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1 Introduction

The RSA (Rivest, Shamir, Adleman) cipher algorithm has captured the imag-
ination of many mathematicians by its elegance and basic simplicity ever since
it was introduced in 1978. Numerous descriptions of the algorithm have been
published. Readers with a knowledge of a little basic number theory will
find the original paper [RSA] by the inventors of the algorithm, Ronald L.
Rivest, Adi Shamir, and Leonard M. Adleman, quite readable. Perhaps the
most famous description is Martin Gardner’s expository article [G], which
is written for readers of Scientific American. Martin E. Hellman [H] wrote
another good Scientific American article describing the RSA algorithm and
the knapsack cipher algorithm. The goal of this paper is to lead the reader
who has some mathematical maturity but no knowledge of number theory,
say a first year calculus student, a clever high school student, or an interested
engineer, through the basic results needed to understand the RSA algorithm.
The prerequisites are only a knowledge of the elementary school arithmetic
of the integers, high school algebra, some familiarity with the notions of sets
and of functions, and, most importantly, a real desire to understand how
the RSA algorithm works. We begin with a discussion of general crypto sys-
tems and the differences between classical systems and public key systems.
Then the treatment will give an informal but fairly rigorous introduction
to the division algorithm, divisibility properties, greatest common divisors,
the Euclidean algorithm, modular arithmetic, repeated squaring algorithm
for b%(mod m), time estimates for these algorithms, Euler’s totient function,
Euler’s Theorem, and, as a corollary, Fermat’s Little Theorem. Don’t worry
if you are unfamiliar with some of these terms now - they will all be ex-
plained when they arise. These ideas will then be used to explain the RSA
algorithm in detail. We will mention but not go into detail on the notions of
primality testing and methods of factoring. The student who wishes a deeper
understanding of these things is strongly recommended to read the pertinent
sections of Neal Koblitz’ excellent book [Ko], A Course in Number Theory
and Cryptography.

2 General Cryptosystems

A eryptosystem is a method of secret communication over public channels
between members of some group of people, which we call the crypto group.
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The term public channels refers to the possibility that people outside of
the crypto group can intercept messages sent between members of the group.
Broadcast radio, telephone lines, ordinary mail, and e-mail are all examples
of public channels. A cryptosystem will be made up of one or more (usually
many) units, called crypto cells, each of which provides for communication
from one member of the group to another.

Suppose that Bob wants to send a message x to Alice. Bob uses an en-
cryptor E to act on z and transform it to the encrypted message y = zFE.
Then he sends the encrypted message y to Alice. When Alice receives the
message, she uses a decryptor D to convert y back to the plaintext message
z: yD = (xE)D = z. Thus, the decryptor D undoes or inverts the action
of the encryptor E. In practice, E (as well as D) might be a mechanical
device, a computer program, or an algorithm) which converts z into y (or y
into x, in the case of D). This encryptor-decryptor pair (E, D) is the simple
cryptosystem, or crypto cell, that Bob uses to contact Alice.

We model this situation mathematically by taking E to be a one to one
function with domain X = dom(E) and range Y = ran(E), and taking
D = E~! with domain Y = dom(D) and range X = ran(D) to be the
inverse function of E. Thus, X is the set of all plaintext messages that can
be encrypted by E, and Y is the set of all encrypted messages. The functions
E and D satisfy the relationship

zE = yif and only if yD = z. (1)

A simple example is given by letting X =Y = {a,b,¢,d, ...,x,y, 2} be the
alphabet and taking E to be the permutation

o abcde fghijklmnopqrstuvwxy z )
" \kryfmtahovcjq xel szgnubi pwd

Now E acts on a letter in the top row by transforming it to the letter below
it in the second row. Thus, aFl =k, bE =r, ... , and zE = d. It is not difficult
to construct D = E~! from E to obtain

D= abcdefghi jkl mnopgqrstuvwxyz (3)
" \gvkzodshwlape tixmbqfujyncr

It may seem silly to let every message consist of a single letter, but we
do not need to stretch our imagination far to see how E encrypts “to err
is human” as “ne mzz og hugkx” and D decrypts “ne tezaobm foboxm” as
“to forgive divine”. The encryptor E is an example of an important class of
26! = 1x2x3x...x25x 26 encryptors called monoalphabetic ciphers that
are really just permutations of the alphabet. It is a simplifying convenience
to think of the set X of all plaintext messages as consisting of 26 letters,
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rather than the infinite collection of words and phrases that can be written
with these letters!

As we mentioned above, a cryptosystem consists of crypto cells (E, D)
which allow one member of the group to send a private message to another.
In a classical cryptosystem, the situation is as described in our example. If
Bob knows an encryptor E to send a message to Alice, he can easily figure out
the corresponding decryptor D, and so he can use D to understand messages
that Alice sends to him using E. The situation is symmetrical; Alice and Bob
share E and D, and use them to communicate. In order to set up private
communication over a public channel, Bob and Alice would first have to get
together privately and share the information (E, D), usually in the form of
a “key”. Unfortunately, the problem of key exchange is made worse by the
fact that if Bob and Alice use the same key for too long, an easedropper may
be able to break their key and decrypt their communications, so Bob and
Alice must get together frequently to exchange keys. David Kahn describes
the following consequences of not changing keys in Chapter 17 of [K] , espe-
cially page 567. After their Pear]l Harbor attack, the tremendous success of
the Japanese in spreading their forces throughout the Pacific delayed their
intended change of codebooks from 1 April to 1 June 1942. This enabled the
cryptanalysts in Hawaii to glean enough information from Japanese coded
messages to predict the Japanese attack on Midway and to get U. S. carriers
in the right place to surprise the Japanese and win a decisive victory.

Because of this need to avoid sending too many messages using the same
crypto cell (E, D), a cryptosystem, even one involving only two people, will
often use a large number of different crypto cells. Each crypto cell will be
given an identifying key. Different messages will then be encrypted using
different encryptors, with keys determined by the date, the time of day, or
somehow hidden in the message itself.

Another reason that a crypto system may require a number of different
crypto cells is to establish different cliques in the crypto group. A clique
within a crypto group is a set of people within the group who exclusively share
a given set of crypto cells. Any pair of a clique can communicate with each
other without members of other cliques being able to decrypt their messages.
In a military crypto group, a clique of all officers might have access to those
crypto cells used to send “confidential” messages, but only commissioned
officers would be allowed to read “secret” messages, and a still smaller clique
of officers with a special clearance would have access to the crypto cells used
for “top secret” traffic.

One useful organization of a crypto group is to make each pair a clique,
so that any two members of the group can communicate secretly with each
other. In general, a crypto group of N people would have N(N — 1)/2 pairs,
and it would require that many crypto cells (E,D) in order to allow any
two people in the group to enjoy private communication. For example, in a
group of 10 people, we have 10 ways to pick the first person x in an ordered
pair (x, y), and for each such x there would be 9 choices for y, for a total of
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10 x 9 ordered pairs of people. Since this method counts each unordered pair
{x, y} twice, there are 10 x 9/2 = 45 unordered pairs.

