Number Theory and Cryptography (using
Maple)

John Cosgrave

Department of Mathematics, St. Patrick’s College, Drumcondra, Dublin 9,
IRELAND

Abstract Since 1995-96 I have taught, using Maple, a yearly course on Number
Theory and Cryptography to my undergraduate students'. In this paper I outline
some basic number theoretical topics related to cryptography, based on my experi-
ence as a teacher of those topics. I am omitting all reference to practical teaching
details, but will happily forward all teaching materials (notes, examination papers,
etc.) to any interested readers. Finally, several of my NT and Cryptography course
Maple worksheets? are available on the internet [Cos].

1 Introduction

My ideal reader of this paper is

— someone familiar with elementary number theory (essentially congru-
ences, the Euclidean Algorithm, and Fermat’s ‘little’ theorem), who would
like to know how certain number theoretic ideas relate to the basic notions
of Pohlig-Hellman (private-key) and Rivest-Shamir-Adleman public-key
cryptography, or

— someone who knows some number theory, has never taught any cryptog-
raphy, and who is wondering if it is something he/she might undertake.

Cryptography is the study of secure communication: how can two or more
persons communicate securely with each other? The subject has a long and
fascinating history, the best detailing of which is undoubtedly David Kahn’s
monumental The Codebreakers [K]. Also, it is well recognised that the two
fundamental development in cryptography took place in the 1970’s when W.
Diffie and M.E. Hellman [DH] proposed the idea of public-key cryptography,
and shortly afterwards R.L. Rivest, A. Shamir and L.M. Adleman [RSA]
gave an actual realisation of the Diffie-Hellman proposal, the now classic

! Most of my students are training to be primary school teachers - 38 of them in
my recent class - and have chosen Mathematics (by university requirement) as
one of their ‘academic’ subjects.

2 The best of which, if T may say so, entitled ‘Bill Clinton, Bertie Ahern, and
digital signatures’, covers almost all the contents of this paper in an accessible
(no theorems) manner.

Number Theory and Cryptography 125

RSA method. Even after the passage of some twenty years, the brilliance of
those path-breaking papers has not diminished, and one can still profit from
re-reading them.

The manner in which elementary number theory has made an impact on
private and public-key cryptography is well known , and for my purposes may
well be summarised as follows:

Given two parties® A and B who wish to communicate, A transforms her
plaintext T (Please send more money asap) into numerical form N (a natural
number formed as a result of some agreement, e.g. that ‘a’ is 1, ‘b’ is 2, etc.),
and then, using some suitable 1-to-1 function f, computes N' = f(N). A then
communicates N’ to B, who recovers N from N’ using the inverse function
f~1, and then recovers A’s original plaintext.

So far there is no Number Theory in any of this, and the above is merely
an abstract mathematical formulation of the classic problem whose various
solutions are beautifully and thrillingly described in Kahn’s history [K].

1.1 Number Theory makes its entrance

How does Number Theory make its contribution to a solution of the classic
problem of communication? It is all so startlingly simple, and may be sum-
marised by saying that N’ is formed by modular exponentiation with a spe-
cially chosen modulus, as is the recovery of N from N'. The essential idea may
be conveyed with a simple, but unrealistic, example (realism merely involves
better chosen larger moduli): suppose A wishes to send B the message consist-
ing only of the single letter ‘c,” the numerically transformed form of which
is ‘3. A could encrypt (disguise) ‘3’ by forming N’ = f(3) = 37(mod 11)
giving N' = 9 and then send ‘9’ to B, who may then decrypt (recover) by
forming f~1(N') = 9%(mod11) which produces, for general reasons which
will be clear in a moment, the original ‘3.

Almost everything that one needs* is now easily explained: with the ex-
ample just given, A could send any message, and have that message recovered
by B, whose numerical value was in the range 1 to 10. That is a consequence
of Fermat’s ‘little’ theorem for the prime 11, as I now briefly illustrate.

Fermat’s ‘little’ theorem ° is the following result.

Theorem 1. Let p prime, and let a € 7 with a #Z 0(mod p); then aP~! =
1 (mod p).

Returning to our example we have, for any a in the range 1 to 10, that

a'® = 1 (mod 11), from which, by squaring both sides and multiplying both

3 ¢Alice and Bob.’

4 For realistic Pohlig-Hellman (private-key) or Rivest-Shamir-Adleman (public-
key) cryptography.

% One of the most remarkable elementary theorems, with a host of important con-
sequences.

126 John Cosgrave

sides by a, we obtain a?! = a (mod 11). Thus if A used general a in the range
1 to 10, then setting N’ = f(a) = a”(mod 11) giving N’ = a', with a' chosen
6 in the range 1 to 10, and A then sends N’ to B, who then decrypts by
forming f~1(N') = (a')® = (a”)® = a(mod 11), returning the original a.

Theorem 1 underpins the Pohlig-Hellman cryptographic system, in much
the same that the following Theorem 2 (what one might call the two prime
version of the Euler-Fermat theorem) underpins the Rivest-Shamir-Adleman
system. Texts dealing with Theorem 2 normally first prove the full version
of the Euler-Fermat theorem (Let n be a natural number, n > 1, and let
a be any integer with gcd(a,n) = 1; then a®™ = 1(modn), where ¢(n) - the
Euler phi-function - is the number of integers between 1 and n — 1 that are
relatively prime to n), but such an appeal can be dispensed with, as seen in
the following proof.

Theorem 2. Let p and q be distinct primes, and let a € Z with a Z 0(mod p)
and a # 0(mod q); then a?~1(=1) =1 (mod pg).

