Computing Roots of Polynomials over
Function Fields of Curves

Shuhong Gao' and M. Amin Shokrollahi?

! Department of Mathematical Sciences, Clemson University, Clemson, SC 29634
USA
2 Bell Labs, Rm. 2C-353, 700 Mountain Ave, Murray Hill, NJ 07974, USA

Abstract We design algorithms for finding roots of polynomials over function
fields of curves. Such algorithms are useful for list decoding of Reed-Solomon and
algebraic-geometric codes. In the first half of the paper we will focus on bivariate
polynomials, i.e., polynomials over the coordinate ring of the affine line. In the
second half we will design algorithms for computing roots of polynomials over the
function field of a nonsingular absolutely irreducible plane algebraic curve. Several
examples are included.

1 Introduction

In this paper we will study the following problem: given a nonsingular ab-
solutely irreducible plane curve A over the finite field F,, a divisor G on X,
and a polynomial H defined over the function field of X', compute all zeros
of H that belong to L(G). Our interest in this problem stems mainly from
recent list decoding algorithms [5,9,11] for Reed-Solomon and algebraic geo-
metric codes. Originally, those algorithms found the roots of H by completely
factoring it and looking for factors of degree one. This method is, however,
not very efficient, especially if X is not a rational curve.

We will design more efficient algorithms by utilizing the fact that we are
interested in roots of H rather than a complete factorization. For instance,
suppose that X is the projective line, L(G) is the space of univariate polyno-
mials of degree < k over F,, and H(z,y) is a bivariate polynomial over F,.
The problem is then that of finding polynomials f of degree < k in the vari-
able x such that H(z, f) = 0. For this problem we will design an algorithm
that runs in time O(k?b3) where b is the degree of H in the variable y.

In the next section we review some well-known facts on the running times
for certain operations on polynomials over finite fields and introduce an algo-
rithm for computing roots of bivariate polynomials and demonstrate its use
by means of several examples. In Section 3 we will attack the more general
problem stated at the beginning of the introduction.

2 Roots of Polynomials over Rational Function Fields

In this paper we will mainly deal with probabilistic algorithms. The measure
of an algorithm, usually called “time,” will be the (expected) number of

Roots of polynomials 215

operations in F;, and usually we will use the “Soft O” notation to ignore
logarithmic factors: g = O(n) means that g = O(nlog®n) for some constant
¢. The term “deterministic time” of an algorithm is meant to imply that the
algorithm in question is deterministic.

We briefly recall some well-known results. Two polynomials of degree < n
over F, can be multiplied in deterministic time O(n) [2, Th. 2.13]. The same
is true for computing the division with remainder [2, Cor. 2.26], and the ged
of two such polynomials [2, Th. 3.13]. In particular, arithmetic operations
in a given extension field F,a of F, can be done in deterministic time O(d).
Furthermore, given two polynomials f and g, both of degree < n, and an
integer ¢, one can compute f¢ mod g in deterministic time @(nlog {) using
the “binary method” [2, pp. 3-4]. The roots of a polynomial of degree < n
over F, can be computed in time O(nlogq) [1, Theorem 5]. Without using
fast algorithms, the running time for this task is O(n? logn logq). Moreover,
for any given d one can find an irreducible polynomial of degree d over I, and
hence construct the field Fya via an algorithm that runs in time O(n%logq) [1,
Theorem 3].

In this section we present an algorithm which solves the following problem:
given a polynomial H(z,y) in two variables of degree m in z and degree b
in y over a finite field F, and a positive integer k, find all polynomials f in
z of degree at most k such that H(xz, f(x)) = 0 mod z**!. For simplifying
assertions on the running time we will assume the following.

Assumption 1. H is a bivariate polynomial whose degree b in y satisfies
b < k. We further assume that logq < k, and that H is not divisible by x.

Our algorithm is a modification of Kaltofen’s [6] and is based on the
following simple idea: let H = Y_:" | H;(y)z*. We are looking for fy,... , fi €
F, and vy, ... ,¢r € F,[y] such that

(= fo— fiz — - — fu2®) (W0 + 12 + -+ + pa*) = "
Ho + Hiz + - -+ + Hpz® mod zF+1.

fo is found by factoring Ho over Fy. If Hy is squarefree, then multiplying out
and comparing the “coefficients” of ' for ¢ =0, ... , k will successively reveal

fla"' 7fk-

Algorithm 2. On input a bivariate polynomial H = Y i* H;(y)z' over
the field B, such that Ho(y) is squarefree, and an integer k > 1, the algo-
rithm outputs a list fV, ..., f) of polynomials of degree < k such that
H(z, f9(z)) = 0mod 2"t for j=1,...,s.

