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These are expanded lecture notes of a series of expository talks surveying
basic aspects of group cohomology and homology.
First, some words of motivation.

1 Introduction

Let G be a group and A a G-module’.

Let A denote the largest submodule of A on which G acts trivially. Let
us begin by asking ourselves the following natural question.

Question: Suppose A is a submodule of a G-module B and z is an
arbitrary G-fixed element of B/A. Is there an element b in B, also fixed by
G, which maps onto z under the quotient map?

The answer to this question can be formulated in terms of group coho-
mology. (Yes, if H'(G, A) = 0.) The details, given below, will help motivate
the introduction of group cohomology.

Let Ag is the largest quotient module of A on which G acts trivially.
Next, we ask ourselves the following analogous question.

Question: Suppose A is a submodule of a G-module B and b is an
arbitrary element of Bg which maps to 0 under the natural map Bg —
(B/A)g. Is there an element a in ag which maps onto b under the inclusion
map?

The answer to this question can be formulated in terms of group homol-
ogy. (Yes, if H;(G, A) = 0.) The details, given below, will help motivate the
introduction of group homology.

Group cohomology arises as the right higher derived functor for A —
A%, The cohomology groups of G with coefficients in A are defined by

"'We call an abelian group A (written additively) which is a left Z[G)-module a G-
module.



(See §4 below for more details.) These groups were first introduced in 1943 by
S. Eilenberg and S. MacLane [EM]. The functor A — A% on the category
of left G-modules is additive and left exact. This implies that if

0— A—-B—C—0

is an exact sequence of G-modules then we have a long exact sequence of
cohomology

0 — A°=»BY - CY - H'(G,A) — (1)
HY(G, B) — H'(G,C) — H*(G, A) — ...

Similarly, group homology arises as the left higher derived functor for
A —— Ag. The homology groups of G with coefficients in A are
defined by

H,(G, A) = TorZl%(z, A).

(See §5 below for more details.) The functor A — Ag on the category of
left G-modules is additive and right exact. This implies that if

0 - A—-B—C—0

is an exact sequence of G-modules then we have a long exact sequence of
homology

.-+ — Hy(G,C) = H{(G,A) — H{(G,B) — @)
Hl(G,C) — AG — Bg — CG — 0.

Here we will define both cohomology H"(G, A) and homology H,(G, A)
using projective resolutions and the higher derived functors Exzt™ and Tor,.
We “compute” these when G is a finite cyclic group. We also give various
functorial properties, such as corestriction, inflation, restriction, and transfer.
Since some of these cohomology groups can be computed with the help of
computer algebra systems, we also include some discussion of how to use
computers to compute them. We include several applications to group theory.



A few questions (whose answers are unknown, as far as the author knows?)
are scattered thoughout.

One can also define H'(G,A), H*(G, A), ..., by explicitly construct-
ing cocycles and coboundaries. Similarly, one can also define H;(G, A),
Hy(G, A), ..., by explicitly constructing cycles and boundaries. For the
proof that these constructions yield the same groups, see Rotman [R], chap-
ter 10.

For the general outline, we follow §7 in chapter 10 of [R] on homology.
For some details, we follow Brown [B], Serre [S] or Weiss [W].

For a recent expository account of this topic, see for example Adem [A].
Another good reference is Brown [B].

2 Differential groups

In this section cohomology and homology are viewed in the same framework.
This “differential groups” idea was introduced by Cartan and Eilenberg [CE],
chapter IV, and developed in R. Godement [G], chapitre 1, §2. However, we
shall follow Weiss [W], chapter 1.

2.1 Definitions

A differential group is a pair (L, d), L an abelian group and d: L — L a
homomorphism such that d? = 0. We call d a differential operator. The

group
H(L) = Ker(d)/Im(d)
is the derived group of (L,d). If

L=&% _L,

then we call L graded. Suppose d (more precisely, d|r, ) satisfies, in addition,
for some fixed r # 0,

d:Ly— Lp.y, neLZ.

We say d is compatible with the grading provided » = £1. In this case, we
call (L,d,r) a graded differential group. As we shall see, the case r = 1

2Which isn’t that much:-).



corresponds to cohomology and the the case r = —1 corresponds to homology.
Indeed, if » = 1 then we call (L, d, r) a (differential) group of cohomology
type and if r = —1 then we call (L,d, r) a group of homology type. Note
that if L = @2 ___ L, is a group of cohomology type then L' = &% __ L! is

a group of homology type, where L! = L_,,, for all n € Z.

For the impatient: For cohomology, we shall eventually take L =
@&nHomg(X,, A), where the X, form a chain complex (with +1 grading)
determined by a certain type of resolution. The group H(L) is an abbre-
viation for @nExt%[G](Z,A). For homology, we shall eventually take L =
®nZ ®7z[c) Xn, where the X, form a chain complex (with —1 grading) deter-
mined by a certain type of resolution. The group H(L) is an abbreviation
for ®,Tor'(z, A).

Let (L,d) = (L,d;) and (M,d) = (M,dys) be differential groups®. A
homomorphism f : L — M satisfying do f = f od will be called admissible.
For any n € Z, we definenf : L — M by (nf)(z) = n-f(z) = f(x)+- - -+ f(2)
(n times). If f is admissible then so is nf, for any n € Z. An admissible map
f gives rise to a map of derived groups: define the map f, : H(L) — H(M),
by f.(r+dL) = f(z) +dM, for all z € L.

2.2 Properties

Let f be an admissible map as above.

1. The map f, : H(L) — H(M) is a homomorphism.

2.If f: L - M and g : L - M are admissible, then so is f + ¢ and
(f+g)* = fi + g
30f course, to be more precise, we should use different symbols for the differential

operators of L and M. For notational simplicity, we use the same symbol and hope the
context removes any ambiguity.