Proof. Since a # 0(mod p) then a?~! = 1(modp), and (aP~1)97! = 1971 =
1(mod p), and so a?~(¢=Y = 1(modp). Similarly a®~1(~1) = 1(modgq
and thus a1 = 1 (mod pq) since ged(p, q) = 1.

~—

)

O

2 Some technical number theory details and
cryptographic applications

2.1 Relating the decryption power to the encryption power

Both the PH and RSA methods require computing the decryption power from
the encryption power and the modulus, and for that one needs’ the following
result.

Theorem 3. Let m € N withm > 1, and let e € Z with gcd(e, m) = 1; then
there is a unique d € Z with ed = 1(modm) and 1 <d <m — 1.

In applications

— mis (p — 1), for prime p, in the PH system,
— mis (p —1)(q — 1), for distinct primes p and q, in the RSA system.

6 This is an important detail in general: the modulus must have a value greater
than the value of the numerical form of the plaintext. In the above unrealistic
example where we used modulus 11, had A wished to send the message ‘r’ - whose
numerical value would be 18 - then it would not be clear to B whether A was
transmitting the letter ‘r’ or perhaps ‘g,” whose numerical equivalent would be 7,
and 18 = 7(mod 11).

" Using the extended Euclidean algorithm.

Number Theory and Cryptography 127

2.2 Cryptographic applications: Pohlig-Hellman (private-key)
and Rivest-Shamir-Adleman (public-key)

Fermat’s little theorem, and the above two prime version of it then form
the basis for the Pohlig-Hellman and Rivest-Shamir-Adleman cryptographic
methods:

Theorem 4. (The Pohlig-Hellman case.) Let

— p be prime, and e € N with gcd(e, p—1) =1,
— P € Z with P # 0(mod p), and C be defined by C = P*(mod p), and d be
chosen so that d € Z with ed = 1(mod (p—1)) and 1 <d<p-—1;

then 8 C? = P(mod p).

Proof. Since C = P¢(mod p), then C¢ = (P®)¢ = P*¢(mod p). (We need the
d € N to guarantee that C? € Z.) Now, since ed = 1(mod (p — 1)) then
ed =m(p—1) + 1 for some m € Z, and, in fact, m € N since e, d € N. Thus
C? = ped = pp-D+1(mod p), and by Fermat’s ‘little’ theorem, we have
PP~ = 1(mod p). It follows that

¢4 = pnlp—Utl = (pP=1)ym P =1™ x P = P(mod p),
i.e. C? = P(modp). O
Theorem 5. (The Rivest-Shamir-Adleman case.) Let

— p and q be distinct primes, and e € N with gcd(e, (p—1)(¢ — 1)) =1,

— P € Z with P # 0(modp), P # 0(modgq), and C be defined by C =
P¢(mod pq), and

— d be chosen so that d € Z with ed = 1(mod(p —1)(g—1)) and 1 < d <
(p—1)(g—1);

then ® C¢ = P(mod pq).

A proof may be given along the same lines as the earlier one.

& This now is the guarantee that when the numerical value of the ‘plaintext’ P is
encrypted using ‘e’ - thus forming the numerical form of the ‘ciphertext’ C - and
C is then decrypted using ‘d’, then the upshot of all of this is to recover P, the
original plaintext (rather its numerical form, which one then translates back into
ordinary text).

9 Exactly the same comment here as in the previous footnote. The plaintext just
gets jumbled up by the decryption power, and gets unscrambled by the decryption
power. It’s as simple as that!!

128 John Cosgrave

Encryption, decryption, and digital signatures First I set down the
details for encryption and decryption for both the Pohlig-Hellman private-
key, and the Rivest-Shamir-Adleman (RSA) public-key methods. The two
methods are similar, but are also quite different: the private one is based on
trust between the parties, whereas the private one is based on caution.

In both systems it is understood that the plaintext (the original, text form
of the message “Please send me money as quickly as possible”) is transformed
into numerical form according to some agreed convention (‘a’ is 1, ‘b’ is 2,

., ‘20 is 26, ‘A’ is 27, ‘B’ is 28, etc. ‘0’ is 53, ‘1’ is 54, ‘2’ is 55, etc.),
and then that numerical form is itself transformed in some way. In both PH
and RSA, that number (or blocks of numbers) is (are) subjected to modular
exponentiation:

— where the modulus is a prime p, in the PH case,
— where the modulus n is the product of two primes in the RSA case.

The Pohlig-Hellman case How do two people, A and B, communicate
using the PH private-key cryptographic method?
The details. Having shared their ‘private keys’, namely

— prime p (the modulus),
— encryption power e, and
— decryption power d,

related by
e€eN, gedle, p—1)=1, and ed=1(modp—1),de€N,

A and B proceed as follows: A (say) converts the plaintext T into numeri-
cal form P (say) by an agreed convention, and breaks that number P into
numerical blocks

1. P, P,,...,P., each having positive numerical value less than p.
2. A then forms the numbers Cy,Cs,. .. ,C, (‘C” for cipher) as follows (this
is the encryption of the P’s):

C1 = P{(modp), Cy = Py (modp),...,C, = Pf(modp),

where the values of Cy, Cs, ... , C, are chosen so their numerical
values are positive and less than p. A then transmits those numerical
blocks Ci, C3, ... , C; to B.

On receipt of those blocks of numbers, B proceeds to decrypt (and so

recover the original plaintext) by computing the numbers ¢1, ¢2, ... , ¢ :
c1 = Cd(modp), c; = C¢(modp), ..., ¢, = Cf(modp),

with the values of ¢1, c2, ... , ¢, chosen so that they are positive and less

than p.

Then - and this is now the whole point of all of this - those numbers
c1, €2, ... , Cp are, in fact, the numbers Py, P, ... , P;.