For several thousand years, only classical (also called symmetrical) crypto
systems were available. But in 1976, Diffie and Hellman [DH] introduced the
idea of a public key cryptosystem. In such a system, each user secretly
obtains a crypto cell (E, D) and then publishes the encryptor E. Clearly, the
central requirement of such a system is that it be prohibitively difficult to
figure out the decryptor D = E~! from a knowledge of E. For example, if
a given computer takes a millisecond to encrypt a given message using the
encryptor E, that same computer might take several thousand years to com-
pute the decryptor D using a knowledge of E. (This is called breaking the
encryptor.) Of course, several thousand computers working together might
break the encryptor in only one year, and a single computer which computes
several million times as fast as the original computer might break the encryp-
tor in nine or so hours. It is clear that the security of the system is dependent
on the present state of technology.

Diffie and Hellman suggested the use of a trapdoor function E for
which the possession of certain secret information would make it easy to
calculate its inverse D, but for which D would be very difficult to discover
without this information. Then each member M of a crypto group would
calculate and publish an encryptor Ej; and privately calculate its inverse, the
decryptor Dy, which he would keep secret. If Bob wants to send a message
z to Alice, he needs no private meeting to exchange keys. He simply looks up
Alice’s published encryptor E4, uses it to encrypt the message, and sends the
encrypted message y = xE4 to Alice. Since only Alice knows her decryptor
Dy, only Alice can decrypt y to obtain x = yD4 = xEaD 4. If she wishes to
reply, Alice can use Bob’s published encryptor Ep.

But how can Alice be sure that it was Bob who sent her the message?
After all, everyone has access to her encryptor E4 and could use it to send
her a message masquerading as Bob. But authentification is possible at the
cost of two extra messages. Bob could append a ten digit random number b
as part of his first message. Alice could generate a ten digit random number
a and send Bob the number a + b, using the encryptor Ep that only Bob
can decrypt. Bob then authenticates his original message as well as future
messages by appending a, which he obtains by subtracting b from Alice’s
appended a + b.

For certain public key crypto systems, Bob and Alice can even sign their
messages in a way that can be verified by an arbiter later. Let X, =
dom(Epr) = ran(Dyy) be the set of all plaintext messages and Yy = ran(Eyy)
= dom(D ) be the set of all encrypted messages for the crypto cell (Enr, Dpy)
belonging to crypto group member M. Suppose that every plaintext mes-
sage can be considered to be an encrypted message, and vice versa. That is,
Xu = Yy for every member M. If X4 = Y4 C Xp = Yp, then Bob can
send a signed message x in X4 to Alice by first encrypting it using Alice’s
encryptor E4 to obtain y = xF4 in X4 = Y4. Since Y4 C Yp, yis alsoin Yp,
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and so Bob’s decryptor can be applied to y to obtain z = yDp = zE4Dp in
Xp. Then Bob sends the signed encrypted message z to Alice. When Alice
receives the message z, she knows it is supposed to have come from Bob and
that X4 C Xpg, so she first applies Bob’s publicly known encryptor Eg and
then her secret decryptor D 4 to read the message zEgD s = (tEaDp)EgDa
=xgEsDy4 = z: Eg “undoes” Dy and then D4 “undoes” E4. Alice knows
the message was originated by Bob, because only Bob is able to use his se-
cret decryptor Dg to construct his encrypted message z. If another decryptor
had been inserted instead, then Alice’s use of Bob’s encryptor Ep would have
produced gibberish instead of the intelligible plaintext message x. Only Bob
could have sent the message! Moreover, if Bob later denies sending the mes-
sage (which could be a contract of some sort), Alice can show the messages
x,y, and z to the judge. The judge can then observe that tE4 =y = zEp to
verify Alice’s claim that Bob sent the message: Although Alice could make up
z and construct y = xFE4, she could not construct z = yDp without knowing
Bob’s decryptor Dp. Bob must have sent the message!

Similarly, Alice can send a signed message u to Bob by first applying her
decryptor D4 to produce v = uD4 in Y4 C Xp, and then applying Bob’s
encryptor Ep to produce w = vEp = uD4Ep in Yg, which she sends to
Bob. Bob then is able to decrypt and read u = wDpE4.

Note that the order in which the encryptors and decryptors are applied
is important if the containment X4 C Xp is strict and X4 # Xpg. If instead
of 2 = xrE4Dp Bob tried to form 2z’ = zDgE,, he would start with z in
X4 C Xp and apply Dp to obtain ' = xDpg in Xp, but maybe not in X 4
I'If ¢ is not in X 4, Bob cannot apply E4 to y' to get 2/ = xDpE4 because
E 4 only works on elements of its domain dom(E4) = X 4. A similar problem
could occur if Alice changed the order in which the encryptors and decryptors
are applied in sending a signed message to Bob.

Here are some advantages of public key crypto systems over classical
crypto systems:

(1) There is no need for private meetings to exchange keys.

(2) Only N crypto cells are needed for private communication between
each pair of a crypto group of N people using a public key system, but
N(N — 1)/2 are needed for a classical system, an increase by a factor of
(N-1)/2.

(3) Some public key systems allow signatures on messages.

The major disadvantage of public key cryptosystems is that those that
have been invented so far are up to a thousand times slower in encrypting
and decrypting messages. For this reason, a major use of public key systems
may be to exchange keys for a faster classical system.

The first and still most popular public key cryptosystem is the RSA algo-
rithm, which was introduced by its inventors, Ronald L. Rivest, Adi Shamir,
and Leonard M. Adleman in their 1978 paper [RSA].
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3 Arithmetic

Now we look into what the RSA is and why it works, beginning with a close
look into the arithmetic of integers. We will let N = {1, 2,3, ...} be the set of
positive integers or natural numbers and Z = {0,—1,1,—2,2, ...} be the set
of all integers. (The Z comes from the German word “Zahl” for “number”.)
All of the numbers we discuss in this section will be integers; that is, elements
of Z. We assume the truth of the following axiom.

Theorem 1. (Well Ordering Axiom) Every nonempty subset of nonneg-
ative integers has a smallest element.

In grade school you learned a method of long division of a positive integer
a (the dividend) by another positive integer d (the divisor) which produced
successive remainders and continued until the final remainder r was smaller
than the divisor. This process actually proves the next theorem for positive
integers a and d, and you can figure out from the positive case why it is true
regardless of the signs of a and d. We give another demonstration using (1).

Theorem 2. (Division Algorithm) If a and d are integers and b # 0, then
there are unique integers q and r which satisfy

(a) a=dq+r and

() 0<r<|d.

Proof. Consider the set S of all integers of the form a — dx, where = can
be any integer. Since x can be large and positive or large and negative and
d # 0, it is clear that S contains a nonnegative integer. Let 7 = a — dg be the
smallest nonnegative integer in S, obtained when x = ¢. Then a = dg + r, so
(2a) holds. If 7 > |d| we let s = sgn(d) = %1 so that ds = |d|; then x =g+ s
gives 0 <a—dzr=a—d(g+s) =a—dg—ds=r—|d| <r, contradicting the
choice of r as the smallest nonnegative element of S. Thus, 0 < r < |d| and
r satisfies (2b). To show uniqueness, we assume that a = dg + r = dq' + '
and 0 <7 <7 <|d]. Then 0 <r—7" =d(¢ —q) = |d||¢' —q|- It is clear
that r — ' < r < |d|, so we must have |¢' — ¢| < 1. Hence we must have
¢ —q=r—1r"=0,s0r=r"is unique and ¢ = ¢’ is unique. O

When the remainder » = 0 and a = dg, we say that d divides a, or
equivalently, a is a multiple of d, and we write d | a. Otherwise, d does not
divide a and we write d t a. To reiterate, d | a if and only if there is an integer
m such that a = dm. For example, 3 | 12 and 6 | 18, but 51 12 and 15 ¢ 18.
The following divisibility properties are easily shown to be true.