3. If f:L - M and g: M — N are admissible then sois go f: L - N
and (g o f). = g« o f..

4. If

0 L5 MLN0 (3)

is an exact sequence of differential groups with admissible maps 7, 7 then
there is a homomorphism d, : H(N) — H(L) for which the following
triangle is exact:

H(L)
d.
Ix
H(N)
I Y (4)
H(M)

This diagram? encodes both the long exact sequence of cohomology (1)

and the long exact sequence of homology (2).
Here is the construction of d,:

Recall H(N) = Ker(d)/Im(d), so any x € H(N) is represented by
an n € N with dn = 0. Since j is surjective, there is an m € M
such that j(m) = n. Since j is admissible and the sequence is exact,
j(dm) = d(j(m)) = dn = 0, so dm € Ker(j) = Im(i). Therefore,
there is an ¢ € L such that dm = i(¢). Define d,(z) to be the class of
¢in H(L), i.e., d.(z) = £+ dL.

Here’s the verification that d, is well-defined:

4This is a special case of Théoréme 2.1.1 in [G].



We must show that if we defined instead d,(z) = ¢' + dL, some ¢' € L,
then ¢' — ¢ € dL. Pull back the above n € N with dn = 0 to an
m € M such that j(m) = n. As above, there is an ¢ € L such that
dm = i(f). Represent x € H(N) by an n' € N, so x = n' + dN and
dn’ = 0. Pull back this n’ to an m’ € M such that j(m') = n'. As
above, there is an ¢’ € L such that dm' = i(¢'). We know n' —n € dN,
so n' —n = dn", some n" € N. Let j(m") = n", some m" € M, so
jim'—m—dm") =n' =n—7j(dm") =n'—n—dj(m") = n'—n—dn" = 0.
Since the sequence L — M — N is exact, this implies there is an ¢y € L
such that i(¢y) = m' — m — dm". But di({y) = i(dly) = dm' —dm =
i) —i(l) =i(l' =), s0¢' — ¢ € dL.

5.1t M = L& N then H(M) = H(L) & H(N).

proof: To avoid ambiguity, for the moment, let dx denote the differential operator
on X, where X € {L, M, N}. In the notation of (3), j is projection and 7 is inclusion.
Since both are admissible, we know that dyr|r, = dr, and dyr|ny = dn. Note that
H(X) C X, for any differential group X, so HM) = HM)NL® HM)NN C
H(L) ® H(N). It follows from this that that d. = 0. From the exactness of the
triangle (4), it therefore follows that this inclusion is an equality.

O

6. Let L, L', M, M', N, N' be differential groups. If

oM L3 N —5 0
hl (5)

N —— 0

~

~
— N~
S
——

o
v
&
~,
v
<
<
~

is a commutative diagram of exact sequences with 4,7, 7,7, f,g,h all
admissible then



H(L) —=— H(M)

commutes,

commutes, and

H(N) - H(L)

h*l f*l
H(N'") - H(L)
commutes.

This is a case of Theorem 1.1.3 in [W] and of Théoréme 2.1.1 in [G]..

The proofs that the first two squares commute are similar, so we only verify one
and leave the other to the reader. By assumption, (5) commutes and all the maps
are admissible. Representing x € H(M) by x = m + dM, we have

hej«(z) = he(j(m) + dN) = hj(m) + dN' = gi'(m) + dN'
= g«(i'(m) + dM') = guil,(m + dM) = g.i(z),
as desired.

The proof that the last square commutes is a little different than this, so we prove
this too. Represent x € H(N) by x = n + dN with dn = 0 and recall that
d«(xz) = £+ dL, where dm = i(f), £ € L, where j(m) = n, for m € M. We have

fedi(z) = fu(€+dL) = f(€) +dL".
On the other hand,

duh(z) = do(h(n) + dN') = €' +dL’,



for some ¢' € L'. Since h(n) € N', by the commutativity of (5) and the definition of
d., ¢' € L' is an element such that i'(¢') = gi(¢). Since 4’ is injective, this condition
on {' determines it uniquely mod dL’. By the commutativity of (5), we may take

o = f(0).

. Let L, L', M, M', N, N' be differential graded groups with grading
+1 (i.e., of “cohomology type”). Suppose that we have a commutative
diagram, with all maps admissible and all rows exact as in (5). Then
the following diagram is commutative and has exact rows:

e Hal (V) — 2w, — 2 ma ) — s () — s H (L) ———
ha | 1| o« | ha | i
e Ha (N — % () — s B (M) — 2 HL (N — s Ha () ——— L

This is Proposition 1.1.4 in [W]. As pointed out there, it is an imme-
diate consequence of the properties, 1-6 above.

Compare this with Proposition 10.69 in [R).

. Let L, L', M, M', N, N' be differential graded groups with grading
—1 (i.e., of “homology type”). Suppose that we have a commutative
diagram, with all maps admissible and all rows exact, as in (5). Then
the following diagram is commutative and has exact rows:

d
- —— Hyy41(N)

ha | 7| ax | ha | Ie

dx d

<. ——— Hpp(N')

This is the analog of the previous property and is proven similarly.
Again, this is similar to Proposition 10.58 in [R].

. Let (L,d) be a differential graded group with grading r. If d,, = d|;,
then d,,, od, = 0 and

e L P Ly S L S Lyior — . .. (6)

1s exact.

* L Ha(L) —2 Ha(M) —* 5 m,N) —% s oH, (L) ——— ...

.7
H,(L') —2= HoM'y —2* & B, (N') —%*  H, (L)) —— ...



10. If {L,, | n € Z} is a sequence of abelian groups with homomorphisms
d,, satisfying (6) then (L,d) is a differential group, where L = &,L,
and d = @, d,.

2.3 Homology and cohomology

When r = 1, we call L,, the group of n-cochains, 7, = L, N Ker(d,) the
group of n-cocycles, and B,, = L,,Nd,,—1(Ly,—1) the group of n-coboundaries.
We call H,, (L) = Z, /B, the n* cohomology group. When r = —1, we call
L,, the group of n-chains, Z,, = L, N Ker(d,) the group of n-cycles, and
B, = L,Ndy1(Lyy1) the group of n-boundaries. We call H,(L) = Z,,/B,
the n'* homology group.