(1) Find all roots of Hy in . Call them p1,... ,Bs. If s = 0, then terminate
the algorithm and output the empty set.

(2) Fort=1,...,s do
(a) Set S := Bq.
(b) Fori=0,...,k compute h; := H;(3).

216 S. Gao and M. A. Shokrollahi

(C) Set f0 = /B: Yo = (y - ﬂ); ¢0 = HO/(y _6): Tlo = H(I)(B)
(d) Fori=1,...,k compute

0 = hi — i1 — -+ — 901'71771’
o
_Hi—piho— - —p19i 1
,()bi =)
®o
;== d}l(ﬂ);
fi = =i

Theorem 3. The above algorithm computes its output in time O(k2b?).

Proof. Let us first prove correctness. Fix £. We will show by induction on
that

i i
Z ja Z Y2’ | = H(z,y) mod z+.
=0 Jj=0

The assertion is true for ¢ = 0: p9 = Hy. Suppose now that the assertion
is true for 4 — 1. We only need to show that pot; + -+ + p;100 = H;. But,
since 19 # 0 by the assumption of squarefreeness of Hy, this is equivalent to

i = Hi(B) —p1mi-1(B) — - - — pi—1m (B)
' 10 (B)

i = Hi —pitho — -+ = p1¢hia
' Yo

which is exactly what is computed in the most inner loop of the algorithm.
Stated in terms of f, this result shows that

(y—fo— fiz—- = fix") (o + Y17 + -+ - + ¢y2*) = H(z,y) mod z* .

Hence, H(z, f) = 0 mod z**!.

For assessing the running time, note first that computing the f3; uses
O(b? log blog q) operations. Computation of the h; takes at most kb operations
using Horner’s rule. In the inner loop (d) computing ¢; uses O(i) operations,
computing ; uses O(bi) operations (note that each H; and each ¢; is of
degree at most b) and computing n; uses another O(b) operations. Hence,
steps (a) to (d) use O(k?b) operations, which shows that the cost of Step (2)
is O(k?b?). Since log g < k by our general assumption, the result follows. O

Remark 4. Even if Hy is not squarefree, the above algorithm works for a
particular root 8 of Hy aslong as (3 is a simple root. In that case, the algorithm
finds a solution f of H(z, f) = 0 mod z**! with f(0) = /3 in time O(bk?).

Roots of polynomials 217

We proceed with an example. Let

Hz,y) ="+ + P2 + (' +® +y + D2® + (0® + % + Da? +
W +y)z+y° +y' +9° +y
= H7.’E7 + HG.CIIG + H5.CL'5 + HQ.’L'2 + le + HO
over the base field F». As Hy(y) is squarefree, we can apply the foregoing
algorithm. We set k := 3, i.e., we are looking for those polynomials f € Fs[z]

such that H(z, f) = 0 mod z*. One root of Hy(y) over Fy is § := 0. Applying
our algorithm we then obtain

o=y, o=y +y*+y*+1Lm=1,fo=0,

901:0;1/11:1/‘*'1, 771217f1=0,
(,02:1,'(/12:!!3, 772:07f2:1a
903:05 f3:0

Hence, this setting of 3 yields the polynomial f = x2. Another root of Hy is
1. For this root we obtain

wo=y+Lvo=yt+y +y,m=1, fo =1,

QOl:OJ ’lvbl:ya 7)1=1;f1=0;
302=17 ¢2=y3+17 U2=0;f2=1;
303:17 f3=]-7

which yields f = 2%+ 22+ 1. In both these cases we have in fact H(z, f) = 0.
Polynomial division results in the factorization

Hz,y)=@y+2") (y+ @ +2>+1) (* +y+ (@® +2+1)).

Let us now consider the case when Hy is not squarefree. We will use the
method of Newton polygons. Since we seek solutions modulo an arbitrary
power of z, it is natural to work in the ring F,[[z]] of formal power series
in z. Denote by F,[[z]][y] the ring of polynomials in y with coefficients in
F,[[z]], and by F,[[z,y]] the ring of formal power series in z and y. Note
that Fy[z,y] C Fy[[z]]ly] C Fy[[z,y]], and they are all unique factorization
domains. For any H € F,[[z,y]], its Newton polygon is defined to be the
lower convex hull of all points (7,7) with ¢;; # 0 and the point (+00, +00)
at infinity in the real Euclidean plane. For example, the Newton polygon of
H =y + (y* +y3)2? +y52* + 9?28 + 28 + 2° is shown in Figure 1. A Newton
polygon consists of (finite) line segments with nonzero slopes, called edges of
the polynomial. For the above example, H has two edges with slopes 1 and
1/2 respectively. The definition of Newton polygon given here is equivalent
to that of Cassels [3, Sections 6.3 and 6.4] (note that Fy[[z]] is a complete
local ring in which z is a prime). Denote each edge by a pair (p,£) where
p is its slope and /£ its length on the z-axis, and denote a Newton polygon
by a list of pairs [(p1,41),. .-, (pt, £:)] of all the edges. So the above Newton