Lemma 3. (Divisibility Properties) If a, b, ¢, d, x, and y are integers,
then

(a) a|b and b | c implies that a | ¢ . (Divisibility is transitive.)
(b) a|b and b | a implies that a = £b . (Divisibility is antisymmetric.)
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(c) d|a and d | b implies that d | za + yb .

An integer d which divides both of the integers a and b is called a common
divisor of a and b, and the largest of these (when a and b are not both
0) is called the greatest common divisor (ged) of a and b. We write
d = ged(a, b) for this necessarily positive integer, and define ged(0,0) = 0.

Theorem 4. (GCD Theorem) If a and b are any integers, then there are
integers x and y such that ged(a, b) = za + yb.

Proof. This is clear for a = b = 0. If either a or b is nonzero, let S be the set
of all positive integers of the form sa + tb, where s and ¢ are integers. Since S
is not empty, it has a smallest element by (1). Let d = za+ yb be the smallest
element of S. The division algorithm (2) tells us that there are integers ¢ and
r satisfyinga =dg+rand 0 <r <d. Nowr =a—dg = (1 —x)a+ (—y)b
would be in S if it were positive, which would contradict our choice of d as
the smallest element of S. Therefore, r = 0 and a = dq is divisible by d.
Similarly, d | b, and so it is a common divisor of a and b. If ¢ is another
common divisor of a and b, then ¢ | d = za + yb by (3c) and d > 0 implies
¢ < d and d = ged(a, b). O

Now it is easy to see that ged(a,0) = |a| and ged(a, b) = ged(|al, |b]), so
we only need to find geds of positive integers. Note that if 0 < b < a, we can
use the division algorithm (2) to obtain a = bg + 7 and 0 < r < b. It is clear
from (3c) that the common divisors of a and b are exactly the same as the
common divisors of b and r, and so ged(a,b) = ged(b,r). This suggests that
a sequence of divisions can determine the ged of two positive integers:

(0) a=bq +m
(1) b= T1q2 + T2
(2) rL ="T2q3 + T3

(k) Th—1 = ThQr+1 + Th41

() Pn—1 = ragn41 + Tnyt

If we continue until the remainder r,41 = 0 we will have gcd(a,b) =
ged(b,r1) = ged(ry,re) = ged(rg, r6+1) = ged(ry,0) = rp,. This method of
finding the gcd was published by Euclid in his Elements more than 2000 years
ago. It is called the Euclidean algorithm. Next we give an example with
a = 54321 and b = 12345.
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(1) 54321 = 12345 x 4 + 4941
(2) 12345 = 4941 x 2 + 2463

(3) 4941 = 2463 x 2 + 15 (5)
(4) 2463 =15x164+3

(5) 15=3x5+0

Thus ged(54321, 12345) = 3 is the remainder in row (4), the last remainder
before the remainder becomes 0. In a later section we will see an extension
of this algorithm which finds z and y such that ged(a,b) = za + yb.

The divisors of 1 are called units. Actually, 1 and —1 are the only units
among the integers. An integer a is a composite if there are integers b and
¢ such that @ = bc and 1 < |b] < |¢|, that is, neither b nor ¢ are units. The
first ten positive composites are 4, 6, 8, 9, 10, 12, 14, 15, 16, and 18. An
integer p is a prime if p > 1 and the only divisors of p are £1 and +p. The
first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. FEuclid presented a proof
that every positive integer was a product of primes which was unique except
for the order of the factors, and he showed that there were infinitely many
primes. Two integers are said to be relatively prime if their only common
factors are +£1; that is, a and b are relatively prime if and only if gcd(a, b) = 1.

4 Modular Arithmetic

Let m be an integer greater than 1. We say that integers a and b are con-
gruent modulo m if and only if m | a — b, and we denote this by a = b
(modm). For example, 75 = 9(mod 33) because 75 — 9 = 66 = 2 x 33 is
divisible by 33. The relation of congruence mod m behaves pretty much like
equality. The relation is an equivalence relation on the set Z of all integers
which preserves addition and multiplication of integers.

(4.1) Properties of congruence: Let m be an integer greater than 1.
Then, for any integers a, b, ¢, a’, and b', the following properties hold:

(a) Reflexive: a = a(modm).
(b) Symmetric: a = b(mod m) implies b = a(mod m).
(¢) Transitive: a = b(mod m) and b = ¢(mod m) implies a = ¢(mod m).
(d) Addition: ¢ = da/(modm) and b = b'(modm) implies a + b = a' +
b (mod m).
(e) Multiplication: a = a'(modm) and b = b'(mod m) implies ab = a'b’' (mod m).

Proof. (a)-(d) are left to the reader. For (e), a = a’(mod m) and b = b’'(mod m)
implies m | a —a' and m | b— V' implies m | (a —a')b+a'(b— V') = aa’ — b
implies ab = a'b'(mod m). |

For example, 37 = 4(mod 33) and 45 = 12(mod 33), so 37 + 45 = 82 =
4+ 12 = 16(mod 33) and 37 x 45 = 1665 = 4 x 12 = 48 = 15(mod 33),
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which can be seen directly by the facts that 33 | 82 — 16 = 66 = 2 x 33 and
33| 1665 — 15 = 1650 = 50 x 33.

The Division Algorithm (2) shows that every integer a can be written in
the form a = mqg+a with 0 < @ < m. Thus, every a can be reduced (mod m)
to an integer @ in the set Z,, = {0,1,2,...,m — 1} of residues modulo m.
The example above illustrates that it is usually easier to reduce first and then
perform arithmetic operations rather than the other way around!

Now we can consider only the m elements in Z,,, perform addition and
multiplication on these elements, and reduce them to again get elements of
Zim. The result is an arithmetic modulo m on the set Z,, that is much the
same as the arithmetic on Z. But there are differences! For example, in Z33,
6 x 9 = 21(mod 33) and 6 x 31 = 21(mod 33), so the law of cancellation does
not hold for multiplication by 6 modulo 33. Why not? We get a clue when
we subtract the first of these congruences from the second: 6 x (31 —9) =
6 x 22 = 132 = 0(mod 33). Although 6 # 0(mod33) and 22 # 0(mod 33),
we still have 6 x 22 = 0(mod 33). But now we see why. 33 =3 x 11; 6 has a
factor of 3 and 22 has a factor of 11, so when multiplied together, the product
has a factor of 33, and 33 = 0(mod 33). Suppose we multiply by a number
with no factor in common with 33, for example, 10. Then 10z = 0(mod 33)
means that 10z is divisible by 33. But then z must have both a factor of 3
and a factor of 11, since 10 has neither. That means that z is divisible by 33,
and so z = 0(mod 33). Moreover, it follows that 10z = 10y(mod 33) implies
10(z — y) = 0(mod 33) implies z — y = 0(mod 33) implies x = y(mod 33).
Multiplication by 10 is cancellative modulo 33. These facts are illustrated in
the table below.

z[001 23 45 67 8 910111213141516
62/ 0 612182430 39152127 0 612182430
1020102030 7172741424 1112131 81828

x| 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
6z 3 9152127 0 612182430 3 9152127
10z| 51525 2122232 91929 61626 31323

Multiplication of elements of Z33 by 6 gives all multiples of 3, each re-
peated 3 times. But multiplication by 10 gives every element of Z33 exactly
once in another order. Note that 10 is a unit in Zss because 10 x 10 =
1(mod 33).