3 Complexes

We introduce complexes in order to define explicit differential groups which
will then be used to construct group (co)homology.

3.1 Definitions

Let R be a non-commutative ring, for example R = Z[G].

We shall define a “finite free, acyclic, augmented chain complex” of left
R-modules.

A complex (or chain complex or R-complex with a negative grading) is
a sequence of maps

S X X, B X, X, (7)
for which 0,0,+1 = 0, for all n. If each X, is a free R-module with a finite

N/

basis over R (so is & R, for some k) then the complex is called finite free.
If this sequence is exact then it is called an acyclic complex. The complex
is augmented if there is a surjective R-module homomorphism € : Xy — Z
and an injective R-module homomorphism p : Z — X _; such that 9y = poe,
where (as usual) Z is regarded as a trivial R-module.

The standard diagram for such an R-complex is

10



L

Such an acyclic augmented complex can be broken up into the positive part

o XA X B X, 520,

and the negative part

0zZ5x B x ., Bx,5. ...

Conversely, given a positive part and a negative part, they can be combined
into a standard diagram by taking dy = poe.

If X is any left R-module, let X* = Hompg(X,Z) be the dual R-module,
where Z is regarded as a trivial R-module. Associated to any f € Homg(X,Y)
is the pull-back f* € Homg(Y*, X*). (If y* € Y* then define f*(y*) to be
y*o f: X — Z.) Since “dualizing” reverses the direction of the maps, if you
dualize the entire complex with a —1 grading, you will get a complex with a
+1 grading. This is the dual complex.

When R = Z[G] then we call a finite free, acyclic, augmented chain
complex of left R-modules, a G-resolution.

3.2 Constructions
Let R = Z[G].

3.2.1 Bar resolution

This section follows §1.3 in [W].

Define a symbol [.] and call it the empty cell. Let X, = R[], so Xj is
a finite free (left) R-module whose basis has only 1 element. For n > 0, let
g1,--+,9n € G and define an n-cell to be the symbol [g1,. .., g,]. Let

11



Xn = @(gla---ygn)EG"R[gl7 e ’gn],

where the sum runs over all ordered n-tuples in G".
Define the differential operators d,, and the augmentation €, as G-module
maps, by

elh=1 ge@
di(l9]) = g[.] =[],

da([g1, 92]) = 91[92] — [9192) + [91],

n—1
dn([91,- -, 9n)) = 91l02, - gul + D (=1)[91, -, Gic1, i1, Giv2s - - - Gn]
=1

+ (_1)n[91a ey gn—l]a

for n > 1. Note that the condition €(g[.]) = 1 for all g € G is equivalent to
saying €([.]) = 1. This is because € is a G-module homomorphism and Z is a
trivial G-module, so €(g[.]) = g¢([.]) = ¢ - 1 = 1, where the (trivial) G-action
on 7 is denoted by a -.

The X, are finite free G-modules, with the set of all n-cells serving as a
basis.

Proposition 1 With these definitions, the sequence

s X BB X, ST 0,

s a free G-resolution.

Sometimes this resolution is called the bar resolution. There are two
other resolutions we shall consider. One is the closely related “homogeneous
resolution” and the other is the “normalized bar resolution”.

This simple-looking proposition is not so simple to prove. First, we shall
show it is a complex, i.e., d> = 0. Then, and this is the most non-trivial part
of the proof, we show that the sequence is exact.

First, we need some definitions and a lemma.

Let f: L — M and g : L — M be +1-graded admissible maps. We
say f is homotopic to g if there is a homomorphism D : L. — M, called a
homotopy, such that

12



L Dn:D‘Ln :Ln_)Mn—Ha
e f—g=Dd+dD.

If L = M and the identity map 1 : L — L is homotopic to the zero map
0: L — L then the homotopy is called a contracting homotopy for L.

Lemma 2 If L has a contracting homotopy then H(L) = 0.

proof: Represent © € H(L) by £ € L with d¢ =0. But £ =1(¢) — 0(¢) =
dD(¢) + Dd(¢) = dD(¥). Since D : L — L, this shows £ € dL, so z = 0 in
H(L). O

Next, we construct a contracting homotopy for the complex X, in Propo-
sition 1 with differential operator d. Actually, we shall temporarily let X_; =
Z, X_, =0and d_, = 0 for n > 1, so that that the complex is infinite in
both directions. We must define D : X — X such that

e D 1 =Dl;:Z — X,

o D,=Dlx, : Xn = Xpt1,
e cD =1onZ,

e diDy+ D_1e =1 on X,

e d,\ 1D+ D, _1d, =1in X,,, for n > 1.

Define
D , =0, n>1,
D_.(1) =[],
Do(g[.]) = [9],
Dn(g[gh---,gn]):[g,gl, agn]’ n >0,

and extend to a Z-basis linearly.

Now we must verify the desired properties.

By definition, for m € Z, eD_,(m) = e¢(m[.]) = me([.]) = m. Therefore,
eD_ is the identity map on Z.

13



Similarly,

(h Dy + D_1)(g[)) = da ([g]) + D1 (1)
= g[]~ [+ Dos(1) = g1~ []+[] = gl]

For the last property, we compute

dn—l—an(g[gl: . agn]) = dn—l—l([gagla cee agn])
=9lg1,---,9n) — (991, - -, Gnl

n—

—

+ 3 (=19, 91, Gio1, GiGit1s Gives - - - In)

M

1
1)n+1[g gi5---, gn—l]a

+

and

Dn—ldn(g[gl,---,gn])
= Dn l(gd ([gla cee agn]))
D, 1(991]92; - - - gn]

+ ( 1)ig[gla"'agi—lagigi+1agi+27"'agn]

+ ( 1) g[gla HE ;gn—l])
= [991, 92 - - -, Gn]
n—1
+ (—1)i[9,91, e 9i15, 9iGi+1, Gir2s - - - » In]
i=1
+ (_1)n[g, g1y .. agnfl]-
All the terms but one cancels, verifying that d, 1D, + D,_1d,, = 1 in X,
for n > 1.
Now we show d?> = 0. One verifies dyd, = 0 directly (which is left to the
reader). Multiply dy Dy 1 + Dy _odi_1 = 1 on the right by dy and dy 1Dy +
Dy_1d; =1 on the left by dj:

dpDy—1dy + Dy_adp_1dy = di, = dpdi1 Dy, + diDy—1d.