Number Theory and Cryptography 129

The Rivest-Shamir-Adleman case How do two people, A and B, com-
municate using the RSA public-key cryptographic method?
The details. A (say) having chosen his/her ‘keys’namely

— n = p x q (n is the modulus), for distinct (and, in practice, large 10)
primes p and gq,

— encryption power e, and

— decryption power d

related by
e€N ged(e, (p—1)(g—1)) =1, and ed=1(mod(p—1)(¢g—1)), deN.

A and B proceed as follows: A (say) having made his/her ‘public-key’,
namely (n, e), known to B, B would then communicate with A as follows:
B would convert the plaintext T into numerical form P (say) by an agreed
convention, and would break that number P into numerical blocks:

1. A, P, ... , P, each having positive numerical value less than n.
2. B then forms the numbers C, Cs, ... , C,. (‘C’ for cipher) as follows
(this is the encryption of the P’s):
C; = Pf(modn), C; = Py(modn), ..., C, = P?(modn),
where the values of Cy, C, ... , C} are chosen so they are positive and
less than n. B then transmits those numerical blocks C1, Cy, ... , C,

to A.

On receipt of those blocks of numbers, A proceeds to decrypt by comput-
ing the numbers ¢;, ¢2, ... , ¢ :

c1 = Cf(modn), c; = C4(modn), ..., ¢, = C4modn),
with the values of ¢y, ¢c2, ... , ¢, chosen so that they are positive and less
than n. Then - and again this is now the whole point of all of this - those
numbers ¢, ¢, ... , ¢ are, in fact, the numbers Py, P, ... , P;.

2.3 ‘Signing’ messages using the RSA cryptographic method.

Suppose you received a message from someone; how would you know the mes-
sage really came from them? For example, suppose you received the following
message: Please call to see me on Wednesday at 3.00 P.M. John Cosgrave.
It would be almost certain that the message came from me, especially if
I signed it, and you know what my signature looks like. However, someone
could have forged my signature, and you would be misled into thinking that

10 But, and again in practice, not just ‘large’, but one would have to be careful
about choosing the p and ¢ so that n could not be easily factored.

130 John Cosgrave

I had asked you to visit me. You would turn up at my office on Wednesday at
3.00 P.M., and (possibly) find that I wasn’t there Of course it wouldn’t
really matter; the worst that would have happened is that you would have
wasted your time.

Suppose, though, that an army general received a message saying some-
thing like: At 6.00 A.M. tomorrow, send 1,000 troops to Place X ... (Signed
by the) Commander-in-Chief. How can the general be certain that the mes-
sage really has come from the C.-in-C.?

In earlier times, documents or messages were authenticated by a physical
signature or seal (though they could have been forged). In recent times there
is increasing reliance on electronic means of communication (by government,
diplomatic circles, military, business, banking, political groupings, criminal
organisations, private individuals, etc.) which do not allow, of course, for a
physical signature. With electronic communication, authentication is guar-
anteed by a ‘digital signature,’ and this is how it is done:

Recall the connection between e and d namely ed = 1(mod (p—1)(¢—1))
and note that it can be rewritten as de = 1(mod (p — 1)(¢ — 1)), where the e
and d have simply been interchanged. That simple interchanging has a very,
very powerful consequence: it enables a user of RSA to sign a message. This
is all they have to do:

To illustrate, let us return to my earlier: “For example, suppose you re-
ceived a message saying: Please call to see me on Wednesday at 3.00 P.M.
John Cosgrave.” This is what I can do (assuming I am a user of RSA, and you
know my public-key (n,e)) that will convince you that the note you receive
from me, really is from me:

I can encrypt a message to you by:

— using my private decryption power d (which only I know) as my encryp-
tion power.

Then, on receipt of my message, you can decrypt it by:

— using my public encryption power d (which you, and possibly others,
know) as your decryption power.

Anticipating an objection. You might (rightly) say that anyone who can
intercept my message, and who knows my public-key, can also decrypt my
message to you. That is a simple fact (which is best illustrated in a Maple
worksheet).

Fortunately public-key cryptography once again comes to our rescue. If
I want to ‘sign’ my message to you and I don’t want anyone but you to be
able to read the contents of my message to you, I can then achieve my aim
by performing a double encryption ! :

11 Assuming you are using RSA, and I know your public-key.

Number Theory and Cryptography 131

— First 12 T use my private-key to do an initial encryption (and in the
process ‘sign’ my message to you),

— then I use your public-key to perform a second encryption before sending
my message.

When you receive my doubly-encrypted message you can then read it by
performing a double decryption:

— First you use your private-key to perform the first decryption,
— then you use my public-key to perform the second decryption, and so
read my message.

Remark 6. A way of visualising this. Think of public-key cryptography in
terms of paints and paint-removers. My public-key is some paint which I
have made, and which, if it is used, only I can remove by applying the secret
paint remover which I also have made, and which only I have access to.

You have to allow your imagination to let the paint and paint remover
to be used in reverse!! By that I mean that if something is covered with my
paint then not only can it be uncovered by applying my paint remover, but
that the same is true in reverse: if something is first covered with my paint
remover then what is now there can be uncovered by applying my paint!!

Anyone who wishes to send me a secret message simply writes a message,
gets some of my paint, and paints (encryption) over my message. When I
receive your message I apply my paint remover (decryption) to it, and so
read your message. Everything I have said about ‘I’ applies to you: you have
your paint and your paint remover

Now form a mental image of what I have described above:

— First I use my secret paint remover to do an initial painting (encryption,
and in the process ‘sign’ my message to you),

— then I use your public paint to perform a second encryption before sending
my message.

