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Abstract

We describe the unitary and tempered dual of the n-fold metaplec-
tic covers of SL(2, F'), where I is a p-adic field with p not dividing
2n. We show that any tempered distribution on the n-fold meta-
plectic covers of SL(2, F') or of GL(r, F’) (satisfying the assumptions
of §1.1 below) may be expressed as a distributional integral over the
tempered dual. We also show that any invariant distribution on the
n-fold metaplectic covers of SL(2, F') or of GL(r, F) is supported on
the tempered dual.
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1 Introduction

Since the days of Fourier, it has been known that any “nice” function on R has a
Fourier transform,

() = /R f(@)m(x) de,

where 7 € {e%* | s € C} = R” denotes the dual space. 7 is unitary if and only if
s € iR. Let (R)” denote the unitary dual space and denote the Schwartz space by

CR)={f:R=C||D"f(y)| <<nns (1+]y) "V}
The image of the Schwartz space under unitary Fourier transform is
C(R); = C(R)

This result enables us to define, for each tempered T € C(R)', T" € C(R)" by
TN ™) =T(f). A compactly supported tempered distribution is given by integra-
tion against some distributional derivative D"u, some n > 0 and some u € C.(R).
These last few facts are well-known results of L. Schwartz [Sch]. Thanks, to R.
Paley and N. Wiener, the image of C2°(R) under unitary Fourier transform has
also been classified (in terms of the “the Paley-Wiener space,” a space of complex-
anaytic functions satisfying certain boundedness conditions).

We want analogs of these results for metaplectic covers of p-adic SL(2), GL(r).
In fact, Schwartz’ classification of the compactly supported distributions will be
used to prove its own p-adic analog. However, the image of the Fourier transform
shall only be determined here in the SL(2) case.

Kazhdan [K] has shown that if G is a connected reductive p-adic group with
compact center then any (not necessarily tempered) invariant distribution on G
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is supported on the tempered dual. In Theorem 23 below, we prove this result
in the case of n-fold metaplectic covers G of SL(2,F) or of GL(r, F), as in §1.1
below. We also express the Fourier transform of any tempered distribution of G
as a distributional integral over the tempered dual. Both of these results require
some understanding of the tempered dual of G, which may be found either in §2
below (in the SL(2) case) or [FK] (in the GL(r) case).

Most of this paper is written in a general context in the belief that the argu-
ments should be valid in a more general setting. The motivation for this paper is
the application to constructing the Arthur invariant trace formula on the 2-fold
metaplectic cover of SL(2,4A) (or the n-fold metaplectic covers of GL(r, A) [Me])
using the assumptions (in local harmonic analysis) of [A1]. Though some of these
local assumptions remain unproven at this time for the n-fold metaplectic covers
of GL(r,A), thanks to results here, it appears that all the assumptions in local
harmonic analysis have been proven now to establish the Arthur invariant trace
formula on the 2-fold metaplectic cover of SL(2, 4).

These results were presented at the Conference on Harmonic Analysis in honor
of John Benedetto, University of Maryland, October, 1999.

1.1 Assumptions on G

Throughout most of this paper we shall denote by G the group of F-rational points
of a connected reductive algebraic group G over I’. We denote by G a group which
is a finite cyclic central topological extension,

L= py, -G =G =1,
where i, denotes the group of n'”* roots of unity, F’ contains all n** roots of unity,
o G=5L(2),
e p does not divide 2n,
or
o G=GL(r),

e p does not divide n,

n is relatively prime to all composite positive integers less than or equal to
r.



We denote the above projection by p: G — G.
Let F be a p-adic field with uniformizer 7r, ring of integers O, residual

characteristic p = char(Or/7rOF), ¢ = |Or/7OF|, and normalized valuation
||F Let
n, n odd,
N= { n/2, neven ()

and let Ny denote the unipotent upper triangular subgroup of G.
For g = ( 'Z b ) €eG=SL(2,F),let

d
e c#0,
x(g)_{ d, ¢=0,
and let 8 =B, F : G X G — pu, be defined by

Blgr,g2) = (2(91),2(g2))n - (—2(91) " 2(g2), 2(9192))n (2)
_ 90(9192) $(9192))
—alg) T oelgr) Y
where (...,...)n = (oo oo )7 1 FX X I’ — 1, denotes the Hilbert symbol [W]. This
cocycle defines a cover G satisfying the properties above. Elements of G will be
denoted by (g,<), where g € G, < € .
The cocycle for GL(r, F') is described in [FK].

