A note on gaps between zeroes of L-functions
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Assuming the Riemann hypothesis, H. Montgomery [M] stated his well-known
pair-correlation conjecture
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and N(T') counts the zeros (according to multiplicity) 8 + iy with 0 < v < T
of the Riemann zeta function {(s). This conjecture is of considerable interest in
prime number theory, as has been shown (for example) by D. Goldston [G], P.
Gallagher and J. Mueller [GM], and R. Heath-Brown [H-B|.

If L(s) is an L-function satisfying axioms I-VI below then one might expect
that the following analog of (0.1) holds:
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where Np(T) is the counting function for the zeros of L(s). It is conceivable
that such a statement might eventually be of some relavance to the study of
Sato-Tate-type distribution questions of semi-simple conjugacy classes in L-groups
associated to the unramified components of an automorphic representation. The



main result of this note implies that, for the L-functions satisfying axioms I-VI
(e.g., all Dirichlet L-functions), we have a lower bound

) 00 sin 7
Jim ) 1> (/0 (-2 ))dm—i—é(a,b)) Nu(T), (0.3)
b—00 0<yY'<T

2 ! 27h
ag (L7)"110g T S’Y_'Y S ag (L;rlog T

where f(T) »= ¢(T) means limy_,o, f(T)/g(T) > 1 and the other unexplained
notation is defined below. We do not assume a generalized Riemann hypothesis
for this.

Let us index the zeros S+ as B, +iv,, ordered lexicographically and counted
according to multiplicity. The asymptotic inequality (0.3) is a consequence of our
main result which states that, for L-functions satisfying axioms I-VI below and
for sufficiently large but fixed r > r¢(L),
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where ¢; are constants depending only on L and ay(L) is defined below. Again, we
do not assume a generalized Riemann hypothesis for this. For the Riemann zeta

function, A. Fujii [F] stated such a result with @ replaced by e~ and e~¢"’
replaced by some (undetermined) 6, > 0. (However, his result holds for all » > 1.)
Again for the Riemann zeta function, A. Selberg proved a slightly stronger result
assuming the Riemann hypothesis (unpublished but see [J], Theorem 4.5, chapter
3).

Now let us state the axioms on which our results depend.
(I) The Dirichlet series L(s) converges absolutely in some half-plane Re(s) > 1
and may be meromorphically continued to the entire plane, except possibly for a
simple pole at s = 1.
(IT) Aside from “trivial” zeros on the negative real axis, all zeros of L(s) lie in the
“critical strip” 0 < Re(s) <1, and
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and

N(T) =#{p=B+iv [ L(B+i7) =0, 0<y<T}
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as T' — oo. Here .
Sp(T) := —argL(1/2 + it),
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where arg is taken in the same way as the Riemann zeta function (as the variation
starting from +o00, where the argument is zero, ...).
(IIT) There is an Euler product

L(s) = HLP(S), Re(s) > 1,

where Ly,(s) is a rational function of p—*, such that
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where a,, € C are constants satisfying
la,| < C, for all primes p,

for some C' = C(L), and A(n) is the von Mangoldt function.
(IV) L(s) satisfies the growth conditions:
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for some constant ¢(L) > 0 with 7" > 1.



(V) The Rankin convolution of L with itself, L(s), satisfies axioms (I-IV), where

L(s) := > len |8,

if
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(VI) Let TY/?*¢ < H < T, x :=T/%% and 0 < h = h(T) < 1. For any positive
integer k < (loglogT)'/'° we have
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where (L) denotes the residue of L(s) at s = 1.

1. Preliminary lemma

Our result relies on a distribution theorem for S; (¢t + h) — Si(t), h = ¢/ logt,
similar to the one given by A. Ghosh [Gh].