When you receive my doubly-encrypted message you can then read it by
performing a double decryption:

— First you use your private paint remover to perform the first decryption,
— then you use my public paint to perform the second decryption, and so
read my message.

12 Actually which I do first depends on whether my public modulus is smaller than
your public modulus:
e If my public modulus is smaller than yours then what I have described above
is in fact what I would (and should) do, but:
e If my public modulus is greater than yours then what I have described above
should be done in reverse order, by me and you.

132 John Cosgrave

Basic understanding: We assume that A has public key (n4, es) with
private key d4 and that B has public key (ng, eg) with private key dp.

Question: How can B ‘sign’ a message to A (equally A send one to B) so
that A can have confidence that the message received has come from B?

Answer: Tt can be done quite easily, but it depends on which is the smaller:
n4 or ng. That is, it depends on whether:

(i) np < na, or
(ii) ng < np.

The details: Let us suppose that (i) happens '* (namely that ng < na),
and suppose that B wants to (securely) send and ‘sign’ a message P to A.

We make the usual understanding that P (the numerical form of the
plaintext) has been put into numerical form according to some convention (a
is 1, b is 2, etc.).

This, then, is what B does to (securely) send and ‘sign’ a message P to

A.

1. B breaks P up into blocks of numbers. P, P, ... , P,., each having
numerical value less than np (and so are automatically less than n 4 since
np < na), and each relatively prime to both ng and n4. B then ‘signs’
using his/her private key by doing this:

2. B forms the numbers ¢, ¢2, ... , ¢ as follows:

c1 = P (modng), ¢; = Py? (modng),... ¢, = P4 (modnpg),
the ¢y, ¢2, ... , ¢ chosen with positive values, less than np.

3. B then forms the following blocks of ciphertext, and sends those to A:
Cy = c*(modny),Ce = c5* (modny),. .. ,Cr = ciA(modny),
the C1, Cs, ... , C, chosen with positive values, less than n 4.
In summary,

1. B first signs with their own private key,
2. and then sends the newly formed ciphertexts in the usual way, using A’s
public key.

On receipt of the Cy, Cs, ... , C, this is what A does:

1. A partially decrypts the numbers Cy, Cz, ... , C, using their own
private key, by forming the numbers z1, z2, ... , z, as follows:

21 = C%(modny),zs = CI4(modny),... ,z, = C% (modny),

the 1, @2, ... , @, chosen with positive values, less than n4. (Those
Z1, T2, ... , T, are, of course, none other than ¢, ¢, ... , ¢r.)

13 Later we will see what to do if (i) happens.

Number Theory and Cryptography 133

2. A completes the decoding by forming the following blocks of ciphertext:

y1 =278 (modng),ys = z5F (modng),... ,y, = 2.2 (modng),
the y1, y2, .. , yr chosen with positive values, less than np.
The whole point is now that those y1, y2, ... , ¥, are none other than
the numerical form of B’s original plaintext message, namely P, Py, ... , P,.

If, however we had n4 < ng, then this is what B would do ™ : suppose
that B wants to send message P to A. B breaks P up into blocks of numbers
P, P, ... , P, (each having value less than n4 (and so are automatically
less than np since n4 < np), and each relatively prime to both n4 and ng).
This, then, is what B does to ‘sign’ the message to A:

First B forms the numbers ¢;, ¢3, ... , ¢, by using A’s public key, just
as in an ordinary unsigned message, as follows:

¢1 = P/*(modny),cs = Py*(modna),...,cr = PP4(modna),

the c¢1, ¢2, ... , ¢, chosen with positive values, less than n 4.
Then B (and this is what ‘signs’ for B, the using of B’s ‘secret’) sends to
A the following blocks of ciphertext:

C1 = 8 (modnp),Cy = 3% (modnp),... ,C, = ¢?® (modnp),

the Ci, Cs, ... , C, chosen with positive values, less than ng. In short, B
first encodes in the usual way using A’s public key, and then ‘signs’ using
their own private key.

On receipt of Cy, Cy, ... , C, thisis what A does:

First A partially decodes the numbers Cy, Cs, ..., C, using B’s public
key, by forming the numbers 1, 2, ... , x, as follows:

z1 = C{% (modnpg),z2 = C5% (modng),...,z, = C;B(modnp),

the z1, x2, ... , x, chosen with positive values, less than np. (Those
1, T2, -.. , T, are, of course, none other than ¢, ¢3, ... , ¢p.

Then A completes the decoding by forming the following blocks of cipher-
text:

da da

y1 = 2% (modnn),ys = 284 (modna),. .. ,yr = 2% (modny),

the y1, y2, ... , ¥ chosen with positive values, less than n 4. The whole point
is, again, that those y1, y2, ... , y, are none other than the numerical form
of B’s original plaintext message, namely Py, P, ... , P,.

All of this is best illustrated in a Maple worksheet, and such details,
actually carried out, may be seen in my ‘Clinton ... > Maple public lecture
[Cos].

14 Actually all that B and A do is to do what they previously did, except to do it
in reverse order.

134 John Cosgrave

3 Some elementary, but non-trivial primality testing
methods

Is the converse of Fermat’s little theorem true? That is, if n € N(n > 2), and
a € Z such that a"~! = 1(modn), is n necessarily prime? It is well known
that it isn’t, as the example '® 2340 = 1(mod 341) shows 6.

Lucas (starting in 1876) observed the first of a series of partial converses
to Fermat’s ‘little’ theorem. These results had the following common form: if
n € N(n > 2), and a € Z such that a®~ ! = 1(modn), then - providing some
extra condition is satisfied - n is prime.

The start of a serious study of primality testing I will restrict myself
to the methods of Lucas (1876-78), Proth (1878), Pocklington (1914), Lehmer
(1927) and Selfridge (1967), and I begin with the following result.