1.2 Basic notation

If H is any subset of G then denote H = p~!(H). In particular, if G, denotes the
set of regular elements of & in the sense of [K], let G, be the pull-back of G, via
the projection p.

Let £(G) denote the set of standard Levi subgroups of G (with respect to
a given maximal split torus of ). We write A for the diagonal subgroup of
G. Let L(G) denote the set of Levis in £(G) pulled back to G via p. We call
these the standard Levi subgroups of G. For each M € L(G), let X (M) denote
the variety of unramified characters of M and let X“"(M) denote the variety of
unramified unitary characters of M. If M = A € L(G), let X(M) denote the
variety of unramified characters of A™ (which we may identify with a character of
An) and let X“"(M) denote the variety of unramified unitary characters of A™. Let
W = Ng(A)/A denote the Weyl group of A. When G = SL(2, F'), we sometimes
identify W (as a set) with {1, wo} or sometimes (as a group) with {1, w;}, where

0 -1 01
‘w0:[1 O]EG’ ’w1:[10]7



and when W is to act on A instead of A, we sometimes identify (using a slight
abuse of notation) W (as a set) with {1, wg}, where Wy = (wo, 1).
We shall often identify the unipotent radical

1 *
N={ rcG (3)
0o ... 1

with the subgroup {(n,1) | n € N} C G. Let Ko = G(Op). It is known that if
(p,2n) = 1 then Ky splits (see [G] for SL(2) and [FK] for GL(r)).
We call a function f of G (resp., of any subgroup H of G) genuine if it satisfies

flg,s)=s7"Flg,1), (4)
for all g € G (resp., (g9,5) € H). Let C°(G) denote the space of smooth (i.e.,

locally constant and compactly supported) functions on G and let C2°((G) denote
the space of smooth genuine functions on G.
Let [|g]| = max(|g;;|), where g = [g;;]] € G, and let o(g) = log||g||. For each

compact open subgroup K CC G, let

Ck(G) = {f€C:(G//K)| [ genuine,

@) <<rf sthy Vo= (2,9) €T,
foreach r > 0

i

where C.(G//K) denotes the space of compacty supported functions which are
bi- K-invariant and where

E(z)= [ 6p(zk)~"2dk.

Ky

Here, 6 denotes the usual modulus function defined for 7 = (z,{) € G, by
§() = | det(Ad(z4))n|, where z4 denotes a diagonalization of z in G(F), where F’
denotes a separable algebraic closure of I’ and the valuation |...| has been extended
to I/, and where n denotes the Lie algebra of N in (3) (more precisely, the Lie

algebra of N(F)). We topologize C (G) via the semi-norms

oulf) = sup £ (@) L2 @)
z€G "('r)

Let
C(@) =Jcx (@),
K
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where K runs over all compact open subgroups of G. This is the Schwartz space
of Gi. Let S denote the collection of all seminorms on C(() whose restriction to each
Cr (G) is continuous. In the semi-norm topology induced by S, the Schwartz space
is a complete locally convex topological vector space. Moreover, C(G) C L?(G)
and C(G) is an algebra under convolution.

We call a representation 7 of G (resp., of any subgroup H of G) genuine if it

satisfies

ﬁ(g7§):§-ﬂ'(g71)7 (5)

for all ¢ € G (resp., g € p(H)). If m denotes an admissible representation of G
then let ©, denote the character of w. Likewise, if 7 denotes an admissible genuine
representation of G then let ©, denote the character of 7 (see [J2], §4, for details
on how the results in §4.8 of [Sil] to metaplectic covers). We may regard ©, as
either a locally integrable genuine function on G, or as an invariant distribution,
whichever is appropriate for the context, as in [HC1], [HC2].

For each Levi component M of G, let

o [I(M)=1I(M), denote the genuine admissible dual of M (the set of equiv-
alence classes of genuine irreducible admissible representations! of M),

e [I(M); denote the genuine tempered dual of M,

o [I(M); denote the genuine discrete series dual of M (i.e., the set of equiva-
lence classes of genuine irreducible representations of G whose matrix coef-
ficients are L2 mod center - see §2 of [HC4] in the case n = 1),

e [I(M), denote the genuine unitary dual of M,
e [I(M). denote the genuine supercuspidal dual of M.