14



Cancelling like terms, the induction hypothesis di_1d; = 0 implies didy 1 =
0. This shows d? = 0 and hence that the sequence in Proposition 1 is exact.
This completes the proof of Proposition 1. [J

The above complex can be “dualized” in the sense of §3.1. This dualized
complex is of the form

0—)Zﬂ>X,1d;>1X,2d—_)2X,3—)... .

The standard G-resolution is obtained by splicing these together.

3.2.2 Normalized bar resolution

Define the normalized cells by

* __ [gl, ---;gn], 1f all g; # 1,
(915 gn]" = { 0. £ somo g — 1.

Let Xo = R].] and

Xn = @(gl,...,gn)EG"R[gla S agn]*a n 2 15

where the sum runs over all ordered n-tuples in G™. Define the differential
operators d, and the augmentation map exactly as for the bar resolution.

Proposition 3 With these definitions, the sequence
o X B X B X, 570,
s a free G-resolution.

Sometimes this resolution is called the normalized bar resolution.
proof: See Theorem 10.117 in [R]. O

3.2.3 Homogeneous resolution

Let Xy = R, so Xj is a finite free (left) R-module whose basis has only 1
element. For n > 0, let X,, denote the Z-module generated by all (n + 1)-
tuples (go,---,9n)- Make X; into a G-module by defining the action by
g: X, — X, by

g: (905 9n) — (990,---,99:), g €QG.

15



Define the differential operators 0,, and the augmentation €, as G-module
maps, by

e(g) =1,
n—1
an(gOa e 7gn) = (_1)Z(90a <oy 8i-1, gia Git+1,-- -, gn)a
=0

for n > 1.
Proposition 4 With these definitions, the sequence

o X2 XA X, S 20,
1s a G-resolution.
Sometimes this resolution is called the homogeneous resolution.
Of the three resolutions presented here, this one is the most straightfor-
ward to deal with.

proof: See Lemma 10.114, Proposition 10.115, and Proposition 10.116 in
R]. O

4 Definition of H"(G, A)

For convenience, we briefly recall the definition of Ext™. Let A be a left
R-module, where R = Z[G], and let (X;) be a G-resolution of Z. We define

Extz)(Z, A) = ker(d, 1) /im(dy,),

where

dy: Hom(X,-1,A) = Hom(X,, A),

is defined by sending f : X,, 1 — A to fd, : X, = A. It is known that
this is, up to isomorphism, independent of the resolution choosen. Recall
Exty¢(Z, A) is the right-derived functors of the right-exact functor A —
A% = Homg(Z, A) from the category of G-modules to the category of abelian
groups. We define

16



When we wish to emphasize the dependence on the resolution choosen, we
write H"(G, A, X,).

For example, let X, denote the bar resolution in §3.2.1 above. Call C" =
C™"(G,A) = Homg(X,,A) the group of n-cochains of G in A, 7" =
Z"(G,A) = C" N Ker(0) the group of n-cocycles, and B" = B"(G,A) =
0(C™ 1) the group of n-coboundaries. We call H"(G, A) = Z"/B" the n'"
cohomology group of G in A. This is an abelian group.

We call also define the cohomology group using some other resolution,
the normalized bar resolution or the homogeneous resolution for example.
If we wish to express the dependence on the resolution X, used, we write
H™(G, A, X.). Later we shall see that, up to isomorphism, this abelian group
is independent of the resolution.

The group H%(G,Z) (or H*(G,C)) is sometimes called the Schur mul-
tiplier of G.

We say that the group G has cohomological dimension n, written
cd(G) = n, if H"™'(H, A) = 0 for all G-modules A and all subgroups H of
G, but H"(H, A) # 0 for some such A and H.

Remark 1 e If cd(G) < oo then G is torsion-free°.
o If G is a free abelian group of finite rank then cd(G) = rank(Q).
o Ifcd(G) =1 then G is free. This is a result of Stallings and Swan (see
for example [R], page 885).

4.1 Computations
We briefly discuss computer programs which compute cohomology and some
examples of known computations.

4.1.1 Computer computations of cohomology

GAP [Gap], MAGMA [MAGMA], and Macaulay 2 [Mac| can compute some
cohomology groups.

5This follows from the fact that if G is a cyclic group then H"(G,Z) # 0, discussed
below.

17



For example, GAP will compute the Schur multiplier H?(G, C) using the
AbelianInvariantsMultiplier command. To find H?(A4s,C), where Aj is
the alternating group on 5 letters, type

gap> A5:=AlternatingGroup(5);

A1t L1 ..51)

gap> AbelianInvariantsMultiplier(A5);
[ 2]

So, H?(A;5,C) 2 Z/27.
GAP will do other cohomology computations (in low dimension) as well
(see §37.22 of the GAP manual or D. Holt’s GAP package cohomo, [Gap]).

Example 5 > G:=CyclicGroup(5);

> M := TrivialModule(G, Integers());

> X := CohomologyModule(G, M);

> CohomologyGroup(X, 1);

Full Quotient RSpace of degree 0 over Integer Ring
Column moduli:

L]

> CohomologyGroup(X, 2);

Full Quotient RSpace of degree 1 over Integer Ring
Column moduli:

[ 51

>

> G := A1t (5);

> M := PermutationModule(G, GF(7));
> X := CohomologyModule(G, M);

> CohomologyGroup (X, 1);

Full Vector space of degree 0 over GF(7)
> CohomologyGroup(X, 2);
Full Vector space of degree 0 over GF(7)
We also refer to the MAGMA manual [MAGMA] and to the paper [EK].