Now let m be a fixed integer that is greater than 1, and let a be any
integer. If d = gcd(m,a) > 1, then m' = m/d and o' = a/d are both integers
and m' # 0(modm) since 0 < m' < m but am’ = a’'m = 0(modm). If there
is an x # 0(modm) such that ax = 0(modm) we call a a zero divisor
modulo m.

On the other hand, if ged(m,a) = zm + ya = 1 by (3.4) then ya =
1(modm) shows that a is a unit modulo m and a has an inverse a~! = y.
(This is why a unit is called invertible.) In this case, a is cancellable modulo
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m, because the congruence ax = ay(modm) need only be multiplied on both
sides by a~! to show that z = y(modm). In particular, az = 0(modm)
implies az = a - 0(modm) implies z = 0(modm), and so a is not a zero
divisor. Thus we have the following result.

Theorem 5. Let m be an integer that is greater than 1 and let a be any
integer. Then the following are equivalent:

(a) ged(m,a) = 1.

(b) az = 0(modm) implies that z = 0(modm); that is, a is not a zero
divisor modulo m.

(c) ax = ay(modm) implies x = y(modm); that is, a is cancellable
modulo m.

(d) a has an inverse modulo m; that is, there is an element b in Z, such
that ab = 1(mod m).

We define Z}, = {a € Z, : gcd(a, m) = 1} to be the set of units in Z,. If a
isin Z},, then multiplication by a is cancellable modulo m, and so multiplying
all of the elements in Z,, by a simply moves the elements around. Moreover,
if a and b are both in Z},, then abb~'a™" = ala™" = 1, so ab is invertible and
is also in Z7,. That is, Z;,, is closed under multiplication, and if a is any unit,
multiplying the set Z}, of all units by a simply moves the elements of Z},
around, or permutes them. The following tables of multiples of Z3; illustrate
this.

x| 1 2 45 7 8101314161719 20 23 25 26 28 29 31 32
Tx| 71428 21623 425321320 1 829101731 51926
102{1020 717 414 131 828 525 232192916 261323

The Euler totient function ¢ is defined by p(m) = |Z},|, that is, ¢(m)
is the number of units modulo m. For example,

©(33) = [{1,2,4,5,7,8,10.13,14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32}| = 20.

For general m > 1 and any a with ged(m,a) = 1, we can write Z}, =
{ar,as,... ,a,(m)} = aZ;, = a{ar,as,... ,aym)} = {aa1,aas,... ,aa,0m)},
since multiplication by a simply permutes the elements of Z} . Now let
A be the product of every element in Zjy,. Then A = ajaz---aym) =
aa1aaz - - - Ay (m) = a®™aias - - - Ap(m) = a®(m) A (modm). Cancellation of
A modulo m, which is valid since A € Z%,, gives 1 = a®(™ (modm). This
proves Euler’s Theorem, which is the mathematical basis of the RSA algo-
rithm!

Theorem 6. (Euler’s Theorem) Ifgcd(a,m) = 1, then a®™ = 1 (modm).

Here are a couple of examples modulo 33: ged(33,10) = 1 and 10%° =
100000000000000000000 = 99999999999999999999 + 1 = 1(mod 33);
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ged(33,7) = 1 and 720 = (49)10 = (16)10 = (24)10 = 240 = (25)% = (32)% =
(—1)® = 1(mod 33).

Now if p is a prime it is easy to see that ¢(p) = p — 1; moreover, for any
integer a, it is easy to see that ged(a,p) = 1if p { a and ged(a,p) = p if
p | a. In the first case Euler’s Theorem (4.3) shows that a?~! = 1(modp),
and multiplication on both sides by a gives a? = a(modp). In the second
case, a = 0 = aP(mod p). Thus, in any case, we have the following corollary
to Euler’s Theorem.

Theorem 7. (Fermat’s Little Theorem) Let p be a prime. If a is any
integer, then a? = a(mod p) and a?~' = 1(modp) if and only if p1 a.

Theorem 7 can be used to show that a number is not prime. For example,
232 = 22(25)6 = 4(32)% = 4(—1)® = 4(mod 33) shows that 33 is not prime.
However, 210 = (2°)2 = (32)2 = (—1)2 = 1 (mod 11) shows that 11 may be
prime. More evidence is given by the fact that 310 = (3%)2 = (243)? = (1)?
= 1(mod 11), but it still doesn’t prove that 11 is prime.

Corollary 8. Let p and q be different odd primes, let m = pq, and suppose
that r = 1(mod (p — 1)) and r = 1(mod (q — 1)). If a is any integer, then
a” = a(modm) .

Proof. If p { a, then a” = a*®P~V+1 = (a?P~1)*(a) = (1)*(a) = a(mod p). If
P | a, then a = 0 = a"(mod p). In either case, a” = a(modp) and p |a" —a .
Similarly, g | a” — a . Since both p and ¢ divide a” — a, it follows that m = pg
divides a” — a and hence that a” = a(modm) . O

5 The RSA Algorithm

Now we are finally able to describe the RSA public key cryptosystem! The
RSA algorithm is actually a cipher, which means that it works on letters
of the alphabet or on the symbols used to write a language rather than on
words or meaningful phrases of the language. It really acts on a collection
of numbers, so the first job is to get a uniform method of converting the
symbols we want to transmit into numbers. One method would be to replace
A with 01, B with 02, ..., Z with 26, and communicate only with these 26
letters. Another method would employ the ASCII code. We assume that
some such uniformly understood technique has been established throughout
the cryptosystem, and will not concern ourselves with it any more. For us, a
message will be a number!

Since the RSA algorithm is a cipher, we will use the terms “encipher”
and “decipher” that apply to ciphers (“encode” and “decode” are the corre-
sponding terms for codes) rather than the more general terms “encrypt” and
“decrypt” that apply to both ciphers and codes, and will make other changes
in terminology as appropriate.
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Here is what to do in order to set up an RSA cipher. We will discuss how
to do it in §6 and §7.

(1) Secretly choose two large primes p and ¢, say each of about 100
digits, with 100 < ¢/p < 10000, so that g has 2 to 4 more digits than p. For
a small example, let p =3 and ¢ = 11.

(2) Let m = pq. Note that Z,,, = {0,1,2,... ,m—1} contains ¢ multiples
of p, namely 0-p, 1-p, 2-p, ..., (g — 1) - p, and p multiples of ¢q. These
are the only elements of Z,, which have factors in common with m, and so
Z}, contains the remaining m —p—q+ 1 = (p — 1)(g — 1) elements of Z,,
that are relatively prime to m. (The “+1” compensates for the fact that 0
was counted twice, once among the ¢ multiples of p and again among the
p multiples of ¢.) Thus, p(m) = |Z}| =m—-p—qg+1=(p—1)(¢g—1).
Abbreviate ¢(m) by ¢. In our example, m = 33 and ¢ = 20.