Furthermore, let

e 1%((G)z denote the Grothendieck group of genuine, tempered, admissible
representations of G and let R;(G) = Ry(G)z @7 C,

o PW,(G) denote the tempered Paley-Wiener space, i.e., the space of

functionals on R(G) of the form ¢f : @ — O,(f), for some f € C(G).

Similarly, let PW(G) denote the Paley-Wiener space, i.e., the space of

functionals on R(G) of the form ¢f : 7 — O, (f), for some f € CF(G).

!From this point on, all representations will be assumed to be admissible unless other-
wise stated.



2 Basic lemmas on orbital integrals

If p < oo then
F*=nPp, - U,

a direct product. If (p,2n) =1 then u,, C I’* implies ¢ = 1 (mod n). Recall

N — { n, n odd,

n/2, neven.

Lemma 1 Suppose A is the diagonal subgroup of SL(2,F).

(a) If (p, N) =1 then C' = 72OXN = ﬂzué\f_l(l + 7OF) is a mazimal subgroup
of I’* for which C C A is abelian.

(b) If (p,n) = 1 then C = 7%(1 + NOF),uéV_I has index N in F*.

The (straightforward) verification of this fact is omitted (see [J2] or [J4]).

Let

Dol § I =deti—aa[ 2 e

= (1= a)(1-a7) = ~(a—a7)?

where g, a denote the Lie algebras of G, A, resp.. This map pulls back to G, via
p. Fort € G,, let T = Cent(t,), denote the centralizer?. Define the orbital

integral of f € C°(G) by
FF(t) = |D(t)|'? aMr)—. 6

(This exists as a simple consequence of a well-known result of Harish-Chandra
[HC].) We define D as above by identifying 7" with A over the algebraic closure.
If @ € A is regular, then define

P @ = D@ [ fatan) @

AN\G
Lemma 2 Let G be a cover of SL(2, F) as in §1.1.

— - = N
(a) For f € C(G), a € A— AN, we have FJf1 (a) =0.

ZNote T need not be equal to the metaplectic cover of a centralizer of G. In other

words, if t = (z, 1) then in general Cent(t,G) # Cent(z,G).



(b) The map f +—— Ff‘N defines a surjection C°(G) — C(ANYW | where the
action of W on AN s as in §1.2.

(c) The map fr— Ff‘N defines a continuous surjection C(G) — C(AN)W.

The relatively straightforward proofs of these results will be omitted. (How-
ever, one may find detailed proofs in [J2].)

For orbital integrals on GL(r, I'), we refer to chapter 1 of [FK]. For example,
the analog of part (b) above follows from §1.7-1.8 in [FK].

3 Unitary and tempered dual of SL(2, F)

In this section, let G be a cover of SL(2, F) as in §1.1. We shall need some facts
about the tempered dual of G for the main result in the next section. In particular,
we recall the classification of the unitary and tempered dual of G in order to state a
theorem of “Paley-Weiner type” for the unitary and tempered Fourier transforms
in §4.1 below. All the results of this section are essentially in the literature in one
form or another but see [J4] for more details.

For GL(r, F), the necessary results on the tempered dual may be deduced from
§19 of [FK].

It is remarked in [BD], §2.2 that the arguments of [BZ1], chapter 2 carry over
to finite central extensions of reductive groups over a p-adic field (see also [KP],
§1.2). The arguments of [BZ2], section 2 and the corresponding sections of [Ca]
also carry over to finite central extensions of split reductive groups over a p-adic
field. Such results reduce the determination of the unitary dual of G down to
classifying the supercuspidal representations (done in [J5] when ged(p,n) =1 and
[J3] for any p,n) and the constituents of the induced representations, as indicated
in the following fact.

Proposition 3 (Jacquet [BZ1], section 3.19) If 7 € II(G) then there is a Levi

M € L(G) and a supercuspidal o € IL(M) such that 7 is a constituent of I5;(o).