For Macaulay, we refer to the Macaulay 2 manual [Mac].

4.1.2 Examples

Some example computations.

18



5

. HY(G, A) = AC.

This is by definition.

. Let L/K denote a Galois extension with finite Galois group G. We

have H'(G, L*) = 1. This is often called Hilbert’s Theorem 90.
See Theorem 1.5.4 in [W] or Proposition 2 in §X.1 of [S].

. Let G be a finite cyclic group and A a trivial torsion-free G-module.

Then H'(G, A) = 0.

This is a consequence of properties given in the next section.

. If G is a finite cyclic group of order m and A is a trivial G-module then

H2(G, A) = A/mA

This is a consequence of properties given below.
For example, H*(Fy,C) = 0.

. If |G| = m, rA = 0 and ged(r,m) = 1, then H*(G,A) = 0, for all

n > 1.
This is Corollary 3.1.7 in [W].
For example, H'(As,Z/7Z) = 0.

Definition of H,(G, A)

We say A is projective if the functor B — Homg(A, B) (from the category
of G-modules to the category of abelian groups) is exact. Recall, if

Pp=oPB3P %P 5750 (9)

is a projective resolution of Z then

Tor2l9(Z, A) = ker(d, ® 14)/im(dn1 ® 14).

It is known that this is, up to isomorphism, independent of the resolution
choosen. Recall Tor’(?)(Z, A) are the right-derived functors of the right-
exact functor A — Ag = Z ®z6) A from the category of G-modules to the
category of abelian groups. We define
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H,(G, A) = Tor2%(z, A), (10)

When we wish to emphasize the dependence on the resolution, we write
H,(G, A, Pp).

5.1 Computations

We briefly discuss computer programs which compute cohomology and some
examples of known computations.

5.1.1 Computer computations of homology

MAGMA has some limited ability to construct complexes, chain maps, and
homology groups of a complex but I’ve not figured out the syntax to give an
example. Both MAGMA and GAP allow one to compute the commutator
subgroup, so H;(G,Z) can be computed for i = 1,2, when G is a finitely
presented group (see the next subsection).

For Macaulay, we refer to the Macaulay 2 manual [Mac].

5.1.2 Examples

Some example computations.

1. If A is a G-module then Tor?°YZ, A) = Hy(G, A) = Ag = A/DA.
proof: We need some lemmas.

Let € : Z|G] = Z be the augmentation map. This is a ring homomorphism (but not
a G-module homomorphism). Let D = ker(e) denote its kernel, the augmentation
ideal. This is a G-module.

Lemma 6 As an abelian group, D is free abelian generated by G—1={g—1]| g€
G}.

We write this as D = Z(G — 1).

proof of lemma: If d € D thend = }_ ; myg, where my € Zand }_ . omg = 0.
Thus,d =3 5 my(g9—1),s0 D C Z{G—1). Toshow D s free: If }° o m4(g—1) =
0then > omyg— 3 c5my =0in Z[G]. But Z[G] is a free abelian group with
basis G, so my =0 for all g € G. O

Lemma 7 Z ®z;q A = A/DA, where DA is generated by elements of the form
ga—a, g€ G anda € A

20



Recall Ag denotes the largest quotient of A on which G acts trivially®.

proof of lemma: Consider the G-module map, A — Z®z4, given by a — 1®a.
Since Z ®z(q) A is a trivial G-module, it must factor through Ag. The previous
lemma implies Ag = A/DA. (In fact, the quotient map q : A — Ag satisfies
g(ga—a) =0forall g € G and a € A, so DA C ker(q). By maximality of Ag,
DA = ker(q). QED) So, we have maps A — Ag — Z ®z[g] A. By the definition of
tensor products, the map Z x A = Ag, 1 X a —> 1-aDA, corresponds to a map
Z ®zjg] A — Ag for which the composition Ag — Z ®z[g] A — Ag is the identity.
This forces Ag = Z ®zg A. O

See also # 11 in §6.

2. If G is a finite group then Hy(G,Z) = Z.

This is a special case of the example above (taking A = Z, as a trivial
G-module).

3. Hi(G,Z) = G/|G,G], where |G, G] is the commutator subgroup of G.
This is Proposition 10.110 in [R], §10.7.

proof: First, we claim: D/D? = G/[G, G|, where D is as in Lemma 6. To prove
this, define § : G — D/D? by g — (g—1) + D?. Since gh—1—(g—1)—(h—1) =
(g—1)(h—1), it follows that 8(gh) = 6(g)8(h), so 8 is a homomorphism. Since D/D?
is abelian and G/[G, G] is the maximal abelian quotient of G, we must have ker(#) C
[G, G). Therefore, 6 factors through ¢’ : G/|G,G] — D/D?, g|G,G] — (9—1)+D2.
Now, we construct an inverse. Define 7 : D — G/[G,G] by g —1 — g[G, G]. Since
(9 — 1+ h—1) = g[G,G] - h|G,G] = gh|G,G], it is not hard to see that this is a
homomorphism. We would be essentially done (with the construction of the inverse
of #', hence the proof of the claim) if we knew D? C ker(r). (The inverse would
be the composition of the quotient D/D? — D /ker(r) with the map induced from
7, D/ker(t) — G/|G,G].) This follows from the fact that any x € D? can be
written as @ = (3°, my(g — 1))(32, my(h — 1)) = (32, , mgmy, (g — 1)(h — 1)), so
(x) =1, ,(ghg th™1)™s™:[G,G] = [G,G]. QED (claim)

Next, we show Hy(G,Z)= D/D?. From the short exact sequence

0—D—=Z[G] > Z -0,

we obtain the long exact sequence of homology

.- = Hy(G,D) - H,(G,Z[G]) »

15] f € (11)
H1(G,Z) 5 Ho(G, D) % Ho(G,Z[G) S Ho(G,Z) = 0.