Theorem 7. (Lucas, 1876). Letn € N(n > 3), and suppose there is an a € Z
such that a® ! = 1(modn) and a® # 1(modn) for all x with1 <z <n —1;
then n is prime.

Alternative wording of this theorem. Let n € N(n > 3), and suppose there
is some a € Z such that ord,a = n — 1; then n is prime.

This theorem which appears at first sight to be so weak (but which ul-
timately isn’t, in the sense that it can be gradually improved bit by bit to
produce wonderfully effective results) marked the start of modern primal-
ity testing. As a test it is even worse than the Eratosthenes method, but
Lucas himself improved upon it in 1878 by showing that the condition
a® # 1(modn) for all z with 1 < z < (n — 1) ” could be replaced with the
less restrictive one that “a” #Z 1(modn) for all z with 1 <z < (n — 1) with
z |n —1.” However, even that improvement ceases to be useful whenever n—1
has a lot of factors.

Example 8. A Maple computation which conveys the idea of a proof of Lucas’
1876 theorem. Here I use Maple to compute all powers of 2 modulo 101 from
the 1st to the 100th power:

>seq(2&"x mod 101, x=1..100); # here ‘a’ is 2, and ‘n’ is 101

9, 4, 8, 16, 32, 64, 27, 54, 7, 14, 28, 56, 11, 22, 44, 88, 75, 49,
98, 95, 89, 77, 53, 5, 10, 20, 40, 80, 59, 17, 34, 68, 35, 70, 39, 78,
55,9, 18, 36, 72, 43, 86, 71, 41, 82, 63, 25, 50, 100, 99, 97, 93, 85,
69, 37, 4, 47, 94, 87, 13, 45, 90, 719, 57, 13, 26, 52, 3, 6, 12, 2,
48, 96, 91, 81, 61, 21, 42, 84, 67, 33, 66, 31, 62, 23, 46, 92, 83, 65,
29, 58, 15, 30, 60, 19, 38, 76, 51, 1
!5 First noted by Sarrus in 1814.

16 341 is an example of a pseudoprime to the base 2; that is it is a composite n
satisfying 2"~ = 1(mod n).

Number Theory and Cryptography 135

Noting that 2! = 1(mod101) and 2* # 1(mod101) for all x with
1 < z < 100, one should make a critical observation, namely: there are 100
outputs, and no two of those outputs are equal, and that, as a consequence, all
residues between 1 and 100 must occur (exactly once), and that as a further
consequence 101 must be prime. Why? Well, if 101 were composite then it
would have as a factor some prime smaller than 101. Let’s suppose it had 7
(say) as a factor, then 2* = 7(mod 101) for some z, would imply 2 is divisible
by 7.

Several similar examples now reduce the proof of Lucas’ theorem to a
formality.

Proof. (of Lucas’ 1876 theorem) 7 Suppose n is composite. We will show
that is impossible, and so n must be prime. We show that a!, a?,..., a"!
are congruent mod n, in some order, to 1, 2,..., n—1, and then argue that
is impossible.

None of al, a2,..., a® ! is 0 mod n, because if a™ = 0(mod n) for some
m € N, then a™ = nX, for some X € Z. Now, let p be a prime with p|n; we
would have p|a™, and so would have p|a. But p|n and p|a would conflict with
ged(a, n) = 1, and so none of a', a2,..., a® ! is 0 mod n.

Also, if a¥ = a*(mod n) for some u, v, 1 <u < v <n—1, then a¥*(a’~*—
1) = 0(modn), and from gecd(a¥, n) = 1, it follows that (a?~% — 1) =
0(mod n). Setting x = v — u, we have a® = 1(modn), where 1 < z < (n — 2).
That conflicts with the second condition of Lucas’ theorem, and it follows
that no two of a, a?,..., a® ! are congruent to each other mod n.

Thus a, a?,..., a® ! are congruent mod n, in some order,to 1, 2,... , n—
1, and so for some integer r (1 < r < n —2) we have a” = p(modn), where p
is the earlier prime dividing n (and so 1 < p < n). That is impossible since
a” = p(modn) means a” = nX' + p, for some X' € Z, from which, with p|n
we obtain pla”. We would have p|a. That conflicts with ged(a, n) = 1, and
so n cannot be composite. Thus n is prime. O

Theorem 9. (what I call the ‘Lucas-Kraitchik-Lehmer '® Theorem’). Letn €
N with n > 1, and suppose there is some a € Z with a®~' = 1(modn) and

a7 # 1(modn) for all primes p with p|(n — 1); then n is prime.

7 The original Lucas proof involved using a theorem (the famous ‘Euler-Fermat
theorem’) whose own proof involves quite a lot of extra work. Here I give a proof
which avoids such a reference.

18 1t is, of course, Lehmer’s theorem of 1927. In my first couple of years of teaching
a proof of this I used Lehmer’s original proof, but, as anyone familiar with that
proof will know, a very heavy and quite unnecessary use is made of the Euler
¢-function, and my students had great difficulty in following it. Fortunately the
proof I subsequently gave, here in this paper, was more readily understood (when
properly motivated).

136 John Cosgrave

Remark 10. This is a very powerful theorem, whose power is only properly
realised when Maple, or other similar work is performed with very large
numbers.

