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Abstract
We use the theory of crystal graphs to give a simple graph-theoretical
algorithm for determining the branching rule for decomposing a repre-
sentation of a simple Lie algebra when restricted to a simple subalgebra.
We also describe a computer package for determining such decomposi-
tions graphically.

1 Introduction

When modeling elementary particle interactions and symmetry breaking in
physics it becomes important to understand how tensor products of represen-
tations of simple Lie algebras decompose into irreducible subrepresentations
and how irreducible representations decompose when restricted to simple sub-
algebras. The classification of irreducible finite dimensional representations
of simple Lie algebras is well-understood ([1]). In principal, this classification
yields straightforward, if cumbersome, algorithms for decomposing

1. tensor products of such representations and

2. representations when restricted to simple subalgebras.

The purpose of this paper is to present simpler algorithms for solving these
problems using crystal graphs ([4]). We, further, describe an implementation
of these algorithms in a Maple package ([2],[3]).

2 Crystal Graphs

Let g be a simple Lie algebra with highest weight A\. Let m denote a finite
dimensional representation of g.



DEFINITION 2.1: The crystal graph of the representation 7(g) is a colored
digraph I' = (V, E), where

1.

the vertex set V' is given by the partially ordered set of all weights of g
oriented from left to right beginning with A\ and

. the edge set E is defined by the condition that v € V is connected to

v € V if and only if there is a simple root vector X of g such that
7(X)v = v'. In this case, we label or “color” this edge by X (or by the
simple root associated to X).

Note that I" is unique, card(V) = dim(g) and that, if [ is connected, 7 is
an irreducible representation of g ([4]). For example, in the case g = sl, and
7 equal the identity representation, I' is given by

¢ ——9

Let 7' denote a second finite dimensional representation of g with highest
weight A" and T, its associated crystal graph.

ALGORITHM 2.1: The crystal graph product I'; x ['s of these two
crystal graphs is formed by the following rules.

1.

Label the vertices on the vertical side on the left by I'y, with the bottom
vertex the highest weight and the top vertex the lowest weight.

. Label the vertices on the horizontal side on the top by I's, with the

left-most vertex the highest weight and the right-most vertex the lowest
weight.

Let 7 = 1.

Starting from the bottom vertex of the (i + 1) — st column and moving
up, draw an arrow up to the vertex weighted as in the left-most column
in the r — th vertex up (r > 0) provided

(a) there is such an arrow on the side graph T';.

(b) no “branch” is created with the same labels.
Starting from the bottom vertex of the ¢ — th column and moving up,

draw an arrow over to the vertex weighted as in the top row in the
(i + s) — st column (s > 0) provided

(a) there is such an arrow on the top graph I'y,



(b) no “branch” is created with the same labels, i.e., connect vertices
(vi,v3) and (vg,v3) with a labeled edge if vi,ve € Vertices(I'y)
are connected with an edge of that label and there does not already
exist an edge of that label with head (vs, v3) and connect the vertices
(v,v1) and (v,ve) with a labeled edge if vy,vy € Vertices(I's) are
connected with an edge of that label and there does not already
exist an edge of that label with head (v, vs).

It is a theorem of Kashiwara ([4]) that the crystal graph product I'; x 'y
is the crystal graph associated to the tensor product representation 7 ® 7 (9).
The irreducible representations of g associated to the connected components
of T'; x Ty give the decomposition of 7 @ (g). For example, in the case where
[ is the crystal graph associated to the identity representation of sl,, I' x I'

decomposes as
I [ ]

Y

implying 7 ® m(g) decomposes into a direct sum of a trivial one dimensional
representation and a three dimensional representation. Note that the three
node connected component of I' x I'' contains the vertex (A, A). One concludes
that this three node connected component is the crystal graph of the Cartan
product w7 (g) (i.e., the irreducible component of 7®7 containing the highest
weight vector (A, \)) by canonically identifying (A, A) with the weight 2\ and
by using the uniqueness property of crystal graphs. This result agrees exactly
with the classical Clebsch-Gordon formula ([1]).

We remark that these definitions are essentially algorithms and are imple-
mented in the Maple package crystal ([2],[3]).

3 The Branching Algorithm

We continue with the notation of §2.

DEFINITION 3.1: A subgraph v C I is called a branching graph if -y is
obtained from [' by deleting all edges with labels in a subset of the set of
simple roots.