(3) Choose e > 10° such that ged(¢p, e) = 1 and secretly find d such that
ed = 1(mod ¢). That is, d = e~!(mod m), and ed = ky + 1 for some integer
k. For our example,

p=20,e=T,p—2e=6,—p+3e=1,d=3.

(4) Publish the enciphering key (m, e). Keep the deciphering key (m, d) secret.

The security of the RSA cipher is based on the ease of finding the decipher-
ing number d when the factorization of m = pq is known and the difficulty
of finding d from m and e when the factorization is not known. This will be
discussed at greater length in the next two sections.

How is the RSA cipher used to send a message? Anyone can use the public
key (m,e) to encipher the message x in X = Z,, by raising z to the power
e and reducing modulo m to obtain y = zE = z°(modm). To decipher the
message y, the holder of the secret deciphering key (m, d) raises y to the power
d and reduces modulo m to obtain z = yD = y%(modm). For our example
with (m,e) = (33,7), the message x = 17 is enciphered as y = 17E = 177
(I7)(-16)° = (1T)(162)* = (17)((32)(8))° = (17)(=8)° = (17)(64)(~8)
= (17)(-2)(-8) = (-34)(-8) = (-1)(—8) = 8(mod33). Then y = 8 is
deciphered with the secret key (m,d) = (33, 3) to obtain z = y* = 8% = §(8?)
= 8(64) = 8(—2) = —16 = 17(mod 33).

Why does this work? It is a result of Corollary (4.5): yD = (zE)D= (z¢)¢
= z¢? = gh¥+tl = p(modm) because kp +1 = k(p—1)(g—1) +1 =1
modulo p — 1 and modulo ¢ — 1. Similarly, z = yD = y%(modm) implies
zE = (yD)E = (y%)¢ = y% = y(modm). Thus, E and D are one to one
functions from the set X =Y = Z,, onto itself; that is, they are permutations
of Z,. They have the property that for any = and y in Z,,, xE = y if and
only if yD = z. The decipherer (decryptor for a cipher) D is the inverse
function D = E~! of the encipherer (encryptor for a cipher) E, and vice
versa, E = D1, Each undoes what the other does!

Let us suppose that Alice and Bob have independently taken the above
four steps to set up their RSA ciphers. Alice has published her encipher-
ing key (the encrypting key used with a cipher) (ma,e4) and has kept her



RSA 113

deciphering key (m ,d4) secret. Alice’s set of plaintext and enciphered “mes-
sages” are both the same set X4 = Y4 =Z,, ={0,1,2,... ,m4 — 1} of all
nonnegative integers less than m 4. Alice’s encipherer E4 transforms any z
in Xg4 =2%Zp, toy =xEs = 2°4(modm) 4, which is also in Z,,,. So Bob
sends y = xE4 = 24 (modm) 4 to Alice. When Alice receives y, she applies
her decipherer D4 to y to obtain yD4 = y%4(modm)4 = =.

Now Bob has public enciphering key (mp,ep), private deciphering key
(mp,dB), and message set Xp =Yp = Zp, = {0,1,2,... ,mp—1}. Assume
that ma < mp. Then X4 g Xp. If Bob wants to send a signed message x
to Alice, he first applies her public encipherer E4 to obtain y = zE,4 in
X4 ; Xp. Since y is also in Xpg, he can apply his decipherer Dp to obtain
z=yDp =xE4Dpg in Xp, which he sends to Alice. When Alice receives the
message z, she knows it is supposed to have come from Bob and that X 4 g
X B, so she first applies Bob’s publicly known encipherer Ep to obtain zEp =
y in Xp. But y is also in X 4, so Alice can then apply her secret decipherer
D 4 to read the message zEpD 4 = yD 4 = x. As explained in §2, Alice knows
the message was originated by Bob, and she can prove that Bob sent the
message to an impartial arbiter if Bob later denies it. Bob must be careful to
apply E4 first and Dp second, because y' = xDp might not be in the domain
X4 =2Zm, of Eo4 and so y'E4 may be undefined. Worse than this, if Bob
carelessly calculates 2’ = (y')¢4 (modmy4) = ((x%®)(modm)p)¢® (modm) 4,
then Alice may not be able to recover z from 2’. We will see what can happen
in the examples below.

In like manner, Alice can send a signed message u to Bob by forming
v =uD4 and then w = vEg = uD4FER that Bob can read as u = wDgE4.
Alice also must exercise care in applying D4 and Ep in the correct order.

For example, suppose Alice has enciphering key (ma,ea) = (33,7) and
deciphering key (ma,ds) = (33,3), and Bob has keys (mp,ep) = (65,11)
and (mp,ds) = (65,35), and Bob wants to send the signed message z =
18 to Alice. (The reader can follow the calculations by using the repeated
squaring algorithm described in the next section or a computer program like
MAPLE.) Bob then calculates y = 184 = (187)(mod33) = 6 and then
2z = 6Dp = (6°%)(mod 65) = 11, which he sends to Alice. Alice then applies
Bob’s encipherer Eg to z = 11 to obtain y = 11''(mod 65) = 6, and then
applies her decipherer D4 to y = 6 to obtain x = 6D 4 = 63(mod 33) = 18 in
order to read the original message z = 18.

But what happens if Bob applies his deciphering key first and then his
enciphering key? Bob transforms z = 18 to y’ = 18Dp = 18%%(mod 65) =
47, and then calculates 2z’ = 47E4 = 477(mod 33) = 20, not realizing that
y' = 47 is not in the domain of E4. If Alice calculates either y; = 2’D 4 =
20%(mod 33) = 14 and then z; = ¥ Eg = 14 (mod 65) = 14 or yo = 2’Ep =
20" (mod 65) = 15 and then 2o = y2D4 = 15°(mod 33) = 9, neither ; =
Z’DsEp = 14 nor 22 = 2'EgDs = 9 is the message z = 18 that Bob
intended. The order of application of operators is important! When sending
a signed message the operator (encipherer or decipherer) associated with the
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smaller modulus m must be applied first, and when receiving a signed message
the operator associated with the larger modulus must be applied first.

The reader is invited to construct more examples of signed messages be-
tween Alice and Bob. The author was amused to find that Bob could have
successfully sent the sample message x = 17 to Alice as a signed message
with operators reversed because 17Dp = 173°(mod 65) = 23 turned out to
be in XA.

6 Algorithms and Time Estimates

In order to set up an RSA cipher algorithm, one must first find two large
primes p and ¢, find a number e relatively prime to ¢ = (p — 1)(q¢ — 1), and
then find the inverse d of e modulo ¢. Then, in order to use the algorithm,
one must calculate the residues of z¢ and y¢ modulo m = pq, and all of this
has to be “easy” for numbers d, e, o, m, z,y with up to 200 digits each! But
it has to be “hard” to factor m without a prior knowledge of p, ¢, p, or d. In
this section and in the next we explain why these tasks are “easy” or “hard”.
Much of this material in this section is covered in greater detail in sections 1
and 3 of Chapter I of [Ko].