3.1 Principal series

If P = M N denotes a levi decomposition of a parabolic subgroup of G and (o, W) €
(M), (which we extend to P = MN trivially), then define I5;(c) : G — Aut(V)
to be the unitarily induced representation: the representation of G by right
translation on



(1) f(mg) = dp(m)'/2a(m)f(g),
Vge G, me M
(2) for some open subgp K CC G, f(gk) = f(g),

Ve K, geG}

V = {f:G— W genuine |

Here 4p denotes the modulus function in §1.2.

In general, if p is a representation of a group H C G and z € Ng(H) then we
let p® be the representation defined by p®(h) = p(z~1hz), for h € H.

Let x, X’ € I1(A) and let @ = (w, 1), for w € W. If x” # x for all w € W — {1}
then we call y regular. We say that x, ¥’ are W-conjugate if v/ = x* for some
w € W. The following result was proven for metaplectic covers of GL(r, F) in
[KP], however it holds in the present case as well.

Lemma 4 ([BZ2], Corollary 2.13, Theorem 2.9(b)) Let x,x' € N(A). If x is
reqular then
dim Homz(I7(x), Iz(xX')) < 1,
with equality if and only if X', x are W -conjugate.
In other words, distinct W-conjugacy classes of x € I1(A) yield inequivalent
representations.
Suppose that 7 € I1(G),. We call 7 a (unitary) principal series representa-

tion if # = I(x) for some x € II(A),. These representations are tempered. In case
I5(x) is reducible and x € II(A),, we call the irreducible constituents reducible
principal series (or, more precisely, reducible principal series constituents).

Let x € [1(A). The induced representation /() is in general not irreducible.
However, we do have the following result.

Proposition 5 (Moen [Mo2])

a) If n is even and ged(p,n) = 1 then I+ is irreducible and unitary for all
(a) ged(p, alx y

x € II(A),.

(b) If n is odd and ged(p,n) = 1 then I5(x) is irreducible and unitary for all
X € I(A), such that (a) x =1 or (b) X" # x where Wy = (wo, 1). If X =
x and x # 1 then I5(x) is reducible and has two irreducible constituents.

In fact, C. Moen [Mol] explicitly computes the intertwining operators as ma-
trices using the Kirillov model when ged(p,n) = 1.



Proposition 6 I7(x) is irreducible and unitary for all x € 11(A), such that X #
X where Wy = (wo, 1).

The above result has a direct proof, based on Bruhat theory, but it can also
be deduced from results in [FK].

3.2 Complementary series

In this subsection, we shall briefly review some of the results of Ariturk [Ar] and
use some results of Flicker and Kazhdan [FK] to generalize them to the n-fold
cover ([Ar] assumed n = 3 and p > 3). In case n = 2, these results were essentially
known to Gelbart-Sally [GS].

We call an irreducible unitary representation 7 a complementary series
representation if 7 = I5(y) for some x € II(A) — II(4),. These representations
are not tempered. _

Let p € T(C), x = xu = Ind%,u € H(A). If u(z) = po(z)|z|*, for some
character g of finite order and some s € C then we write s = s(u) = s(x).

Let K (i) denote the space of locally constant functions f : F' x A — C such
that

() f(z,a1a2) = p(ay) f(z,aq), a; € C, ag € A,

(ii) |$|X([ ;(C) m91 ] , 1) f(z,a) is constant for |z| large.

Let R C A denote a complete set of representatives of A/C, and let r denote
the cardinality of R. The elements f € K(u) may be identified with the r-tuple
(/(@,0))acr: o

Let V(i) denote the space of all locally constant functions ¢ : G x A — C such
that

(i) ¢(g, ar02) = plar)@(g,az), a1 € C,az € A, _

(ii) ¢(a1ng,az) = 6(ar)p(y, azar), where a; € A, a3 € A, n € Ny. Here §
denotes the usual modulus function as defined in §1.2 above. For ¢ € V(i) and
w € W, define the map T'=T,, by

rog.a)= [ (| | ] 0 g ma s, res) > o

where w = (w, 1).