6Implicit in the words “largest quotient” is a universal property which we leave to the
reader for formulate precisely.
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Since Z[G] is a free Z[G]-module, H, (G, Z[G]) = 0. Therefore 9 is injective. By
item # 1 above (i.e., Ho(G,A) 2 A/DA = Ag, we have Hy(G,Z) = Z¢g = Z and
Hy(G,Z[G]) = Z|G]/D = Z. By (11), €. is surjective. Combining the last two
statements, we find Z /ker(e.) = Z.This forces e, to be injective. This, and (11),
together imply f must be 0. Since this forces 0 to be an isomorphism, we are done.
O

4. Let G = F/R be a presentation of G, where F'is a free group and R is
a normal subgroup of relations. Hopf’s formula states: Hsy(G,Z) =
(F N R)/[F, R], where [F, R] is the commutator subgroup of G.

See [R], §10.7.
The group Hs(G,Z) is sometimes called the Schur multiplier of G.

6 Basic properties of H"(G, A), H,(G, A)

Let R be a (possibly non-commutative) ring and A be an R-module. We
say A is injective if the functor B —— Homg(B, A) (from the category of
G-modules to the category of abelian groups) is exact. (Recall A is projective
if the functor B — Homg(A, B) is exact.) We say A is co-induced if it
has the form Homgz(R, B) for some abelian group B. We say A is relatively
injective if it is a direct factor of a co-induced R-module. We say A is
relatively projective if

m: ZIG|®,A— A,
T®ar— Ta,

maps a direct factor of Z[G] ®z A isomorphically onto A. These are the
G-modules A which are isomorphic to a direct factor of the induced module
Z|G)®z A. When G is finite, the notions of relatively injective and relatively
projective coincide’.

1. The definition of H"(G, A) does not depend on the G-resolution X, of
Z used.

2. If A is an projective Z[G]-module then H"(G, A) = 0, for all n > 1.

This follows immediately from the definitions.

"These notions were introduced by Hochschild [Ho].
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. If A is an injective Z[G]-module then H, (G, A) =0, for all n > 1.

See also [S], §VIL.2.

. If A is a relatively injective Z[G]-module then H"(G, A) = 0, for all
n > 1.

This is Proposition 1 in [S], §VII.2.

. If A is a relatively projective Z|G]-module then H"(G, A) = 0, for all
n > 1.

This is Proposition 2 in [S], §VII.4.

(If A= A'@ A" then H"(G,A) = H"(G, A') ® H"(G, A"), for all n >

0. More generally, if I is any indexing family and A = @7 A; then
Hn(G,A) = @Z‘e[Hn(G, Az), for all n 2 0.

This follows from Proposition 10.81 in §10.6 of Rotman [R].

f

00— A—-B—C—0

is an exact sequence of G-modules then we have a long exact sequence
of cohomology (1). See [S], §VIIL.2, and properties of the ext functor
[R], §10.6.

. A~ H™(G, A) is the higher right derived functor associated to A —»
A% = Homg(A, Z) from the category of G-modules to the category of
abelian groups.

This is by definition. See [S], §VIIL.2, or [R], §10.7.
I

0—= A-B—=C—0

is an exact sequence of G-modules then we have a long exact sequence
of homology (2). In the case of a finite group, see [S], §VIIL.1. In
general, see [S], §VII.4, and properties of the Tor functor in [R], §10.6.
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10. A+— H,(G, A) is the higher left derived functor associated to A —»

11.

Ag = 7Z ®zj A on the category of G-modules.
This is by definition. See [S], §VIL.4, or [R], §10.7.

If G is a finite cyclic group then

H()(G,A) == Ag,
Hy, 1(G,A) = A9/NA,
H,,(G,A) =ker N/DA,

for all n > 1.

To prove this, we need a lemma.

Lemma 8 Let G = (g) be acyclic group of order k. Let M = g —1 and N =
l+g+g>+...+g*'. Then

oz@ Sz zie) - zia B zie1 2 z[6) S z — o,

is a free G-resolution.

proof of lemma: It is clearly free. Since MN = NM = (g—1)(1+g+ g%+
e+ g¥ 1) = g¥ —1 =0, it is a complex. It remains to prove exactness. Since
ker(e) = D = im(M), by Lemma 6, this stage is exact.

To show ker(M) = im(N), let x = Z;:OI m;g’ € ker(M). Since (g — 1)z = 0, we
must have mg = my = ... = mg_1. This forces £ = moN € im(N). Thus ker(M) C
im(N). Clearly M N = 0 implies im(N) C ker(M), so ker(M) = im(N).

To show ker(N) = im(M), let z = E;:é mjg’ € ker(N). Since Nz = 0, we have

0=¢e(Nz) = ¢(N)e(x) = ke(x), so Ef;é mj = 0. Observe that

z =mg-1+mig+mog®>+ ...+ mu_1g" 1

= (mo — mog) + (mo + m1)g + mag® + ... + my_19"7!
= (mo — mog) + (mo +m1)g — (o +m1)g?

+(mo + my +m2)g? — (mo +my +m2)g® + ...

+(mo + .. +mp_1)g" " — (mo + .. + my_1)g".

where the last two terms are actually 0. This implies z = —M (mg + (mo +m1)g +
(mo +my1 +m2)g? + ... + (mo + .. + my_1)g*~! € im(M). Thus ker(N) C im(M).
Clearly NM = 0 implies im(M) C ker(N), so ker(N) = im(M).

This proves exactness at every stage.[]
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12.

13.

14.

15.

16.

Now we can prove the claimed property. By property 1 in §5.1.2, it suffices to
assume n > 0. Tensor the complex in Lemma 8 on the right with A:

o ZG)@ya A B ZG)0ne A Z[G) 0y A S
Z[G) 02101 A ™SS Z[G] @716 A 5 Z @ Z[G]A — 0,
where the new maps are distinguished from the old maps by adding an asterisk. By
definition, Z[G]|®z[g1 A = A, and by property 1in §5.1.2, Z®z[g A = A/DA. The
above sequence becomes
oo AS A% 4N 4 M 45 4/DA 0.
This implies, by definition of Tor,

Tor2l% (z, A) = ker(M,) /im(N,) = A° /N A,
and

Tor29(z., A) = ker(N,)/im(M,) = A[N]/DA.
See also [S], §VIIL.4.1 and the Corollary in §VIII.4.