218 S. Gao and M. A. Shokrollahi

Figurel. Newton Polygon of H

polygon is denoted by [(1,2),(1/2,6)]. The notation also implicitly implies
that we are interested in the Newton polygon only up to a translation in the
real Euclidean plane.

The Newton polygon of a power series H carries a lot of information about
the factors of H. The following result is from Cassels [3].

Lemma 5. Let H € F,[[z]][y]-

(i) If G € Fy[[z]][y] divides H then the slope of every edge of G is also a
slope of H.

(i) Suppose that the Newton polygon of H is of the form [(p1,£€1), ..., (pt, 44)].
Then there exist G; € F,[[z]][y] with Newton polygon of the form [(p;, £:)],
1<i<t, such that H =Gy ---Gy.

In particular, each edge of H corresponds to a distinct factor of H. These
factors may still be reducible. To describe how they factor, we follow Mc-
Callum [7]. We need some more terminology. Let w be a rational number.
For a monomial ziy?, we define its w-degree to be i + wj. For a power se-
ries H € F,[[z,y]], its w-order is defined to be the minimum w-degree of all
nonzero terms of H, denoted by o, (H). For a polynomial H € F,[z,y], its
w-degree is defined to be the maximum w-degree of all nonzero terms of H,
denoted by d, (H). A polynomial is called a w-form if all of its nonzero terms
have the same w-degree. Obviously, any polynomial can be written as a sum
of w-forms. The initial w-form of H is the w-form in H that has the smallest
w-degree. It is straightforward to see that if p is a slope of H and w = 1/p,
then the edge with slope p corresponds exactly to the initial w-form of H
(see below). The next result from McCallum [7, Theorem 2.2] says that the
factors of the initial w-form give factors of H itself.

Lemma 6. Let w > 0 be a rational number and H € F,[[z]][y]. Suppose that
the initial w-form hg of H is not divisible by x. If ho = fogo for fo,g0 €

Roots of polynomials 219

F,[z,y] and ged(fo,g0) = 1 then there exist F,G € F,[[z]|[y] such that H =
FG, deg, F' = deg, fo, and fo (resp. go) is the initial w-form of F (resp. G).

We describe below more explicitly how an initial w-form factors. Let H €
Fy [[z]][y] Consider a typical edge of H, say from A = (¢, h) to B = (t—u, h+v)
where t > u > 0, h > 0 and v > 0 are integers. The slope of the edge is
p=v/u. Let £ = ged(u,v), uy = ufl, vy =v/l and w=1/p = u/v = uq [v1.
Any integral point on the edge AB must be of the form A + (—uq4,v14) for
some 0 < ¢ < £. All the terms of H that lie on the edge have the same
w-degree t + wh. Any point above the egde has higher w-degree. Thus the
initial w-form of H is

4 £ w1\ ¢
Hy = Zcixt—uizyh—i-vlz — pi—u. yh LY Zci (y) = pl—u. yh . CL’uH(](Z)
=0 i

for some ¢; € F,, where z = y% /2% and Hy(z) = Zf:o c;z'. Note that

2% Hy(z) € Fy[[z]][y]. In the following, we call Hy the reduced polynomial
of Hy. Note that Hpy has degree £ and ﬁo(O) # 0, since H must have two
nonzero terms corresponding to the vertices A and B on its Newton polygon.
If ged(u,v) = 1 then there is no integral point on the edge AB except the
end points, and so AB is the shortest line segment with slope p = v/u. By
Lemma 5 (i), z%Hy can not factor (in F,[[z]][y]). In this case z*H, must be
(absolutely) irreducible and can be lifted to a factor of H by Lemma 5. Now
suppose £ = ged(u,v) > 1. Since Hy is a univariate polynomial, it factors
into linear factors over an extension field of F,. Each linear factor z — 8 of
Hy gives an absolutely irreducible factor y¥* — fz* of Hy.