Lemma 7 (Ariturk) T intertwines I(p) and Ig(p™).
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This lemma does not require us to assume ged(p,n) = 1.
Let L(G, B) denote the space of all locally constant functions ¢ on G such that

a *

. — 2
g ] =lae.
For @1 € V(p), g2 € V(u"), the function

g— |19, a)pa(g,a)da
A/C

belongs to L(G, B). Therefore,

< p1ypr >= /_ B /_ o1(9, @) palg, a)dadg
B\G JA/T

_ /F/Z/aapl(ﬁ_l - [ é : ] L)o@ - [ é : ]  a)dad*z

gives a non-degenerate bilinear form on V() x V(p%).
Lemma 8 (Ariturk) I(p*) is the contragredient of Ip(u).

This lemma does not require us to assume ged(p,n) = 1.
For f € K(u), define the Fourier transform of f by

o) = [ Ty,

where 1 is a fixed additive character of F.

S

Lemma 9 (Ariturk) Assume ged(p,n) = 1. For ¢y, @2 € V(p), p(z) = |z|°, we
have
<onTes= [ [ oo TIE adads,
FJAaje

where J = J, is a linear transformation on K(p)" and

fi(x7a) :Q‘oi(w_l : |: (1) f :| 7a)7 1= 172.

We may identify the map J = J, defined in the above lemma with an r x r
matrix which we still denote by J.
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Lemma 10 (Langlands, Ariturk) Assume ged(p,2n) = 1. If0 < Re(s(p)) < 1/n
and [Im(s(u))| < m/nln(q) then the image of J, is an irreducible representation

of G.

Proposition 11 (Flicker-Kazhdan) If0 < s(p) < 1/n then I(u) is a unitarizable
representation of G.

Corollary 12 If 0 < s < 1/n and p(z) = |z|° then < ¢1,Tey > is a posi-
tive definite form. In particular, I5(p) is unitary in this range. If, in addition,
ged(p,2n) =1 then J, is a positive definite matriz.

Remark 1 In the case n = 2, this follows from [GS], Proposition 1 following the
argument of [Ar]. See also [Mol] if p > 2 and [G], §5.4. In the case n =3, p > 3,
this was proven in [Ar].

This corollary shows that some of the results of Ariturk [Ar] generalize to the
n-fold cover case without any condition on the prime p.

3.3 The special and the “trash” representations

For the origin of the term “trash” representation, see [G].
As a consequence of the above-mentioned facts, we have the following result.

Proposition 13 Let s =1/n and p(z) = |z|°.

(a) The irreducible subrepresentation of I4(1) (if ged(p,2n) = 1, the kernel of
J,) is the “special” representation mwgy,. It is tempered and square-integrable
(hence unitary). If ged(p,n) = 1 then it also contains an Iwahori fized
vector.

(b) If n > 1 then the irreducible quotient of Iy(u) (if ged(p,2n) = 1, im-
age of J,) is an infinite-dimensional, non-tempered representation m,;. If
ged(p,n) =1 then it is also spherical.

Remark 2 In the case n = 3 and p > 3, this proposition follows from [Ar]. In
case n = 2, most of the statements are proven in [GS].

Proposition 14 (Kazhdan-Patterson [KP]) > w0, is unitary.

Remark 3 This was known earlier in the cases n = 2 ([GS], Theorem 2) and
n=3, p#3 ([Ar], Theorem 5.4).

3This was originally only a conjecture in [J4]. An anonomous referee of [J4] pointed
out that it followed from [KP].
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3.4 Classification

We summarize the above results.

Theorem 15 Let G be as in §1.1 above. If © € 11(G), then one of the following
holds.

e (Principal series) There is a x € T1(A), such that (X™ # x and) 7 = Iz(x),

as in §2.2.

e (Complementary series) There is a x € II(A) — [1(A), such that # = I5(x),
as in §2.3.

e (“Reducible principal series”) There is a x € 1(A), such that (Y™ = x

and) w is either a subrepresentation or a quotient of I4(x), as in §2.2.
o 7 is a “special” or “trash” representation as in §2.4.

e 7 is a supercuspidal representation as in [J5].

Theorem 16 Let G be as in §1.1 above. If 7 € I1(G); then one of the following
holds.

(Principal series) There is a x € [1(A), such that (X" # x and) 7 = I5(x),
as in §2.2.

(“Reducible principal series”) There is a x € 1I(A), such that (x"™° = x
and) 7 is either a subrepresentation or a quotient of I(x), as in §2.2.

o 7 is a “special” representation as in §2.4.

e T is a supercuspidal representation as in [J5].