The group H?(G, A) classifies group extensions of A by G.

This is Theorem 5.1.2 in [W]. See also §10.2 in [R].

If G is a finite group of order m = |G| then mH"(G, A) = 0, for all
n > 1.

This is Proposition 10.119 in [R).

If G is a finite group and A is a finitely-generated G-module then
H™(G, A) is finite, for all n > 1.

This is Proposition 3.1.9 in [W] and Corollary 10.120 in [R].

The group H'(G, A) constructed using resolutions is the same as the

group constructed using 1-cocycles. The group H?(G, A) constructed
using resolutions is the same as the group constructed using 2-cocycles.

This is Corollary 10.118 in [R].

If G is a finite cyclic group then
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17.

H°(G, A) = A,
H (G, A) =ker N/DA,
H™(G,A) = A°/NA,

for alln > 1. Here N : A — A is the norm map Na = deGga and
DA is the augmentation ideal defined above (generated by elements of
the form ga — a).

proof: The case n = 0: By definition, H*(G, A) = Ewty(Z, A) = Homg(Z, A).
Define 7 : Homg(7Z, A) = A% by sending f — f(1). It is easy to see that this is

well-defined and, in fact, injective. For each a € A, define f = f, € Homg(Z, A)
by f(m) = ma. This shows 7 is surjective as well, so case n = 0 is proven.

Case n > 0: Applying the functor Homg(*, A) to the G-resolution in Lemma 8 to
get

o Homg(Z[G), A) & Homa(Z[G], A) & Homeg(Z]G), A) & Homg(Z, A) + 0.

It is known that Homg(Z[G], A) = A (see Proposition 8.85 on page 583 of [R]). It
follows that

e AT A AE AC .
By definition of Ezt, for n > 0 we have

Eot}})(Z, A) = ker(M.) /im(N.) = A% [N 4,

and

Eutyi! (Z, A) = ker(Ny) [im(M.) = ker(N)/(g — 1) A,

where g is a generator of G as in Lemma 8. O

See also [S], §VIIL.4.1 and the Corollary in §VIII.4.

If G is a finite cyclic group of order m and A is a trivial G-module then

HY(G, A) = A®,
H*™"Y(G, A) = A[m],
H™(G,A) =2 A/mA,
for all n > 1.

This is a consequence of the previous property.
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7 Functorial properties

In this section, we investigate some of the ways in which H"(G, A) depends
on G.

One way to construct all these in a common framework is to introduce
the notion of a “homomorphism of pairs”. Let G, H be groups. Let A be a
G-module and B an H-module. If o : H — G is a homomorphism of groups
and §: A — B is a homomorphism of H-modules (using « to regard B as
an H-module) then we call (o, ) a homomorphism of pairs, written

(o, B) : (G, A) — (H, B).

Let G C H be groups and A an H-module (so, by restriction, a G-
module). We say a map

fG’,H : Hn(G,A) — Hn(H, A),

is transitive if fq, ¢, fe..6. = fa.,a,, for all subgroups G1 C G2 C Gis.

Let X, be a G-resolution and X! a H-resolution, each with a —1 grading.
Associated to a homomorphism of groups o : H — G is a sequence of H-
homomorphisms

A, X — X, (12)
n > 0, such that d,11Ap1 = Apd), and ey = €.
Theorem 9 1. If (o,B) : (G,A) — (G',A") and (/,5") : (G'A") —

(G", A") are homomorphisms of pairs then so is (oo, B'0f) : (G, A) —
(G/I’ A”)'

2. Suppose (, B) : (G, A) — (G', A") is homomorphism of pairs, X, is a
G-resolution, and X is a G'-resolution (each infinite in both directions,
with a —1 grading). Let H"(G, A, X.) denote the derived groups asso-
ciated to the differential groups Homg (X, A) with +1 grading. There
s a homomorphism

(Ck, ﬁ)X*,X,’k : Hn(G, A, X*) — H"(Gl, AI, X;)
satisfying the following properties.

(a) IfG=G", A=A, X=X a=1andf=1then (1,1)x, x, = 1.
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(b) If (o, B") : (G', A") = (G", A") is homomorphism of pairs, X! is

a G"-resolution then
(0w, 0 B)x. xy = (¢, B)xs xv 0 (0, B)x. x1-
(c) If (o,7) : (G, A) — (G, A") is homomorphism of pairs then
(o, B+ 7)x.,x = (@, B)x..x + (@, 7)x.,x1-
Remark 2 For an analogous result for homology, see §§II1.8 in Brown [B].

proof: We sketch the proof, following Weiss, [W], Theorem 2.1.8, pp
92-53.

(1): This is “obvious”.

(2): Let (o, 8) : (G, A) — (G', A") be a homomorphism of pairs. Using
(12), we have an associated chain map

o : Homg(X., A) = Homg (X., A"
of differential groups (Brown §II1.8 in [B]). The homomorphism of cohomol-
ogy groups induced by a* is denoted
o x, x - H'(G, A, X,) — H'(G', A, X).

Properties (a)-(c) follow from §2.2 and the corresponding properties of o*.
O

As the cohomology groups are independent of the resolution used, the map
(o, B)x..x: - HM(G, A, X)) = H"(G', A, X}) is sometimes simply denoted by

(@, B). : H™(G, A) — H"(G', A"). (13)

7.1 Restriction

Let X, = X,.(G) denote the bar resolution.

If H is a subgroup of G then the cycles on G, C"(G, A) = Homg(X,(G), A),
can be restricted to H: C"(H, A) = Homy(X,(H), A). The restriction map
C"(G,A) — C"(H, A) leads to a map of cohomology classes:

Res: H"(G,A) - H"(H, A).
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In this case, the homomorphism of pairs is given by the inclusion map
a : H — G and the identity map 8 : A — A. The map Res is the induced
map defined by (13). By the properties of this induced map, we see that
Resp g is transitive: if G C G' C G” then®

Resg g o Resgr v = Resgr -
A particularly nice feature of the restriction map is the following fact.