Lemma 7. Let H € F,[[z]][y] with H(0,0) = 0 and H not divisible by y.
Then any factor y — f(x) of H, where f(x) € Fy[[z]] and f(0) =0, is of the
form

y — (Bz™ + terms of higher degrees in x)

where w > 0 is an integer and B € F, such that 1/w is a slope of the Newton
polygon of H and B is a root of the reduced polynomial of the initial w-form
of H.

Proof. Suppose f(z) = fiz+ fox? +--- € F,[[z]] and y — f(z) divides H. Let
w > 0 be the smallest integer such that f,, # 0. Then the Newton polygon of
y — f(z) has only one edge starting at (0,1) and ending at (w,0) whose slope
is obviously 1/w. By Lemma 5 (i), 1/w is also a slope of H. Note that the
initial w-forms are multiplicative, i.e., (FG)o = FyGo for F,G € F[[z]][y]-
Let Hy be the initial w-form of H. As y — fy,x®™ is the initial w-form of
y — f(x), we see that y — f,z¥ divides Hy. By the above argument, f,, is a
root of the reduced polynomial Hy of Hy. O

Lemma 7 shows clearly how to find solutions for our problem. Let H =
Hoy+Hiz+---+ Hypa™ € Fy[z,y]. We want to find all solutions f(z) € F,[z]

220 S. Gao and M. A. Shokrollahi

for (1). Suppose that y = § is a root of Hy of multiplicity v > 1. Make a
change of variables y1 =y — § and G = H(z,y1 +). To lift y — 8, we need
to find all factors of G of the form y; — fix — --- — frz®. If y1 | G then
y1 = y — B is a solution. In this case, we can divide out y; in G and denote
the resulting polynomial by G'. If G’(0,0) # 0 then G has no other factor of
the form y; — fix — - -- — frz®. So we may assume that G is not divisible by
y; and G(0,0) = 0. Thus G is of the form of H as in Lemma 7 with respect
to x and y;. Compute the Newton polygon of G (with respect to = and y;).
We find all the egdes of G with slopes of the form 1/w for some integers w.
For each such edge, find all the linear factors y; — S12% of the initial w-form
Gy of G where 8, € F, is a root of the reduced polynomial Go of go. When
G has no such edges or G has no roots in F, then y; = y — 3 can not be
lifted to a factor y — f(z) of H with fo = B. If By is a simple root of Gy,
we will show below how to lift such a partial solution. So suppose that f;
is a multiple root. Make another change of variables yo = y; — f12* and let
G1 = G(z,y2 + B1z¥). We can compute the Newton polygon again for Gy
and repeat the above procedure. For G1, we need only to consider the edges
of slopes 1/wy with wy; > w, so that higher powers of z will be added in
the changes of variables. Since the w’s increase at least by 1 each time and
we only need powers of z up to k, this procedure will stop after at most k
iterations. As is described below, all such partial solutions can be lifted to
true solutions.

We illustrate this method by means of an example. Let H be as in the
above example and we compute over Fy. The first change of variables is not
needed. H has two edges of slopes 1 and 1/2 respectively. For the edge of slope
1, w = 1 and the initial w-form of H equals Hy = y° + y3z? = y3(y? + 2?) =
y3(y +)%. So B =1 is a multiple root. Let y; = y — x and

G =H(z,y1 +z) =2° +2° + 4’2" + (y° + 1)2° + y'a® + yP2* +y?2%+
W'+ +y'e +o°

The Newton polygon of G is shown in Figure 2. Note that G has two edges
of slopes 1 and 2/3 respectively, none of them is of the form 1/w; with w;
an integer > w = 1. Hence y — z can not be lifted to a factor y — f(z) of H
with fo =0 and f; = 1. Consider the edge of H with slope 1/2. Then w = 2
and the intial w-form is Go = y?z? + 28 = 28(23 +1) = 28 (2 + 1) (22 + 2 + 1)
where 2 = y/z%. As 8 = 1 is a simple root of 2% + 1, y + z? can be lifted to
a factor of H. Therefore H has only one solution which is a lift of y + z2.

Algorithm 8. (Finding partial solutions) On input H € Fylz,y] and an
integer k > 1, this algorithm compute o list L of all triples (w, 3, g) where w
is oo or an integer > 0, B € By, and g € Fy[z] is a polynomial such that if
w = oo then H(z,g) = 0 mod z**!, and if w < oo then B is a simple root of
the reduced initial w-form of H(x,y + g).

(0) Initialization: w := 0, g :== 0, and L = {}.

Roots of polynomials 221

Figure2. Newton Polygon of G

(1) Compute the initial w-form Hy of H and write it in the reduced form
Hy € F,[2]. Find all the roots § of Hy in T, .