4 Invariant distributions

We classify the image of C2°(G) and of C(G) under the “scalar-valued Fourier
transform” or “trace map”, f — trm(f), where G is as in §1.1 above. We prove
that all invariant distributions on G are supported on tempered characters, where
G is either a cover of SL(2,F) or a cover of GL(r, F) as in §1.1 Finally, we show
that, for G as in §1.1, we can write any invariant tempered distribution D on G
as an integral on the tempered dual.
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4.1 Tempered Paley-Wiener theorem

In this section, G is a cover of SL(2,F) as in §1.1. Let C C A be a maximal
subgroup of A for which C' C A is abelian.

Next we classify the image of the Fourier transforms of a “generic” unitary
principal series representation

m=1I7(x), x=Indzpell(A), pell(0),

on C>((). Note that both the Weyl group W and H = A/C act on C.(I1(C))
by conjugation and ¢; € C.(II(C)). Let C.(II(C))" denote the subspace of H-
invariant functions and let C,(I1(C))"* denote the subspace of functions which
are both H-invariant and W-invariant.

Lemma 17 In the notation above, for each f € C*(G), ¢5 @ p — trI7(x)(f)
belongs to C.(I(C))WH.

proof: The map
Jo—

1
M) = ] >,
heH
defines a surjection C,(II(C)) — C.(II(C))". The H-invariance of I5(x) implies
or € C.(I(C)H, for f € C®(G). The W-invariance follows from Lemma 4. O
Recall the Fourier transform with respect to the principal series,

Gp(p) = O(f), m=1I7(x), x=Indipell(A), pell(C).

When p is unitary we call this the Fourier transform with respect to the unitary
principal series. If the restriction of u to an diag(z,z~') € A" is of the form |z|*
then we write ¢¢(u) = ¢¢(s). When g is of this form and s is real, we call this the
Fourier transform with respect to the complementary series.

Proposition 18 For f € C°((G), the image C’é’o(G);\s of the Fourier transform

f = ¢; with respect to the unitary principal series, is given by

— — h is a trig polynomial on
oo (RN _ WH g polynomla
C(@ps = {h € Ce(TI(C)u) | each circle in I1(C), g

The image C°(G)2, of the Fourier transform f —— ¢y with respect to the com-

cs
plementary series, is given by

CE(GN = {h e C(I(C))"H restricted to 0 < s < 1/n, a polynomial in ¢° }.

14



This follows from character formulas for induced representations and from
results on p-adic Mellin transforms in [Tal], pp. 43-44.
Analogous to Proposition 18 above, we have the following result.

Proposition 19 For f € C(G), the image C(@);\S of the Fourier transform f r——

¢ with respect to the unitary principal series, is given by

C(@)h, = C2(MT)) .

4.2 The Fourier transform

Let
J=span{f - f| f € CZ(G) ,g € G},

and recall PW;(G) denotes the tempered Paley-Wiener space.

Proposition 20 Let G be as in §1.1. The kernel of the trace map
N CR(G) — PW(G),
defined by () = O, (f), is J.

Remark 4 When n = 1, the result above is a special case of [K], Theorem 0.
Moreover, in this case Arthur ([A2], page 175) showed (in particular) that the
trace map C(G) — PWy(G) is a continuous (in a natural topology on PW(G))
linear transformation. We note that his proof of this part of his main result easily

extends to the case n > 1.

proof: For G asin §1.1, Vignéras (see Proposition 3.2 and §2.3 in [Vig]) showed
that the kernel of the orbital integral map

3:C°(G,) - C=(G,)CE
is J. Let K denote the kernel of the trace map * : C>°(G) — PW;(G). The Weyl
integration formula implies J C K. Theorem 19.2 of Flicker and Kazhdan [FK] *
implies K C .J, if G is a metaplectic cover of GL(r, F). If G is a cover of SL(2, F)
as in §1.1 above then probably the argument is analogous - hence perhaps could

4This section of [FK] uses the global trace formula, hence requires the assumption that
n is relatively prime to all composite positive integers less than or equal to r and to the
residual characteristic over F.
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be left at that - but we give an alternative (and much simpler) argument below in
this special case.