Lemma 1.1. Assume L(s) satisfies axioms I-VI above. Let 0 < h = h(T) be
bounded as T — oo and suppose hlogT > Cy(L) is sufficiently large. Let

My =loglog(hlogT)/logloglog(hlogT),

and let b(r) :== 7~ "~'T'(£2). Then for any real number r, 1 < r < (log Mr)"/*,
we have
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proof For h << 1, we let

Bi(t) = |S.(t + h) — S (t)|/y/r(L) log(hlog T),



and recall that 27"I'(r +1)/I'(r/2+ 1) = 7= /2I'(r/2 + 1/2). Thus, by axiom VI,

- / ()2kdt = b(2k) + O((ALk)*™* (log(3 + hlog T))~"/2),

for integers k, such that 1 < k < M.
Choose N be an integer with N < (log Mr)%* and write, by the Taylor ex-

pansion,
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where b; := (252 (4771-1). Asin A. Ghosh [Gh, §2, we obtain for r < v/Iog Mr,
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where r =2m+1+60,0< 0 <2, M = m+ N, and N is as above. Taking
r < (log Mp)**, N = (log Mr)%/*, and X = (log M)/, we obtain the estimate
desired. O
Theorem 1.2. Let
1
pr(z, By) := ?meas{o <t <T | By(t) <z}

and let
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If 0 << h << 1 and if hlogT is sufficiently large then
|z (z, By) — ()| << (loglog Mr)".

In other words, for each ¢ > 0, we have
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proof Let N denote the integral part of Mr}/ ® and consider
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As in [Gh], pp. 100-102, the Berry—Essen theorem implies
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as desired. O
Now let us prove (0.4) and (0.5). Let h = 22€, with C' sufficiently large. By
the above lemma,
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for T > T,(C,L). This implies that for a proportion of at least %6_02 of the
€ (0,T), we have
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for C sufficiently large. Since the average of Ny (t + (2+(’;gT) — N.(T) is C,

we may suppose without loss of generality that our positive proportion in fact
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Let C' =1 — =+/logr, so that

211 — 5=4/log T
ao(L)logT

Np(t+ )= N.(T) >,

for the above proportion of ¢ € (0,7"). This implies (0.4). This actually implies
(0.5) since the average gap Vnir — Vn 1S %(LQ)%.

Theorem 1.3. Fixe¢, 0 < € < 1/10 arbitarily small. For C > Cy(e, L), ro(L) <
r < (1 —3¢)C fixed, and T > Ty(e,C, L), we have
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for a positive proportion 6, of v/ s if and only if
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for the same positive proportion §, of 7/ s. By axiom (II), we have
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so to prove the theorem we need only show that
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occurs for a proportion of at least 1 — O( \/m) of the v,,s. This follows
easily from Theorem 1.2. O
Corollary 1.4. As C — oo, we have
1 2rC
lim ———#{0 "<T |0 v < ———=}=C.
THoo NL(T)#{ <Y <T[0<y=7"< ao(L) logT} -



proof By Theorem 1.3,
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2. Appendix: Errata to [J]

There is a gap in [J], Ch. 4, as was brought to my attention by D. Hejhal. To
prove the results in [J], pp. 117-127, in addition to those axioms listed above, one
must assume the following:

Missing Axiom: We have, for H > T/?%¢ and o > 1/2,
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where

Nip(o,T):=#{p=B+iy | L(B+iy) =0, 0<y<T, B >0}

First, this “missing axiom” is a well-known result of A. Selberg [S1] in the
case L(s) = ((s). (It is also seems to be known for Dirichlet L-series, L-functions
of quadratic fields and Langlands standard L-functions for GL(2) [S2]. Selberg
has other results assuming this axiom and another axiom vaguely related to our
axiom (V).))

Second, axiom (VI) above is a well-known result of A. Selberg [S1] in the
case L(s) = ((s) and is mentioned in the remark to [J], Proposition 4.2 (on page
158, S(t + h) — S(t) should be Sp(t + h) — Sp(t); in the remark there, logk
should be logz). Thus the results of this paper and [J] are theorems in case
L(s) is a Dirichlet L-function. It seems reasonable to expect that they should
also hold for Langlands L-functions associated to tempered generic automorphic
representations of GL(n).

Lastly, the result (0.4-0.5) was listed as Conjecture 4.4 in [J], p. 84. There is

a typo there: on page 84, line 4, C'logr/+/r should be %
line 9, C'logr/r should be C+/logr/r.

: &’ and on page 84,

T
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