(2) For all roots B from Step 1, do the following:
(a) If B is a simple root then L := LU {(w, 8,9)};
(b) If B is a multiple root then compute

H := H(z,y + Bz*) mod ¢!, and g := g + Ba®.

If y divides H then L := LU (00, ,9) and set H := H/y® where a is
the largest integer such that y* | H.

(i) Compute the Newton polygon of H and the slopes of the edges.
(ii) For each slope of the form 1/d with d > w where d is a positive

integer, set w :=d and go to Step (1).
(3) Return the list L.

It is important to note that Step (2) of the algorithm is executed in parallel
for all roots 8. This means that the algorithm traverses the computation
tree in a breadth-first fashion. A partial solution is built up on each path
separately. One can implement the algorithm more efficiently in a depth-first
fashion.

The algorithm returns two types of partial solutions (w, 3, g). For w < oo,
we will show below how to lift g to a solution f modulo any power of x. For
w = 00, g is already a solution modulo z*+!. In the latter case, however, g
may not in general be liftable to a solution modulo a higher power of z.

Theorem 9. Algorithm 8 correctly returns all partial solutions with O(b3k?)
operations.

Proof. The correctness follows from the discussion above. On the running
time, the dominant cost is at Step (2b) for updating H and computing New-
ton polygons. Since H has at most bk nonzero terms, H(z,y+ 8z*) mod z*+!

222 S. Gao and M. A. Shokrollahi

can be computed by Horner’s rule (on y) in time O(b%k), and the Newton
polygon of H can also be computed in this time. Each # here represents a
term in a potential solution. Since H has at most b solutions and each one
has at most k terms, Step (2b) is executed at most bk times. So the whole
algorithm runs in time as claimed. O

Remark 10. When the degree b in y of H is large, Algorithm 8 can be im-
proved by the following strategy. By Lemma 5, each edge of H corresponds
to a factor of H. Only the factors of edges with slopes of the form 1/w with
w an integer can have factors linear in y. Hence one can factor H at each
stage according to the edges of the Newton polygon. Then for each factor
of an edge with slope 1/w, make a translation of variables and repeat the
same procedure to the new polynomial. Since the degree in y of the factors
decreases at each stage, this modified version of Algorithm 8 will be faster.

Finally, we show how to lift the partial solutions (w,f,g), w < oo, re-
turned by Algorithm 8. McCallum [7] discusses a more general case. Since
we are dealing with linear factors, the algorithm here will be much simpler
and in fact it will be exactly Algorithm 2.2. Let G = H(z,y + g), which is
computed at Step 2.b in Algorithm 8. Write G into a sum of w-forms

G:Gu+Gu+1+"'+Gu+v

where u = 04 (G), u + v = dy(G), and G; is either zero or a w-form of w-
degree i for u < i < wu + v. So G, is the initial w-form of G. Note that G; is

of the form ,
: Y\
Gi =z’ Z Cj (ﬂf_w)
=0
for some integer £, where c; € . Let

¢
Gi= Z c;z? € Fyz]
=0

where z = y/z*. Then
G =2YGy + Guy1z + - - - + Gugoz?).

Note that G, is equal to the reduced polynomial of G, up to a factor of
a power of y. By the design of Algorithm 8, § is a simple root of G, and
y — Bz® is a factor of G,. We want to find fo = 8, f1,..., fr—w € Fy such
that

(y — fox® — frz“ ™ — - — fr_wa®)p = G mod 2! (2)

for some ¢ € Fy[z,y]. Since 0,(G) = u and o,(y — f(z)) = w, we have
0w (1) = u—w. If we write ¥ into a sum of w-forms and use the reduced form
as we did for G, then we have

Y =3 (o + P17+ -+ + Pp_wat)

Roots of polynomials 223

where 1; € F,[2] of appropriate degrees. Now divide the equation (2) on both
sides by z*, we have

(2= fo— fiz =+ = frow@®™") (o + 1o + -+ hp_wah ™) =

Gu+ Gup1z + - + Guppx? mod zh+1-u,

This is exactly the type of the equation (1) we started with. Since 3 is a
simple root of G, Algorithm 2.2 can be applied to find a solution f(z) =
fot fiz+ -+ fr—wx®™¥ € F,[z] with fo = B for the above equation. Then
g+ z% f(z) is a solution for the equation (1).

Theorem 11. Algorithms 2 and 8 find all solutions of the Equation (1) in
time O(b3k?).