Fourier transforms of Harish-Chandra transforms and character formulae for
induces representations (implicit in §2.1 above but see also explicit formulas in [J4]
or [J2], for example) show that if f € K then FJf‘N(a) = 0. It remains to show
that if f € K then Ff(t) =0, where 7" = Clent(t, G), is the centralizer of a regular
elliptic element (see (6) above). The desired Ff(t) = 0 follows from (3.43) in [J1].
O

Let V'’ denote the dual (consisting of linear functionals) of the complex vector
space V. If V is in addition a G-module, let (V’)E denote the subspace of G-
invariant linear functionals.

Lemma 21 Let G be as in §1.1. The canonical map

(CE@)/) = (C2(@))
is an isomorphism.

proof: For f € C®(G), let f mod.J denotes its class in C°(G)/.J. First, note
that the canonical map

(C&(@)]T) — (C2(G))E
D —— D*
(f modJ — D(f mod J)) — (f — D(f mod J)).

is injective by definition. _
To see that this is surjective, let D € (C2(G)")“. We must show that there is
a Do € (C(G)/J) such that D = Dj. Let

Do(f mod J) = D(f),  f€CZ(@).

We want to show that Dy is a well-defined distribution, i.e., that if f, f' € C°(G)
and f mod.J = f' modJ then D(f) = D(f’). By definition of J, f mod.J =
f' mod J implies f' = f4+ 3", ;ci(fi — f7*), for some finite set I and some ¢; € C,
fi € C*(G), ¢gi € G. Since D is invariant, from linearity it follows that D(f) =
D(f"), as desired. Therefore, the canonical map is surjective. O

From these two results, we conclude the following important fact.

Theorem 22 Let G be as in §1.1 above. The trace map

A0 (G) = PWL(G)

16



factors through the canonical map

(CEG)]T) = (C2(G))°.
In other words, each invariant distribution is supported on tempered characters.

Remark 5 (1) This is one of the assumptions needed to extend [A1] to the meta-
plectic covers of SL(2, F), GL(r, F).

(2) In the case of GL(r, F), this is the remark following Theorem 19.2 in [FK].

This allows us to define, for each invariant distribution D on G, the Fourier

transform D" on PW,(G) by

D(f)=D"f"),  feCZ(G). (8)

By the results of §2 above and of [FK], the tempered dual has both a continuous
part and a discrete part. The continuous part of PW;(G) decomposes into a vector
space sum of smooth functions on compact real tori. It is noted for later reference
that if D" induced, by restriction, a distribution on each of these spaces of smooth

functions then DD must be tempered.

4.3 The Fourier transform as an integral over II(G);

Note that any function m on the tempered dual I1(G); extends by linearity to the
Grothendieck group R(G); (defined in [K] in the algebraic case; in the metaplectic
case the definition is similar).

In the case n = 1, let dw denote the canonical measure on the discrete dual of
G as in §2 of [HC4]. The discrete dual has the structure of the disjoint union of
compact real manifolds . We use Corollary 4.5.11 and Theorem 4.6.1 in [Sil], we
extend this measure to [1(G);, which is parameterized by (a dense subset of) the
discrete dual.

In case G = GL(r, F), we use the correspondence between I1((z); and I1(G);
proven in §19 of [FK] to pull these parameters and measures on II(G) back to
I(G):. In case G = SL(2,F), we use the correspondence between II((7); and

II(G); proven above to pull these parameters and measures on II(G); back to

II(G)s. Let dp denote the measure on the tempered dual I1(G); corresponding to
dw. Let m(m)dpu(m) denote a distribution on the tempered Paley-Wiener space

PW;(G) such that

1. m(w) is supported on finitely many orbits O = O,, for ¢ € I1(M)4 and some
Levi M of G,
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2. there is a continuous function k on II(G); such that on each orbit O = O,,
with o, M as above, such that as distributions on C:°(Q), we have

8[
m(Iy(wo)) = 5—7h(w),
where I = (i1, ...,%,) denotes a multi-index, r being the real dimension of O,

and % denotes partial differentiation on the real manifold O.

We call such a distribution a distribution of finite type on I1(G);. A distribution
satisfying (2) but not (1) will be called a distribution of quasi-finite type on
II(G);. The maximum of the integers |I| = 4y + ... + 4., where I tuns over all
multi-indices occurring in (2), is called the order of the distribution.