Proof. (the strategy of the proof is to show that ord,a = n — 1, and it
follows from Lucas’ theorem of 1876 that n is prime.) Let r = ord,a, then
n—1=r7rR,some R € N. If R > 1, then R = pR’, some prime p, and

R' € N. Thusn—1=rR=rpR/, "le =rR' €N, so p divides (n —1). Then

(@")® = 1% = 1(modn), and thus "7 = a"® = 1(modn) which conflicts
with the second condition of the theorem. Thus R # 1, and r = ord,a = n—1.
By Lucas’ 1876 theorem it follows that n is prime. O

Remark 11. The Lehmer 1927 theorem is sometimes referred to, for obvious
reasons, as the ‘”Tfl’ theorem. There is a further important improvement
(dating from 1967) of D. H. Lehmer’s theorem that is due to another U.S.
mathematician John Selfridge. One only appreciates the value of Selfridge’s
improvement after one has had experience with using the Lehmer theorem
with Maple computations. Selfridge’s theorem is sometimes referred to as the
‘change of base’ theorem, for reasons which will become apparent when one
uses it.

Theorem 12. (what I call the ‘Lucas-(Kraitchik)-Lehmer-Selfridge Theo-
rem’) Let n € N withn > 1, and suppose that for each prime p; with p;|(n—1)
n—1

there is some a; € Z with a} ™' = 1(modn) and a,”* # 1(modn); then n is
prime.

Another important variation is Pocklington’s theorem.

Theorem 13. (Pocklington, 1914) Let n — 1 = UF = Up{*ps? ... p2 be

an incomplete factorisation of n—1 (where U is the ‘unfactored part’ of n—1,

and F = p'p3? ... por is its factored part) with U < F and ged(U, F) = 1.
n—1

Suppose there is an a such that a®~! = 1(modn) and ged(a 7@ —1, n) =1

for alli, 1 <i <r; then n is prime.

Ezxample 1. Let p, denote the rth prime.

— I have used LKLS to prove the primality of the 1006-digit
250(p1p2 . p20)3 +1, and

— the primality of the 1405-digit 2371!2!3!4! ... 48!149!50! + 1.

— Also I have used Pocklington to establish the primality of the (serendip-
itously found) 2000-digit p1p2 ... p3aspiag + 1 (see [Cos| for the Maple
worksheet details), and also

— the primality of the 3318-digit pip> ... p3aep3iopiss + 1.

Another interesting elementary result is Proth’s (1878), the standard ver-
sion of which is the following result.

Number Theory and Cryptography 137

Theorem 15. Let N = 5-2" + 1, where s, 7 € N and'® s < 2". Suppose
N-1
there is an a € Z such that a 2 = —1(mod N); then N is prime.

I have made the minor improvement of the s < 2" condition to s < 2" +1,
with this proof.

Proof. First, note the standard result 2° about prime divisors of Fermat type
numbers: let z € Z and m € N, then every odd prime divisor ¢ of 2" + 1
satisfies ¢ = 1(mod2™*!). For p a prime divisor of N, we have a'i =
(@®)?”" = —1 and so p = 1(mod 2"). If N is composite, then N is a product
of at least two primes each of which has minimum value 2" + 1, and so
N=sx2"+12>(2"4+1)(2"+1) =2" x 2"+ 2 x 2" + 1. It follows that
s > 2" 4+ 2, which is incompatible with s < 2" 4+ 1. Thus N is prime. O

4 Some elementary, but non-trivial factorisation
methods

Maple has a number of factorisation commands, the default one of which
21 is the 1975 continued fraction method of Morrison and Brillhart. It also
has the command ifactor(n, pollard) which puts into effect the Pollard
p—method with the Floyd cycle algorithm improvement, but only using iter-
ates of ‘2’ using the function z2 + 1.

I am keen that my students should have exposure to some non-trivial
factorisation methods, and have narrowed myself down to just two 22:

— Pollard’s p — 1 method (1974), which uses Fermat’s ‘little’ theorem,
— Pollard’s p—method (1974), which uses a generalisation of the birthday
paradox.

It is my experience that students are really fascinated by both Pollard
methods, and I can assure any reader that the inclusion of these methods in
such a course is a source of very great excitement in the classroom. Personally
I never really appreciated these methods until I decided to teach them, and
they form one of the highlights of the course. Many students are greatly

19 Some texts add an entirely irrelevant requirement that s be odd.

20 Which I prove for my students, using standard order theorems and Fermat’s little
theorem.

21 The Maple command is ifactor(n).

22 With as much details as possible. I also expose them to the elementary Fermat
method, which, although it only requires high school mathematics to understand
it, is nevertheless one which can’t be ignored in choosing two primes for RSA
usage. Many students are greatly impressed by seeing the product of two really
large primes - with hundreds of digits, but which differ by only several thousands
- being factored almost instantly by the Fermat method. It allows one to drive
home the point that mere size is not enough when choosing primes for RSA usage.

138 John Cosgrave

impressed with how effective both methods are, especially the p — 1 method
when used on RSA type numbers where one of the primes has been formed by
using a Lehmer-Selfridge type construction. I refer my reader to the example
in my Maple public lecture ‘Bill Clinton, ... ’ [Cos].

My approach to teaching the Pollard methods In teaching my students
the Pollard methods I abandon all reticence, and try to impress on them
that in studying these methods they are considering the work of a master
mathematician with an extraordinary, fertile imagination. The first point I
make is that these two methods, which appear so different at first, are in
fact driven by a single, apparently useless, but actually incredibly powerful,
common idea. Given a composite n, known to be composite because of failing
a Lucas-Fermat test to some base 2 the common idea in the methods is to
attempt to find some integer M (I urge my students that they think of ‘M’
as being short for Magic, because in the two Pollard methods it really is
magical the manner in which he creates this M) such that ged(M, n) > 1
and ged(M, n) < n.

Since Pollard’s approach can - and indeed does - appear very, very strange
to weaker students, then I play on that perception, and indeed I attempt to
rubbish the idea before I even show them how very powerful it is. While
pointing out that finding such an M would of course mean that one had
found a proper factor of n, I do concede that the idea could appear completely
useless because of these considerations:

— How is one going to find such an M? ...