The ease or difficulty of performing an arithmetic procedure can be mea-
sured by the number of bit operations needed to carry it out. A bit opera-
tion is the basic computer step used to calculate a single bit in the addition
or subtraction of two numbers in binary notation. Thus the addition or sub-
traction of two k-bit integers requires k bit operations. Now a positive integer
a=ag+ab+--+ap_1bF"! with 0 < a; <band ap_; #0has k—1<
logy a < k and hence has k = 1 + |log; a| base b “digits”. (Here [t| denotes
the greatest integer less than or equal to t. [¢] is called the floor of the real
number ¢, and it satisfies [t] <t < |t]+1. For example, |3.14] = 3 = |3] and
|—3.2] = —4 = | —4]. Most computer languages and calculators use INT(t)
for |¢].) Thus the positive integer a has 1 + |log, a|, or about log, a, bits.
For integers a and b we write

T(a+b) =0(log,a) when0 < b<a (6)

to indicate that addition (or subtraction) takes time proportional to the num-
ber of bits in the largest addend.

The “big O-notation” is defined as follows. If f and g are functions
of n variables x1,%s,---,T,, we say that f is bounded by g, and write
flx1, @2, ,xyn) = O(g(x1,22,- -+ ,x,)) or f = O(g), if there are constants
B and C > 0 such that 0 < f(z1,22, - ,Zn) < Cg(z1,T2,--- ,T,) whenever
all of the z; > B. The reader may find it helpful to simply interpret the big
“O” as a fixed but unknown positive constant.

Consider the product 27 x 11 = 297 in binary (base 2) notation.
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11011
1011
11011
11011
11011
100101001

From this example we see that if @ has k bits and b has j bits with j < k,
we can find the product by writing one copy of the multiplicand a with its
unit bit aligned beneath each 1 in the multiplier b and then adding these
staggered copies of a pairwise to form the product. There are no more than
j additions, each taking no more than j + k < 2k bit operations, and so the
whole process requires no more than j(j + k) < 2jk = O(log, blog, a) bit
operations. This yields

T(a x b) = O((log, a)(log, b)) = O((log, @)®) when 0<b<a. (7)

A similar analysis of the grade school long division algorithm leads to the
same result for division of the positive integer a by the positive integer d to
obtain the quotient ¢ and the remainder r satisfying the division algorithm
(2). We indicate the time required by

T(q,7:a=dq+r) = O((log, a)(log, d)) = O((log, a)?) when 0<d < a.
(8)

Note that if we want to find the residue @ modulo m of an integer a we
need only use the division algorithm to find ¢ and @ such that a = mq+ @
with 0 <@ < m, so it follows that the time needed for the procedure is

T(a:a=a(modm) and 0 <a < m) = O((log, a)(log, m)). (9)

We should remark that we are obtaining crude upper bounds for the times
required to perform various calculations which can be lowered considerably by
carefully examining more sophisticated algorithms presently in use. Our goal
is just to get a rough idea of the difficulty involved in the RSA calculations.

We want to extend the Euclidean algorithm (4) to one that will find not
only d = ged(a, b), but also find = and y so that d = ged(a,b) = za + yb
. We use vector notation 7 = (v1, v2,v3) and write the algorithm in pseudo
computer code, using the notation “u < v” to mean “replace u by the value
of 7”.

Theorem 9. (Extended Euclidean Algorithm) Algorithm for d = ged(a, b)
=zxza+yb for 0 <b<a.

(¢) @+ (a,1,0)
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(b) v+ (b,0,1)

(c) do W+ U — |u1/v1|U, T+ U, U < W while v1 #0
(e) d uy, T+ uz, y+ us

(f) return d,z,y.

We repeat example (3.6) in matrix form, with the sequence of vectors u
and T written as rows of the matrix. On the right we write the example as we
might do it “by hand”. Both forms illustrate that ged(54321,12345) = 3 =
(—822)(54321) + (3617)(12345).

54321 1 0 a = 54321
12345 0 1 b= 12345

4941 1 —4 a— 4p = 4941

(6.6) | 2463 -2 9 —2a + 9b = 2463
15 5 —22 56 — 22b= 15

3-822 3617 | —822a + 3617b= 3

i 0 4115 —18107| 4115a — 18107b = 0

1
This process really amounts to the row reduction of the matrix [Z 0 (1)]

to |:g ;j Z:| with d = ng(a;b) = xa + yb and 0 = ua + vb. At the kth step,

startingat k = 0 withr_y =a,r9 =b,2_1 = 1,29 =0,y_1 =0, and yo = 1,

we have
[Tk Tk Yk ] _ [0 1
Tkl Thil Ykl 1 —qrq1
where the ry and gqx4+1 = |7k—1/7%] are the remainders and quotients dis-
played in (4). Note that at every stage we have ry, = xzpa+ygb. This technique

has been discussed several times (See [Bl] and [MW].) in the literature.
Consider rows (k) and (k+1) of (4):

Tk—1 Tk—1 Yr—1
TR Tk Yk |

(k) rrk—1 = rrQr+1 + Tht1,
(k+1) rr = Try1qQrt2 + Thto-

If rpy1 < 37 it follows from the division algorithm that 0 < rpye <
Tet1 < 37k, and if g1 > 2rg, then gryo = 1 and rpg0 = 1 — g1 <
37k Eventually ry, < gra < 1, so the algorithm must terminate in about
n = 2log, a steps. The calculation involved for each step occurs in line (c) of
(9) and involves one division and three multiplications of numbers no larger
than a, and so requires no more than 4(log, a)? bit operations, by (8) and
(7). The whole algorithm can be accomplished with no more than 8(log, a)?
bit operations. This proves

T(d,z,y : d = ged(a,b) = za + yb) = O((log, @)®) when 0< b < a.
(10)
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Now we turn our attention to the problem of evaluating z¢(modm). For
this purpose we consider the following construction.

Theorem 10. (Mod Power algorithm) To evaluate z°(modm), perform
the following algorithm:

(o) E<~e, Bz, P+ 1,

(b) do until E =0

(c) if E even

(d) E + E/2, B+ B- B(modm)
(e) else

(f) E+~ E—1, P+ P-B(modm)

(9) end if
(h) return P.

Proof. Tt suffices to show that P - BY = z°(modm) at every step. This is
clear in line (a). If true before line (d) is executed, it holds afterward, because
P-BP = P.(B-B)?/2. And if true before line (f) is executed, it holds
afterward, because P- B = (P- B) - BF~!. Therefore P = z¢(mod m) when
E=0. O

When E is in binary form, line (c) is performed by checking whether the
final bit is 0 or not. If so, E < E/2 is performed by dropping final 0, and if
not, £ «+ E—1 is performed by changing the final 1 to a 0, so these operations
take negligible time. Since B and P are both less than m, we see that each of
the products B- B and P - B takes no more than O((log, m)?) bit operations,
by (6.2). Then replacing a by m? in (9) shows that each of the operations
B «+ B-B(modm) and P < P-B(modm) takes O((log, m)?) bit operations.
Adding these two O((log, m)?) gives O(2(log, m)?) = O((log, m)?) for the
execution of either line (d) or (f). After each execution of line (f), E be-
comes even, so each execution of (f) must be followed by an execution of (d),
thereby halving E. Therefore, there can be at most 2log, e passes through
the loop (b). Hence the algorithm requires no more than O((log, e)(log, m)?)
bit operations.