Theorem 23 Let G be as in §1.1 above. If D is an invariant tempered distribu-

tion on C°(G) then there is a distribution of quasi-finite type m(n)du(n) on the

tempered Paley- Wiener space PWy(G) such that
D)= [ Oummin(r), 1€ O @)

This formula extends continuously to all of C(G).

Remark 6 If we replace C(G) by Cx (G) in the second part of the above theorem
then we can replace quasi-finite by finite.

proof: First, we know from Theorem 22 that D is supported on the tempered
dual.

We claim that the tempered dual is contained in the unitary dual. In the
SL(2) case, see [J2] for the detailed case-by-case proof using the classification of
the irreducible admissible representations of GG. In the GL(r) case, see §§16-17
of Flicker-Kazhdan [FK] ®. Therefore D arises from a distribution D” on I1(G);.
The above theorem is now an immediate consequence of equation (8), and the
classification of L. Schwartz ([Sch], ch. III, Th. XXI) which we state in the
present notation as follows.

Lemma 24 (Schwartz) Let O be an orbit as above. If T € C*(O)' then there is
a continuous function h on O and a multi-index I = (i1, ...,1y), 1; > 0 such that

T = CZ—IIh (as distributions), where x = (z1,...,%,,) is a coordinate on O.

This completes the proof of the Theorem. O

SThese sections of [FK] do not use the global trace formula, hence only requires the
assumption that n is relatively prime to the residual characteristic of F.
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4.4 Some corollaries

By Theorem 22, the Fourier transform of each invariant distribution is support on
the tempered dual.

Corollary 25 Let G be as in §1.1 above. If D is tempered then the Fourier trans-
form D" may be expressed in the form

DMh) = /H o, M) ()

for all h € PW(G), where m(w)du(r) is a quasi-finite distribution.

It is natural to ask for a more explicit characterization of the admissible dis-
tributions [HC2]. The result below uses the above corollary to basically reduce
the question of admissibility down to the behaviour of the distribution near the
singular set.

Corollary 26 Assume G = G (n = 1). If D is an tempered then it is admissi-
ble on the regular set. In other words, if we identify C°(G,) with the following
subspace of C°(G),

CEO(GT) = {f :G—=C | f|G—Gr = 07 f € CEO(GT)}v
then D|ce(q,) is admissible.

Remark 7 This result cannot be extended from G, to all of G since, for example,
the distribution f — f(1) is not admissible on G. However, as a distribution on
C®(G,), it is zero, hence admissible on G.,.

proof: By hypothesis,

DU =D = [ (),

I(G):

where m is of quasi-finite type. For a fixed z € G regular, we may regard the
character ©,(z), as a function of 7 € II(G), as an element of PW,(G). Therefore,

Fp:zv—— /H(G)t O (z)m(r)du(r),
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defines a locally constant function on the regular set of G. From this it follows,

by Fubini’s theorem, that D is representable by a locally constant function on G,:
for any f € C'°(G,), we have

n=| / (m)dpu(r) f () da.

Let v € G be regular, U C G, be an open set, and K C G be a compact open
subgroup such that yK C U. Since characters are admissible, by [HC2], for any
irreducible complex representation p of K with character y, we have (©,+x9)(z) =
0, for all z € G regular. Here x2 denotes the function on G which is the extension
by 0 of x, on K. We want to show that the same condition holds for D. The
above formula and Fubini’s theorem give,

(Dxxp) () = Jg Jnge), ©
=[x fG fH (G)e ,,(,r) ( ) p(m) f(k™h)xp (k) dzdk
=Jx Ja fn (G): Or(zk)x (k l)m(“)dﬂ(“) f(z)dzdk
= s fn t kX )( ym(m)dp(r) f(z)dz
=0,

(F)du(ﬂi Frxp)(x)da

\_/A

where p denotes the contragredient. It follows that D is admissible on the regular
set. O

Example 27 Clearly f — f(1) is a tempered distribution. Theorem 23 implies
that there is a quasi-finite m such that

f(1) = /H o, Ot J € C @)

This is a weak case of Harish-Chandra’s Plancherel theorem.
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