— By trial and error? Let’s see if M =2, 3, 5, 7,... would do? Why, that
would be even worse (because of the gcd computation) than using the
Eratosthenes approach of trying possible factors up to y/n.

However I then put it to them that they should consider it a tribute
to Pollard’s fertile imagination that he was able to conceive two wonderful
realisations 24 of finding this elusive M. These methods will be known to my
reader, and so I will only briefly describe how I attempt to convey Pollard’s
thinking to my students. For both methods I emphasise that Pollard’s hope
is to find one of the proper factors p of n (and not necessarily the least one!).

In the case of his 1974 method, his (p — 1) method, he attempts to find
that ‘p’ by exploiting Fermat’s little theorem in the following way.

Lemma 16. For p any prime and a € Z, a # 0(modp), one has a** =
1(mod p), and thus a®* — 1 = 0(mod p), for all sufficiently large values of k.

23 Normally (but not always) that 2"~ # 1 (modn).

24 1t is a well known joke amongst mathematicians that a trick is something that
works once, while an idea is something that works twice (or more). I have often
wondered if Pollard had an idea in 1974, or simply a trick.

Number Theory and Cryptography 139

(That ‘(a® — 1)’, hopefully with a not too large value for k, is going to
be ones ‘M’: it is divisible by p, as is n, and ones ambition is to quickly find
a reasonably small k, so that the gcd of n and (a*' — 1) comes to be greater
than 1, but less than n.) That result is, of course, a trivial consequence of
Fermat’s little theorem, since it is certainly true for £ > p — 1.

Proof. From Fermat’s ‘little’ theorem we have a?~! = 1(modp). Also, for
sufficiently large k we have (p—1)|k! (e.g., k > p—1 would do trivially), and
so k! = (p— 1)K, for some K € N. Then (a?~!)¥ = 1¥ = 1(mod p), and so
a? DK = 1(mod p), i.e. a* = 1(mod p). O

Pollard’s insight was that although the latter congruence is trivial, nev-
ertheless because of the way in which the prime factorisation structure of k!

behaves as k increases in size, one may have a*' = 1(modp) for substantially
smaller values of &k than the trivial £ = p — 1.
Example 17. For example, if p = 97, then the trivial a°® = 1(mod 97) may

be vastly improved upon with a® = 1(mod p). That is, because 97 —1 = 96 =
25x 3! and 8! = 1x2x3x4x5x6xTx8 =2t x31 x22x5x (21 x31)x7x 2% =
26 x 32 x 5 x 7, is divisible by 96, because of the appropriate accumulation
of 2’s and 3’s in the prime decomposition of 8!.

Thus if one had a composite n (reasonably big, say) which, unknown to
one, happened to have 97 as a factor, then that fact would be quickly revealed
by successively calculating the early terms of the sequence

ged(2Y — 1, n),ged(2% — 1, n),ged(2® — 1, n),... .

The real work that has to be done to get the idea across may be seen in
much greater detail in my related Maple worksheet [Cos]. Suffice it here to
say that the key Maple programming computational steps are not to compute
each ged(a®' — 1, n) from scratch, but rather to do them recursively, and
furthermore not to compute actual values of the a*' — 1, but rather their
reduced values modn.

This, then, is the final 2° version of the Maple procedure I lead my students
to the following algorithm.

> Pollard := proc(seed, n)
local a, k; a[l] := seed:
for k from 2 while igcd(n, al[k-1]-1 mod n)=1
do al[k] := alk-1]&"k mod n od;
if igcd(n, alk-1]-1 mod n) < n then
lprint(‘After‘, k-1, ‘steps we find that‘,

25 With my students I deliberately build up through slower stages to make certain

points, as will be seen by anyone who reads my detailed Maple worksheet. I could,
of course, dispense with the ‘lprint’ line, and simply output a proper factor if
one is found, otherwise have no output.

140 John Cosgrave

igcd(n, alk-1]1-1 mod n),‘is a proper factor of‘, n)
else lprint(‘No proper factor found; try some other seed®
fi end:

It is my experience that most students are greatly impressed with the
effectiveness of this Pollard inspired, Maple procedure. Cryptographic exam-
ples of it in action may be read in details given in my Maple public lecture
‘Bill Clinton, Bertie Ahern, and digital signatures’ [Cos].

For example, if one performed the following Maple computations: first,
create two large primes p and ¢, the first of which entails p — 1 having only
small prime divisors, and then formed their product n, one could verify that
n is composite by showing it fails a base 2 Lucas-Fermat test, and also factor
n using the above Pollard procedure.

These computations are all quickly executed:
>p := 2740%3°52%7°52 1;4 #an 81-digit prime

D = 6260415423503186572672315147574511472123143378724083534
88069113603068870541705217

>q := nextprime(10°66 12345678910987654321) +# 67 digits

g :=100123456789
10987654447

>n := pxq: # value suppressed. 147 digits
>2&"(n-1) mod n; # shows ‘n’ is not prime:

3152127958237653442577861970188136620480387508962922042738385890
1244327611900953017915409099486524654763301485907184866806349215
1077465700747069971 .

Finally, execute the following Maple command, which takes only seconds:
>Pollard(2, n); # choosing ‘seed’ to be ‘2.’
Output:

After 322 steps we find that
626041542350318657267231514757451147212314337872408353488
069113603068870541705217

is a proper factor of
62604154235031865726723151475745114721231433788013726135/,
865627195181479941250685466423117165291499989527024421354
240887817669535791655926533149999.