Proof. Since Algorithm 2 lifts a partial solution in time O(bk?) and there are
at most b solutions, all the solutions of (1) can be found in time O(b*k?). O

Example. Consider the polynomial
H=2"+y+1)e’ +a' +2° + (" +9)0" + %z + (y" +°)

over Fy. Hy = 4% +y* = 4°(y + 1) has a simple root y = 1 and a triple root
y = 0. The first one can be lifted to a true solution by Algorithm 2.2. To lift
the second one, we need to find the Newton polygon of H, which happens to
have only one edge of slope 1. So let w = 1. The initial w-form of H is

ho =y* +y’z + yz® + 2° = :1:3(% +1)%.

Thus 8 = 1 is a triple root of hy. Make a translation of variables y; = y — z.
Then

G = H(z,y1 + 2) = 2°y1 + 2%y} + yiz® + 2'y1 + v + 4l
=y1 (2 + 2%y7 + p12® + 2 + Y] +).

Hence y; = y+z is a solution of H (modulo any power of z). Let G; = G/y;.
Its Newton polygon has one edge of slope 1/2. Let w = 2. Then the initial
w-form of G is

g0 = yi +at =y /2” +1)%
So B =1 is a double root of gg. Make another translation of variables ys =
y1 — x2 and

Gz = Gi(z,y2 +2°) = 2'y2 + 122° + y3 + ¥5 = 12(a* + 2° + 42 + 93).

So ya = y1 —2% = y—x— 22 is solution (modulo any power of x). The Newton
polygon of G3 = G2/y2 has an edge of slope 1/3. Let w = 3. Then the initial

w-form of G3 is y2 + 2° = 2°(y? /x> + 1) for which 8 = 1 is a simple root. So
ys — 23 = y —x — 22 — 2% can be lifted to a solution modulo any power of
z. In total there are four solutions: y — z, y — x — 2, and lifts of y — 1 and

y—x—a2—23.

224 S. Gao and M. A. Shokrollahi

3 The General Case

In this section we assume familiarity with basic concepts from the theory
of algebraic curves. (See, e.g., [10].) Let X be a nonsingular curve given
as the zeroset of an absolutely irreducible polynomial F' € F,[z,y] and let
R :=TF,[z,y]/(F) denote its coordinate ring. Let G be a divisor on X defined
over F, and let L(G) denote the linear space of G. Assume that we are given
a basis ¢1,...,p¢ of L(G) such that each ¢; € R. We are interested in
computing the roots in L(G) of a polynomial

H(T)=upT + -+ uiT + up

with coefficients u; € R. The algorithm we will present below is a gener-
alization and simplification of that stated in [9] for polynomials of degree
b=2.

Assumption 12. For the rest of this section we will assume that deg F' =:
D > 3, that k := degG > 2D?, that the basis functions @; of L(G) are
represented modulo F as bivariate polynomials of degree < B, and that the
functions u; are represented modulo F' as bivariate polynomials of degree < C'.
Furthermore, we assume that b,logq < k.

The first step of the algorithm to be presented below consists of finding
an Fja-rational solution p = (a,b) of F(z,y) = 0 where d > k and where
either a or b is a primitive element of the extension F 4 /F,. We call p an
(affine) point of X (or of F) of degree d over F,.

Algorithm 13. On input an irreducible nonsingular bivariate polynomial
F(z,y) over F, of degree D and an integer d > 2D? the algorithm computes
an affine point p of the zeroset of F' of degree d over IFy.

(1) Construct the field Fya.

(2) Randomly select an element ¢ of Fya until a primitive element of F 4 /T,
is found.

(3) Test whether g(¢,y) has a zero yo in Fya. If yes, then output p = ({, yo).
If not, then test whether g(x,() has a zero xo in Fya. If yes, then output
p = (z0,(). If not, then go back to Step (2).

Theorem 14. The above algorithm correctly computes its output in time
O(d®>Dlogq + d®).

Proof. Let N; denote the number of solutions in]F‘g,- of F(z,y) = 0. We first
prove that

|N; — ¢'| < D?¢*/2. (3)

Since F' is nonsingular, the genus g of the zeroset of F'is (D —1)(D —2)/2 [4,
Chap. 8, Prop.5]. The number N; of F,: -rational points of the zeroset X of F

Roots of polynomials 225

in the projective plane over F, satisfies |N;—q*—1| < 2gq*/? by the Hasse-Weil
inequality. Let F (X,Y, Z) be the homogenized version of F. The number of
If,: -rational points of & in the projective plane over IF;; which have Z = 0 is
obviously upper bounded by 2D. As a result we have N; < N; + 2D, which
gives us

¢'+1—(D-1)(D-2)¢"/*~2D < N; < ¢'+1+(D-1)(D-2)¢"/* < ¢'+D*¢"/>.

