU {I'} is a
(g + 1)-arc in P9=%(F,). The dual of K" is a (¢ + 1)-arc in P3(F,), which by
a result of Casse and Glynn [2] is projectively equivalent to {P; | t € F}},
where P; := (1: t: t?: tt7), 0 being an Fy-automorphism of F,. Hence, there
exists j € {1,...,q+ 1} such that

18 By pipY

1 1 1 Y% 0 D : , : ,
(e %1 (6%} 01N 0 1 /ijl /ijl /ijlﬂjfl
: : : : : 00 09 1 0 — la—-3)x4
: : : : . 1 Bj+1 Biyq Bit1B] N ’
ag—f’) ag—S L. ag:? Vo5 0 o J ‘ J+1 ‘ J j+1 (].)
ag—ii ag—3 aq—f Y4 1 - : :

! 18, B BB

1 8; 5? 51&3

where F, = {ai,...,aq-1,0} = {B1,...,04}- Considering the (1,1)-
component of the product in (1) we see that j # ¢. Suppose that j < q.
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Considering the (1,1)-component we see that ¢ — 2 + 7o = 0, hence v, = 0.
Considering the (1,2)-component we obtain >, . ... B = 0, which is a con-
tradiction, since this yields 8, + 8; = 0, i.e., 8, = B;. Suppose now that
j = g + 1. Counsidering the (j,1)-component of (1), j = 1,...,q¢ — 4, we
obtain Eg;ll af_l + vj—1 = 0, which yields v = 1, 1 = -+ = y4—5 = 0.
Considering the (¢ — 3,1)-component gives Zg:_ll a373 + Y4—4 = 0, hence
Yg—4 = 0. So, I' = (1: 0: ---: 0). But the following argument shows that
K U {I'} is not an arc, and this gives us the desired contradiction: choose
pairwise different a1, ... ,a,—4 € Fy which sum up to zero, and let V be the
Vandermonde determinant of the a;. Then

1 1 -~ 1 1
ar az ---ag—40
det : T =<Za,~)(Hai)V:0.
azlj—5 ag—fy . ag:i 0 i i
af P ad™? - alZf0
This completes the proof. O

6 Relationship to Modular Representations of GL,(F,)

In this section we are going to point out a somewhat unexpected relationship
between the classification problem for certain cyclic MDS-codes and certain
modular representations of the general linear group over a finite field.

For m > r the exponent set {0,1,...,r —1,m) is ¢-MDS if and only if
the polynomial

X9 X9 --- X0

Xy X{ oo Xp, Xp
det | 1 oD
Xyt xrto o xrol xrt
Xgt XXy X1 5
X0 X0 ...Xx0 X0 @
9 5 A
XO Xl "'Xr—l X’r
det & o
Xyt xrto o xrol xrt

X X[ X[, X]

does not have any roots outside (F))"+'\ A where A is the zeroset of the
discriminant (see Sect. 1). The above quotient is easily seen to be equal to
the sum of all monomials in r 4 1 variables of degree m — r. This is a special
case of a Schur-function. Such functions arise as characters of polynomial
representations of GL,, over fields of characteristic 0. This classical result
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has a certain analogue in our case: the special Schur function derived as the
quotient of the determinants above appear as characters of certain modular
representations of GL,41(F,).

To be more specific, let p denote the representation of GL,1(F,;) given by
the action of this group on the space of homogeneous r+1-variate polynomials
of degree m —r, and let ¢ be the character of p. Suppose that A € GL,41(IF;)
is a diagonal matrix with entries ag, ... ,a,. It acts on the space of homo-
geneous 1 + l-variate polynomials of degree m — r by sending a monomial
p=p(Xo,...,X,) into p(ag, ... ,ar)u. Hence, the value of ¢(A) is given by
S(ag,- .. ,a,) where S is the sum of all monomials of degree m —r in r + 1
variables. In other words, S is equal to the expression given in (2).

Proposition 10. Assumptions and notation being as above, the exponent set
{0,1,...,7r —1,m} is g-MDS if and only if the character ¢ has no zeros in
the union of those conjugacy classes of GL,y1(F,) which have r + 1 different
eigenvalues in I, .

Proof. The assertion is essentially proved above. If the exponent set is ¢-MDS,
then S(ap,...,a,) is nonzero for any setting of pairwise different nonzero
o; in F,. Hence, since S is the value of ¢ at the conjugacy class of the
diagonal matrix having ay, ... ,a, as diagonal entries, the assertion follows.
Conversely, if ¢ does not have a zero on the union of the given conjugacy
classes, then S(ayg,...,qa,) is nonzero for any setting of pairwise different
nonzero o; in Fy, which implies that the given exponent set is MDS. O

As of yet, we do not know of any methods in modular representation the-
ory which would resolve the question of whether or not the exponent set
{0,1,...,r —1,m} is MDS.
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