T (z*(modm)) = O((log, ) (log, m)*). (11)

We end this discussion of z°(modm) with a numerical example in which
we use the algorithm (10) to evaluate 187 (mod 33), 477 (mod 33), 635 (mod 65),
and 183%(mod 65). The reader should refer back to (10) to be sure he under-
stands the changes in B, E, and P.



118 W. P. Wardlaw

(mod 33) (mod 33)
B E P B E P
18 7 1 47 7 1
18 6 18 47 6 47
27 3 18 31 3 47
27 2 24 31 2 5
3 1 24 4 1 5
3 0 6 4 0 20
18"(mod 33) = 6 477 (mod 33) = 20
(mod 65) (mod 65)
B E P B E P
6 35 1 18 35 1
6 34 6 18 34 18
36 17 6 64 17 18
36 16 21 64 16 47
61 8 21 1 8 47
16 4 21 1 4 47
61 2 21 1 2 47
16 1 21 1 1 47
16 0 11 1 0 47
65 (mod 65) = 11 18%5(mod 65) = 47

We conclude this section with the following definition which is crucial to
the study of time estimates for algorithms.

Definition 11. An algorithm to perform a computation involving n integers
T1,%2, - Xy Of k1, ko, - -+, k, bits, respectively, is a polynomial time al-
gorithm if there are positive integers dy,ds,--- ,d, such that the number
of bit operations required to perform the algorithm is O (k' k$? - - - kd»). In
this case, we say it is of degree d; in k; ( or log, z;) and that it is of total
degree d; +dy + --- + d,.

All of the algorithms presented in this section are of polynomial time.
Basically, polynomial time algorithms are considered to be easy, and non-
polynomial time algorithms are considered to be hard!

7 Implementation

The first job in implementing an RSA cipher is to secretly find two primes p
and ¢ of about 98 — 99 and 101 — 102 digits, respectively, so that m = pq has
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about 200 digits. For greater security we can choose larger primes. In order
to make them hard for our antagonists to discover, we should randomly select
the primes. One way of doing this is to use a random number generator to
pick an integer with the appropriate number of digits, add one if it is even,
and test the resulting integer n for primality.

But how can we tell that an odd integer n is prime? We could try the
“dumb test”: Try to divide n by every positive integer d < y/n. This could
take about 10°° trial divisions, each taking an average of (log,10%0)% =~
27,000 bit operations, for a total of about 3 x 10°* bit operations. If our
computer can do 10° bit operations a second, this could take 3 x 10*° sec-
onds, or about 8 x 10%® years.

Fortunately, there are better ways! We know by Fermat’s Little Theorem
7 that if n is prime and 1 < b < n, then

b" 1 = 1(modn). (12)

Hence, if (12) does not hold for some b satisfying 1 < b < n, then we know
that n is composite, and we call b a witness to the fact that n is not prime.
On the other hand, n could be an odd composite number and (12) could still
hold for some b satisfying 1 < b < n, but this is not likely.

Definition 12. If n is an odd composite number and (12) holds for some b
satisfying 1 < b < n, then we say that n is a pseudoprime to the base b.

For example, 91 is a pseudoprime to the base 3 and to the base 10,
since 3% = 10%° = 1(mod91). However, both 2 and 5 are witnesses to
the compositeness of 91, since 2% = 5% = 64(mod91). These congru-
ences are fairly easy to calculate once you realize that 3 = 1(mod 91) be-
cause 3° = 1(mod91) implies that 10® = (10%)® = 9% = 3% = 1(mod 91)
and 64 = —27(mod 91) implies that 642 = 272 = 3% = 1(mod 91), so 2%
= (20)1% = 6415 = 64(64%)" = 64(1)” = 64(mod 91) and 5% = (26)~! = 64!
= 64(mod 91) because (2¢)(5%) = 10% = 1(mod 91).

Unfortunately, there are odd positive composites n, called Carmichael
numbers , such that (12) holds whenever gcd(n, b) = 1. As recently as 1994,
Alford, Granville, and Pomerance showed in [AGP] that there are infinitely
many Carmichael numbers. The smallest Carmichael number is 561 = 3 x
11 x 17. Note that (12) holds for b = 2,4,5,7,8,10, and 13, but of course it
can’t hold for b = 3,6,9,11,12,15, or 17, or any other b with ged(561,b) > 1,
since b* = 1(modn) implies ged(n,b) = 1.

We remarked that 2°¢° = 1(mod 561). Note that 560 = 35 x 2* and 23% =
263(mod 561), 2532 = 2632 = 166(mod 561), 232" = 1662 = 67(mod 561),
2%5x2° = 672 = 1(mod 561). This last congruence implies that 561 | 67% — 1 =
(67 —1)(67 + 1) = 66 x 68. But clearly 561 1 66 and 561 { 68, and so both
ged (561, 66) = 33 and ged (561, 68) = 17 are nonunit factors of 561 = 33 x 17.
Several useful lessons can be learned from this example.
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Lemma 13. If a and n are positive integers with n odd and 1 <a <n —1
such that a®> = 1(modn), then ged(n,a — 1) > 1, ged(n,a + 1) > 1, and
n = ged(n,a — 1) ged(n,a + 1) is composite.

Proof. By hypothesis, n | a> — 1 = (a — 1)(a + 1). Note that we have 3 <
a <n—1,since a =2 and a = 3 yield contradictions. But a # £1(modn)
implies n f aF 1 implies gcd(n,a—1) > 1 and ged(n,a+1) > 1. The fact that
n | (@ —1)(a + 1) implies that n | gcd(n,a — 1) ged(n,a + 1). Since ged(a —
1l,a+1) =ged(a—1,2) =1 or 2 and n is odd, gcd(n,a—1) and ged(n,a+1)
are relatively prime, and they both divide n, and so their product divides n.
That is, n | ged(n,a — 1) ged(n,a + 1) | n, so n = ged(n,a — 1) ged(n,a + 1).

O

Definition 14. Suppose that n is an odd composite number and n—1 = 25¢
with t odd. If b € Z? satisfies either b* = 1(modn) or b*'t = —1(modn) for
some 7 such that 0 < r < s, then n is called a strong pseudoprime to the
base b.

The next theorem is a quotation of Proposition V.1.7 from [Ko], page
130. The reader is referred to [Ko] for the proof.

Theorem 15. If n is an odd composite integer, then n is a strong pseudo-
prime to the base b for at most 25% of all 0 < b < n.

This suggests a probabilistic test for the primality of an odd integer n,
called the Miller-Rabin primality test. First, write n — 1 = 2°¢ with ¢
odd. This takes negligible time if n is written in binary form: s is just the
number of trailing zeros in n — 1 and ¢ is the number left when these zeros
are dropped. Randomly select an integer b satisfying 1 < b < n. Use the
Mod Power algorithm (10) to evaluate ¢ = b*(modn) in time O((logyn)?).
If either ¢ = 1 or ¢ = —1(modn) for some r with 0 < r < s, we say that
n passes the test for base b. In this case, n is either a prime or is a strong
pseudoprime to the base b. When ¢ # 1 we must square and reduce the result
modulo n, doing this r times with 0 < r < s < log, n, which can be done in
time rO((logy n)?) = O((logy n)?),. by (6.2) and (9). Suppose that n passes
the test for k& randomly chosen values of b with 1 < b < n. It follows from
Theorem (7.4) that the probability that n is composite is < 1/4F.