It remains to show that ¢*4+1—(D —1)(D—2)¢"/?—2D > ¢' —D?¢*/?. A simple
manipulation leads to the equivalent condition ¢*/2 > (2D—1)/(3D—1) which
is trivially true, as D > 3 by Assumption 12.

Next, we compute a lower bound for the number N of those solutions
(a,b) of F(a,b) = 0 such that a or b is primitive. Obviously, N = Ny —
Zad,kd Ny > Ng— Z%i/fj Ny, since an element of F,a is primitive iff it does
not belong to any proper subfield of F . Use of (3) yields

N > q% — D?¢%? — QL/2 —1 VaD? ¢ -1
q—1 Va—1
> gt — ¢¥*(D* + q + \/qD*q¥*).

The number of primitive elements of Fya is ¢* 3", 4 ;44" > ¢* =3 }i/lzj qt >

g® — q?/**1. As a result, a random element in F,a is primitive over F, with

at most a constant probability. This shows that Step (2) is performed, on
average a constant number of times. After this step we will have obtained a
uniform randomly chosen primitive element of F,a. The probability p that
a random primitive element of Fya is either the z- or the y-coordinate of a
solution of F(z,y) = 0 satisfies

S 1 _q—d/2(D2 +q+\/§D2q_d/4) S 1 _q—d/2(2D2 +C])
pz 1— qfd/2+1 = 1— qfd/2+1

(Note that ¢~%* < ¢='/2)) Now observe that 2D? < d < ¢¥* and that
(2D? + q) < 2¢%*. This implies

S 1= 2¢~ 44
P2 51+
1— qfd/2+1

Hence, Step (3) is performed on average a constant number of times.

Let us now focus on the running time. Step (1) uses O(d? log q) operations.
Testing primitivity of an element (is done by computing 1,¢, ... ,(?! in the
polynomial basis (O(d?) operations), and testing linear independence of these
elements as vectors (O(d®) operations). So, Step (2) uses O(d®) operations.
Each iteration of Step (3) consists of computing F(¢,y) (or F(z,()) which
uses O(D?) operations over Fa, i.e., O(dD?) operations over F,, and of
computing the roots of a univariate polynomial of degree < D over Fya which
takes O(Dlogq?) operations over F,, i.e., O(d*>Dlogq) F,-operations. O

226 S. Gao and M. A. Shokrollahi

Remark 15. The assumption d > 2D? in Algorithm 13 is related to applica-
tions in coding theory where one assumes that k = deg G > 2g— 2, where g is
the genus of the curve. It can be weakened at the expense of a more tedious
analysis. However, we remark that points of degree d may not exist for all
values of d. For instance, the Hermitian curve 22 = y? 4+ y does not have any
points of degree 2 over F,.

The final algorithm now follows.

Algorithm 16. Given an irreducible algebraic nonsingular bivariate poly-
nomial F, a divisor G of the zeroset of F' defined over I, basis functions
@1,... .0 of L(G) and functions uo,... ,us € Fi[z,y]/(F) satisfying the
conditions in Notation 12, the algorithm computes a list fU,...,) of at
most b functions in L(G) which includes any f € L(Q) such that H(f) =0,
where H =, u;T".

(1) Using Algorithm 13 compute an affine point p of degree d = k + 1 over
F, of the zeroset of F.

(2) Compute p1(p),--- ,pe(p) and represent them as d-dimensional vectors
Vi,...,Vv¢ over IF,.

(3) Compute the values uo(p), ... ,us(p).

(4) Compute the zeros By,...,08s of the polynomial uo(p) + ui(p)z + --- +
up(p)x® in the field Fya and represent them as d-dimensional vectors
by,...,b, over F,.

(5) Compute vectors hy = (hi;,... he;)" € Fo,i=1,... s such that

(Vi [---ve)(hy|---[hg) = (by|---[by)
over B, and output 9 = hy ;01 + -+ + hy i
Theorem 17. The above algorithm correctly computes its output in time
O(k*Dlogq + k* + k*B? + kbC” + k*blogq).

Proof. We first prove correctness. If f € L(G) is such that H(f) = 0, then we
have that E?:o ui(p)f(p) = 0,i.e., f(p) is one of the §;. Writing f = >~, hip;,
we see that hq, ..., hy satisfy the equations in Step (5). We now prove that,
for each i, the solution to this system is unique. Indeed, two solutions would
give rise to functions f,g € L(G) defined over F,; such that (f — g)(p) = 0.
But then (f — g)(p?) = 0 for all the d different automorphisms o of Fa /F,.
This shows that f — g has more zeros than poles, which implies that f = g.
We infer that f is one of the f(9)’s.