Number Theory and Cryptography 141

4.1 Some brief comments on the Pollard p—method

Suffice it to say that Pollard suggested another remarkable way of arriving at
an M’ with the desirable properties listed earlier, except that M is now not
arrived at as a consequence of constructing a sequence one of whose eventual
terms is the desired M, but rather - as a consequence of the ‘generalised
birthday paradox’ - so that M is arrived at by forming differences. This
method is very well explained in Pomerance’s MAA notes [P1], or in Koblitz’s
book [Ko], and I refer my reader to those sources. In treating this method with
my own students I explain the original Pollard approach, eventually arrive
at the classic p—figure, and discuss how the computation may be speeded up
by using the Floyd cycle finding algorithm.

Any reader already familiar with Pollard’s p—method will know that Pol-
lard himself suggested starting with seed ‘2’ and using iterated values of
22 + 1 (modn) as the means of producing the random sequence. This ap-
proach, together with the Floyd cycle improvement is the one that Maple
has built into its factorisation command ‘ifactor(n,pollard).’ The mod-
ification which I make for my own students is to allow for variable seed and
iteration function, using the Floyd cycle finding method. Once again it is my
experience that students are really impressed with how effective the method
is.

I finish by giving a Maple procedure 2%, the final version of the one I teach
to my students, which incorporates the general form of Pollard-Floyd, and
give two examples of the sort of output one will see on using it.

>PF := proc(n, f, seed) # general Pollard-Floyd
local a, k; all] := seed: al2] := f(al1l):
for k from 2 while igcd(n, a[2*k-2]-alk-1])=1 do
alk] := f(a[k-1]) mod n;
a[2xk] := £f(f(a[2*k-2]) mod n) mod n; od:
if igcd(al2xk-2] - alk-1], n) $<$ n then
lprint (igcd(a[2*k-2]-alk-1], n),
‘is a proper factor of‘, n);
else lprint(‘Try some other seed or function. ‘)
fi; end:

>PF(1037, x-> x°2 + 1, 2);
17 is a proper factor of 1037
>PF(2°32+1, x -> x"2 + 1, 2); # the 5th Fermat number:

641 is a proper factor of 4294967297

%6 An early Maple worksheet of mine on this topic may be found on the internet
[Cos].

142 John Cosgrave

References

[BS] Bach, E. and Shallit, J.: Algorithmic Number Theory. Volume 1. The
MIT Press. (1996)

[B] Bressoud, D. M.: Factorization and primality testing. Springer-Verlag.
(1989)

[BLSTW] Brillhart, J., Lehmer, D. H., Selfridge, J. L., Tuckerman, B. and
Wagstaff, Jr., S. S.: Factorizations of 8" +1 (b = 2, 3, 5, 6, 7, 10, 11, 12
up to high powers), AMS (Contemporary
Mathematics Series), Vol. 22, 2nd edition, 1988.

[C] Cohen, H.: A Course in Computational Algebraic Number Theory.
Springer-Verlag. (1993)

[Cos] Cosgrave, J. B.: Several of my Maple worksheets relating to my NT and Cryp-
tography course, including the substantial 27 public lecture of 25th November
1998, Bill Clinton, Bertie Ahern ?®) and digital signatures, are accessible from
David Joyner’s USNA Web site at this address:
http://web.usna.navy.mil/~“wdj/crypto.htm
At the time of preparing this paper my own web site
http://www.spd.dcu.ie/johnbcos
is under construction, and when that is completed I will be putting up a consid-
erable number of my Maple worksheets on that site. Alternatively, please contact
me at my College using John.Cosgrave@spd.ie, or at home johnbcos@iol.ie.

[DH] Diffie, W. and Hellman, M.E.: New Directions in Cryptography. IEEE Trans-
actions on Information Theory, v. IT-22, n. 6, (Nov 1976) 109-112

[K] Kahn, D.: The Codebreakers (The Comprehensive History of Secret
Communication from Ancient Times to the Internet) (1996) Scribner

[Ko] Koblitz, N.: A Course in Number Theory and Cryptography. Springer-
Verlag. (1994)

[LT] Lenstra, H. W. and Tijdeman, R. (Editors): Computational Methods in
Number Theory. Math. Centre Tracts 154 Mathematisch Centrum. Amster-
dam. (1982)

[Poll] Pollard, J. M.: Theorems on Factorization and Primality Testing. Proc.
Camb. Phil. Soc. 76 (1974) 521-528

[Pol2] Pollard, J. M.: A Monte Carlo Method for Factorization. BIT. 15 (1975) No.
3. 331-335.

[P1] Pomerance, C.: Cryptology and Computational Number Theory.
Mathematical Association of America. MAA Notes. 4 (1984)

[P2] Pomerance, C. (Editor): Cryptology and Computational Number The-
ory. American Mathematical Society. Proceedings of Symposia in Applied Math-
ematics. 42 (1990)

[P3] Pomerance, C.: A Tale of Two Sieves. Notices of the American Mathematical
Society. 43 No. 12. (1996) 1473-1485

[Ri] Riesel, H.: Prime Numbers and Computer Methods for Factorization.
Birkh&user. (1994)

2T Qver forty pages of hard copy.

28 The Irish Prime Minister who, in September 1998, participated in an ‘historic’
digital signing in Ireland of a treaty on e-commerce with the US President, using
software developed by the Irish company Baltimore (see their Web site for details
of that signing at http://www.baltimore.ie)

Number Theory and Cryptography 143

[RSA] Rivest, R.L., Shamir, A.; and Adleman, L.: A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM. 21(2),
(1978) 120-126

[R] Rosen, K. H.: Elementary Number Theory and Its Applications.
Addison-Wesley. (1988)

email: John.Cosgrave@spd.ie, johnbcos@iol.ie