Let h C g be a subalgebra. The decomposition of 7(g) when restricted to b
is called a branching rule. Recall that any simple Lie algebra has a Dynkin
diagram labeled by its simple roots ([1]).



ALGORITHM 3.1: The branching rule for 7(g) with respect to b is deter-
mined by the branching graph v obtained from I" by deleting all edges labeled
with simple roots not contained in the Dynkin diagram of b.

As an example, consider the identity representation of sl; and the subalgebra
sl, C sl;. Denote by o,y the simple roots of sl;. The associated crystal
graph I' of sl; is, then,

o1 a2
An examination of the Dynkin diagrams for s[, and sl; implies that the branch-
ing rule for sl; with respect to sl, is determined by the branching graph

.a—l. [ J
obtained from I' by deleting the edge labeled by s. In particular, sl; decom-
poses into a direct sum of sl, and a trivial, one dimensional representation
when restricted to sl,.

To check our result, recall that every representation 7 of sl is obtained
from n fundamental representations by means of the Cartan product ([1]). It
follows that a representation 7 of sl; is uniquely determined by a triplet of
non-negative integers (a, b, c). The identity representation of sl; is determined
by (1,0,0). The classical formula for the branching rule of s[; with respect to

sl, is Resi? ((1,0,0)) = @&(a’, )

where (a',b) determines a unique representation of sl, with 1 > a > 0 >
b > 0 ([1]). Since the identity representation of sl, is determined by (1,0) our
result checks immediately with the classical formula.

We again remark that this algorithm has been implemented in the Maple
package crystal [3]. For a proof of its validity, see [2].

4 The crystal Package

The crystal package ([3]) contains programs to compute the crystal graph of
a multiplicity free, irreducible representation associated to the highest weight
of a fundamental representation, compute the crystal graph product of two
crystal graphs, compute branching graphs and display crystal graphs. The
crystal package is, by design, compatible with the coxeter and weyl packages
of John Stembridge ([5]), and implicitly uses both of those packages.

The utility of this package is further enhanced by existing Maple com-
mands. For example, s0,, ® s0,, can be shown to decompose into a direct
sum of a 54 dimensional representation, a 45 dimensional representation and
a trivial representation by computing the crystal graph of so,,, computing



the crystal graph product of so,, with itself, and using the existing net-
works[components| and networks|vertices| commands.
The crystal package also provides the means of quickly deriving branching
rules such as
Res’™™((1,0,...,0)) = &(a},...,a,)

1

Wherelzallz()za;z...>0.

4.1 Example

The following commands show how to compute the triple tensor product of
the identity representation of su, with itself.

with(share) ;with(plots):

readshare (coxeter,algebra) ;
read(‘d:/maplev4/share/algebra/crystal/crystal25.mpl‘);
init_crystal():

weyl[weights] (A2);

Li:=crystal[weight_system] (-(1/3%e2-2/3*e1+1/3%e3),A2);
weyl[weyl_dim] (1/3*e2-2/3%el1+1/3%e3,A2) ;
L2:=crystal[weight_system] (-(1/3*%e2-2/3%el1+1/3*e3) ,A2);
crystal [graphrep] (L1,A2,G1) ;

crystal [showgraph] (G1,1,4);

crystal [graphrep] (L2,A2,G2) ;

crystal [showgraph] (G2,1,4);

crystal [graphprodrep] (G1,G2,G3) ;

crystal [showgraphprod] (G3,1,3,1,3);
crystal[linsubgraphrep] (2xel1,A2,G3,G4) ;

crystal [showgraph] (G4,1,6) ;

crystal[branch] ([2],G4,G5);

crystal [showgraph] (G5,1,6) ;

crystal [linsubgraphrep] (v1X2,A2,G3,G6) ;

crystal [graphprodrep] (G1,G6,G7) ;

crystal [showgraphprod] (G7,1,3,1,3);

crystal [graphprodrep] (G1,G4,G8) ;

crystal [showgraphprod] (G8,1,3,1,6);

The corresponding MAPLE worksheet and crystal package crystal25.mpl
with further documentation may be downloaded from the site [3].
Some of the graphs may be viewed at the web page

http://web.usna.navy.mil/“wdj/crystal2.htm
For elementary background on the crystal package, see also

http://web.usna.navy.mil/“wdj/crystal.htm
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