If n passes the test for 50 or more values of b, we might call it an indus-
trial grade prime. For a 100 digit odd number n this could take on the
order of

50(log, n)® ~ 50(333)3 ~ 2 x 10°

bit operations, or 2 seconds on the very fast computer hypothesized at the
beginning of this section. If we assume, perhaps more realistically, that our
computer can perform 10 million bit operations per second, then it takes on
the order of 3 or 4 minutes.
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For each positive integer n, let w(n) be the number of primes less than or

( w(n)riog n )

equal to n. The Prime Number Theorem says thatlim =1 as

n — 00. Thus 7(n) ~ 525 for large values of n and the frequency of primes
near a large value of n is about @, so one would expect to test O(logn)
numbers in order to find a prime bigger than n. Putting all of this together

gives the following result.

Lemma 16. An industrial grade prime p > n can be found with O((logy n)*)
bit operations.

The purist may be disappointed in not having a definitive polynomial
time primality test that actually proves that a number is prime. Although
not polynomial time, there is a definitive primality test which in practice
can prove primality of hundred digit numbers in a matter of seconds. It is
described in [CL].

Great: now we can secretly produce two large primes p and ¢ in order
to set up an RSA cryptosystem. Let us assume that p < q. The calculation
of m = pq takes only O((log, p)(log, q)) = O((log, q)?) bit operations by
(6.2), and then ¢ = p(m) = (p—1)(¢q —1) = m — p—q + 1 is a bargain
at O(log, q) by (6.2)! Finally, we want to find numbers e and d such that
ed = 1(modm). One method is to randomly choose fairly large integer values
of e and calculate the gcds until ged(p,e) = 1 = zp + de. Since we expect
to find a prime close to ¢ in log ¢ tries, we should need no more to find a
number relatively prime to . Combining this with (6.7), finding e and d can
be done in O((log, p)*) bit operations. Another way to find an e relatively
prime to ¢ is just to locate a prime e > ¢, which again is an O((log, ¢)*)
process.

Therefore we can set up an RSA cryptosystem with modulus m in poly-
nomial time, specifically, with O((log, m)*) bit operations. But what about
using it to communicate? It follows from (11) that messages can be enciphered
in time 7' (z®(mod m)) = O((log, €)(log, m)?). Likewise, the deciphering time
is T(z%(modm)) = O((log, d)(log, m)?). This concludes the “easy” part: We
have seen that it is “easy” to set up and use an RSA cryptosystem.

8 Security

Factoring products of large primes is believed to be very difficult. This belief
arises from the fact that people have been trying hard to accomplish such
factorizations efficiently for thousands of years without much success. The
security of the RSA cryptosystem is based on the belief that breaking the
cipher is equivalent to factoring the modulus m given in the public key (m, e).

Of course, if one could find a factorization of the modulus m = pq used
for an RSA system with public key (m,e), one would be able to find ¢ =
p(m) = m — p—q+ 1 and use the extended Euclidean algorithm to find
ged(p,e) = zp +de =1 and d, and thereby obtain the secret deciphering
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key (m,d). Conversely, knowing ¢ is sufficient to factor m. We assume that
p<g.
A=p+qg=m+1—y,
A =p+q’=p"+2p+¢ =p>+2m+ ¢,
A —dm=p* —2m+ ¢ =p* - 2pg+¢> = (p—9)°,
B=q—p=+A2—4m,
p=(A—B)/2and ¢= (A + B)/2.

Hence, knowing ¢ is equivalent to being able to factor m.

But we still don’t know that we can’t break the RSA by some method that
does not lead to a factorization of the enciphering modulus m. A complete
solution to the cipher would mean being able to recover every x in Z,, from
its encipherment y = z¢(mod m). Could this be done without a knowledge
of the unique d = e~!(mod ¢)? The answer to this question is yes, as we can
see from our example with enciphering key (m,e) = (33,7). Recall that the
deciphering key was (m,d) = (33, 3). We will see that (m,d') = (33, 13) works
just as well! For if y = 27 (mod 33), then y'3 = (z7)!% = 2°! = z(mod 33) by
Corollary 8 because 91 = 1(mod 2) and 91 = 1(mod 10).

Okay, suppose that one has a number d’ such that z¢? = z(mod m)
for every z in Z,,. That means that one has a number b = ed' — 1 such that
2z = 1(modm) for every z in Z},. b must be even because (—1)° = 1(modm).
Then it turns out that there are positive integers r and a (See [Ko], p. 94.)
such that b = 2"a, 22 = 1(modm) for every z in Z}  but there is some
z in Z%, such that % # 1(modm). In this case, 2% # 1(modm) for at least
50% of the values of z in Z},, and so choosing random elements of Z, should
lead to such an z fairly quickly. And for such an a, there are at least 50%
of the z in Z}, for which z® — 1 is divisible by one of the primes p or ¢, but
not both. Then ged(m, z* — 1) is one of the two primes p or ¢. This gives a
factorization of m.

Although we have certainly not shown that breaking the RSA algorithm
is equivalent to factoring the modulus m in the public key (m,e), there is
certainly a close relationship. And it is clear that the cipher is weak if m is
easy to factor. One problem occurs if p is close to q. We can write m = pq
=(t+s)(t—s) =t —s> withq=t+s,p=t—s,50t=(q+p)/2
and s = (¢ — p)/2, where we make our usual assumption that p < ¢. If p
is close to ¢, then s2 = t> — m is a small perfect square. So we attempt to
factor m by taking ¢t = |\/m] + k for small k. Consider an example from
[Ko], p.144: Factor m = 200819. |v/200819] = 448, so we try t = 448 + k.
For k = 1, t2 — m = 449? — 200819 = 782 is not a perfect square. For k = 2,
t2 —m = 4502 — 200819 = 1681 = 412, so s = 41 and ¢t = 450 gives the
factorization p = t — s = 409 and ¢ = ¢t + s = 491. This method, called
Fermat factorization, and generalizations such as the factor base method
and the quadratic sieve method are especially effective when p and ¢ are close
together. There are other methods which are effective when p — 1 and ¢ — 1
have many small factors.
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It behooves the user of an RSA public key cipher to avoid the situations
mentioned above, as well as any others which may arise because of new
factoring methods. However, no known factorization methods are polynomial
time algorithms, so it seems likely that the cipher can stay ahead of the
factorizations by choosing larger primes. A number of additional precautions
should be taken when implementing an RSA cryptosystem in order to make
it secure. But if these precautions are taken, it seems that the system is here
to stay! These questions are more fully addressed in an article [Bo] “Twenty
Years of Attacks on the RSA Cryprosystem” by Dan Boneh in which he
concludes that there have been some insightful attacks, but no devastating
attack has been found, and that with proper implementation the system can
be trusted to be secure.
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