Step (1) of the algorithm uses O(d?>Dloggq) operations in F, by Theo-
rem 14. Each ¢; is represented by a bivariate polynomial of degree < B.
So, computing ;(p) uses, in the worst case, O(B?) operations in F, i.e.,
O(dB?) = O(kB?) operations in F,. Since there are £ of these functions and
¢ < k+1, Step (2) requires O(k?B?) time. Similarly, computing the wu;(p)

Roots of polynomials 227

uses O(bkC?) F,-operations. Step (4) uses O(blogq?) = O(dblogq) opera-
tions in F 4, i.e., it requires O(k*blog q) F,-operations. The cost of Step (5)
is O(b?k): it consists of reducing a d x 2s-matrix to echelon form using row
operations, and s < b. O

Remark 18. (1) In applications to coding theory one usually has a fixed divi-
sor G (corresponding to fixing the code) and one wants to compute zeros
in L(G) for different polynomials H. In this case one can compute the
point p and the evaluation of the ¢; at p in advance. Neglecting the cost
of this preconditioning, the running time of the algorithm would then
be O(kbC? + b2k + k?blogq). Assuming that b is a constant and that
C,logg < k (both reasonable assumptions in list decoding scenarios),
this gives a running time of O(k?).

(2) If the functions u; and ¢; are not polynomials in z and v, it is still possible
(though tedious) to analyze the running time of the algorithm. The only
major change in the algorithm is to ensure that the point p found has
the property that the functions u; can be evaluated at it.

(3) The assumption that the curve X' has a nonsingular plane model was
only needed to bound the number of solutions of F'(z,y) over extensions
of F;. One can also bound these numbers without this assumption [8] and
can obtain similar (though a little worse) results.

As was pointed out in Remark 15, the assumption d > 2D? for the ex-
istence of points of degree d can be weakened. In the next example, we will
find a point of degree 6 of the degree 5 Hermitian curve over Fy given by
the equation z° = y* + y. Let Q be the common pole of z and y. We are
interested in zeros of the polynomial

HT)=T*+(x+y+1)T?+ (2® +y)T + (2%y + 2° + 2y + %)
=73 + u2T2 + w1 + ug
among the elements of L(5Q) = (1,x,y). The first step consists of finding a
point of degree 6. We represent Fys as F (¢) with (6 + ¢ + 1 = 0. Applying
Algorithm 13, we find p = (¢2 + ¢, ¢* + ¢?).
The next step of the algorithm is to find the zeros of the polynomial
T% +up(p)T? +ur (p)T +uo(p) = T° + (¢* + (+ 1)T? + ¢

in Fys. They turn out tobe 81 = 2+, Bo = +(¢+1,and B3 = C* + (.

Now we represent elements of Fpe with respect to the F,-basis 1,(,...,¢?
and solve the system of equations given in Step (5):

100 010

010 110

011 hi,1 hio higs 110

000 ha1 haahas | =1000

001 hs.1 hsa h33 001

000 000

000 000

228 S. Gao and M. A. Shokrollahi

Solving this system yields the solutions (0,1,0)*, (1,1,0)%, and (0,1,1)+
for (hi, ha, hs)® which leads to the functions f) = z, f® = z 4+ 1, and
f® =z 4y

References

1. M. Ben-Or. Probabilistic algorithms in finite fields. In Proceedings of the 22nd
IEEE Symposium on Foundations of Computer Science, pages 394-398, 1981.

2. P. Biirgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity
Theory, volume 315 of Grundlehren der Mathematischen Wissenschaften.
Springer Verlag, Heidelberg, 1996.

3. JJW.S. Cassels. Local Fields. Number 3 in London Mathematical Society
Student Texts. Cambridge University Press, London, 1986.

4. W. Fulton. Algebraic Curves. Addison-Wesley, 1989.

5. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and
algebraic-geometric codes. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science (FOCS), pages 28-37, 1998.

6. E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate
integral polynomial factorization. SIAM J. Comput., 14:469-489, 1985.

7. S. McCallum. On testing a bivariate polynomial on analytic reducibility. J.
Symb. Comp., 24:509-535, 1997.

8. W. M. Schmidt. Equations over Finite Fields: An Elementary Ap-
proach. Number 536 in Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1976.

9. M.A. Shokrollahi and H. Wasserman. List decoding of algebraic-geometric
codes. IEEE Trans. Inform. Theory, 45:432-437, 1999.

10. H. Stichtenoth. Algebraic Function Fields and Codes. Universitext.
Springer Verlag, 1993.

11. M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound.
J. Compl., 13:180-193, 1997.