Theorem 10 If G is a finite group and G, is a p-Sylow subgroup and if
H"(G,A), is the p-primary component of H"(G, A) then

(a) there is a canonical isomorphism H"(G,A) = ®,H"(G, A),, and

(b) Res : H"(G, A) — H"(G), A) restricted to H"(G, A), (identified with
a subgroup of H"(G, A) via (a)) is injective.

proof: See Weiss, [W], Theorem 3.1.15. [J
If H is a subgroup of finite index in G then there is an analogous restric-
tion map in group homology (see for example Brown [B], §II1.9).

Example 11 Let m = dk be a product with d > 1, k > 1, and let G =
Z/mZ, H =17/dZ. We can and do identify H with (m/d)Z/mZ. By §6, we
have

H*™Z/IZ,2)= Z/¢Z, H*"“*YZ/IZ,7)=0,
forn > 0. The map

Res : H"(Z/mZ,7) — H*™(Z/dZ, )
is simply the multiplication by m/d map:

Res : Z/mZ ™ (m/d)Z/mZ = L./ dZ.

8There is an analog of the restriction for homology which also satisfies this transitive
property (Proposition 9.5 in Brown [B]).
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7.2 Inflation

Let X, denote the bar resolution of G. Recall

Xn = @(91,...,gn)€GnR[91, <. 7gn]7

where the sum runs over all ordered n-tuples in G™. If H is a subgroup of
G, let X¥ denote the complex defined by

This is a resolution, and we have a chain map defined on n-cells by [g1, - . ., gu] —
[nga s 7gnH]'

Suppose that H is a normal subgroup of G and A is a G-module. We may
view A" as a G/H-module. In this case, the homomorphism of pairs is given
by the quotient map o : G — G/H and the inclusion map 3 : A — A. The
inflation map Inf is the induced map defined by (13), denoted

Inf : H"(G/H, A") — H"(G, A).
The inflation-restriction sequence in dimension n is

Res

0 — H"(G/H, A" ™ H™G, A) " H™(H, A).

For a proof, see Weiss, [W], §3.4.
There an analog of this inflation-restriction sequence for homology.

Example 12 Let H C G be as in Example 11 above. We have G/H =
Z/(m/d)Z. The map
Inf: H"((Z/mZ)/(Z/dZ),Z) — H*(Z/mZ,7)
s simply the mod m map:
Inf : Z.)(m/d)Z. ™3™ Z./mZ.
Note that, by Example 11, the composition map
ResoInf : H"((Z/mZ)/(Z/dZ),Z) — H*(Z/dZ,7)

is the mod m map followed by the multiplication by m/d map. The kernel

of Z/mZ "™ (m/d)Z/mZ = L/dZ is = (Z/mZ)/(Z/dZ), so Res o Inf =0
map, as the inflation-restriction sequence predicts.
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7.3 Transfer

This map is also called corestriction.

Let H be a subgroup of GG of finite index and let G = U",g;H, where
S ={g; | 1 <i<m} denotes a complete set of coset representatives.

For any G-module A, define the trace T'= T,y : A — A by

T(a) = Z s(a), a € A.

Properties of the trace:

1. T is independent of the set S of representatives choosen (so 7' only
depends on G/H),

2. T is transitive: if G C G’ C G" then
TG’/G’ O TGII/GI = TGII/G.

3. If H=1then T : A — A% is a G-module homomorphism.
4. Tg/n induces a homomorphism T¢; ; : Homy (A, B) — Homg(A, B).

Let X, denote the bar resolution of G. Then X, is also a resolution of Z
as H-modules. The trace map induces chain maps 1¢,p , : Homp (X, A) —
Homg(X,, A) (as in the proof of Theorem 9). This induces a map on coho-
mology denoted

Cor: H"(H,A) — H"(G, A).

This is the corestriction or transfer map on cohomology.
There an analog of this for homology (Brown [B], §I1.9).

Remark 3 According to Brown §II1.9 in [B], this does not arise from a
homomorphism of pairs.

This transfer map is also transitive. Moreover, it commutes with re-

striction and inflation (see Propositions 2.4.5 and 2.4.6 in Weiss [W] for the
precise statements).
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Lemma 13 If H has index m in G then

Coro Res: H"(G,A) - H"(G, A)

18 the multiplication by m map.

proof: See Corollary 2.4.9 on page 76, in §2.4 of Weiss [W]. O
There is an analog of this property for homology (see §§III.8-II1.9 in
Brown [B]).

Example 14 Let H C G be as in Example 11 above. The map

Cor : H"(Z/dZ,7) — H*"(Z/mZ,7)
is simply the multiplication by m/d map:

Inf:Z)dZ"™S Z/mZ.
Note that, by Example 11, the composition map

Cor o Res : H*(Z/mZ,7) — H*"(Z/mZ,7)

is the multiplication by m/d map followed by the mod m map. So, CoroRes =
m/d, as the above lemma predicts.

7.4 Shapiro’s lemma

Let H be a subgroup of G and let A be an H-module. Let

Indf(A)={f:G—A| f(hg)=h-f(g), heH, geG}.
This is the G-module A induced from H to G. The action of G on Ind%(A)
is by right-translation: g : f(x) — f(xg).

In this case, the homomorphism of pairs is given by the inclusion map
a: H — G and the map 8 : Ind$(A) — A defined by 3(f) = f(1). The
map

(, B)x - H(G, Indjj(A)) — H"(H, A)
is the induced map defined by (13).

Theorem 15 (Shapiro’s lemma) This map («, 5). is an isomorphism.
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proof: See Weiss, [W], §3.7.14. O

There is an analog of Shapiro’s lemma for homology (Proposition 9.5 in
Brown [B]).

Acknowledgements: 1 thank M. Mazur and J. Feldvoss for correspondence
which improved the content of these notes.
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