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Abstract

Let G be a connected unramified semi-simple group over a p-adic field
F. In this note, we compute a (Macdonald-)Plancherel formula:

/ F(R) (g™ hg)dgdh = / P 0T06 ) du()-
G(F)xG(F)

Here f is a spherical function, fV is its Satake transform, and ¢ is a smooth
function on the elliptic set. For this, we use the Geometrical lemma of
Bernstein and Zelevinsky, Macdonald’s Plancherel formula, Macdonald’s
formula for the spherical function, results of Casselman on intertwining
operators of the unramified series, and a combinatorial lemma of Arthur.
This derivation follows the procedure of Waldspurger [W] rather closely,
where the case of GL(n) was worked out in detail. We may rewrite this
formula as fG(F)f(g_lfyg)dg = [ V(X)) I(x,7)dp(x), for ¥ € Gey and f
spherical. Here I(x,~) is a distribution on the support of the Plancherel
measure (regarded as a compact complex analytic variety).
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1. Introduction

Let GG be a connected unramified semi-simple group over a p-adic field F, let G,
denote the subset of regular elements of G(F'), and let GGy denote the subset of
elliptic regular elements of G(F). Let C*(G(F)) denote the algebra of locally
constant compactly supported functions on G(F) and let H(G, K) denote the
commutative subalgebra of spherical functions associated to a hyperspecial, good,
maximally bounded subgroup K of G(F).

Let & C CX(G(F)) denote the subspace of functions on G(F') supported in
G, so each ¢ € @ is Ad-finite in the sense of [K]. For each ¢ € ®, define

Ts: f |—>/ f(R)p(g~ hg)dgdh. (1.1)
G(F)xG(F)
It is not hard to show that T, defines an “elliptic” invariant distribution in

C>(G(F))" with compactly generated support. In this note, we restrict T to
H(G, K) and compute, in §§2-3, a (Macdonald-)Plancherel-type formula for 7}:

146) = [ F00Txddu) (12)



(see Theorem 4.5 below). For this, we use the Geometrical Lemma of Bernstein
and Zelevinsky, Macdonald’s Plancherel formula, Macdonald’s formula for the
spherical function, results of Casselman on intertwining operators of the unram-
ified series, and a combinatorial lemma of Arthur. This derivation follows the
procedure of Waldspurger [W] rather closely, where the case of GL(n) was worked
out in detail. In §4, we examine briefly the “k-stable” version of (1.1) for SL(n):

T f e I5(f,6) = / w(g)f(W)(g hg)dgdh,  (1.3)
PGL(n,F)x SL(n,F)

where £ is an unramified character of order n. After using the Weyl integration
formula to obtain a “geometric” expansion for T, we use Kazhdan’s fundamental
lemma [Kaz] to rewrite the result (see (5.6) and (5.8) below).

Of course, the distribution T} also occurs in the context of Arthur’s local
trace formula [Artl]. Let R denote the unitary representation of G(F') x G(F')
on L*(G(F)) given by (R(x1,29)¢)(y) := (27 yxa), ¢ € L*(G(F)). Given
f=(fi,f2) in C(G(F)) x C(G(F)) — C2(G(F) x G(F)), the kernel of the
integral operator R(f) is

Ky(zy,22) = / fi(zy) f2(yzs) dy = / f1(y) fa(z7  yzs) dy. (1.4)
G(F) G(F)

As in the global trace formula, one wants to find a both a “geometric” and a
“spectral” formula for a truncated version of the integral of K¢(x, ). It should be
emphasized that this is done below only for a very restricted class of f = (f1, f2).

Thus part of this paper could be viewed as a special case of Arthur’s local
trace formula [Artl] or as a generalization of part of Waldspurger’s work [W].
Another way one might interprete these distributions I(x,¢) is as follows. We
will see in §3 below that that ¢ — I(x, ¢) is G-admissible in the sense of [HC].
Then, regarding this invariant distribution as a function (the existence of which
is assured by applying [HC], Theorem 19), we may rewrite (1.2) as

/ f(g‘lvg)dgz/fv(x)f(x,v)du(x), (1.5)
G(F)

for v € Goy and f spherical. Finally, as is observed in [J], (1.5) gives a relatively
explicit formula for the unramified part of the “singular support” of an elliptic
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orbital integral on G(F'). Here I(x,7) is a rational function on the support of the
Plancheral measure (regarded as a compact complex analytic manifold [M]).

A somewhat analogous formula to (1.5), for stable unipotent orbits, has been
conjectured in [A]. Assem’s conjecture is a theorem for G'L(n), the germ expan-
sion and Assem’s formula yield a relatively explicit for I(x,~) (this idea can be
essentially be found in [W]). Finally, we remark that in the case of SL(n) the
fundamental lemma of Waldspurger [Wa] may be reformulated as a functorial
property of the I(x,~).

Acknowledgements: 1'd like to thank J.-L.. Waldspurger for pointing out an
error in a previous version and M. Assem for helpful discussions. Partially sup-

ported by a NARC grant.

2. Notation and background

2.1. Root spaces

Let GG be a connected unramified reductive group of semi-simple rank ¢ over F
which has a splitting defined over a finite unramified extension £/F. (Recall that
a reductive group GG over F' is unramified if it is quasi-split over F' and has a
splitting defined over a finite unramified extension [Car], p. 135.) Let 7" denote a
maximal torus of G, B a Borel subgroup of (G defined over F', and A a maximal
F-split torus of GG contained in B. Let I' = Gal(E/F), let X* denote the character
lattice over T', and let X7 C X* denote the root system in X* with respect to
T. The I'module structure of X* leaves X7 invariant. Let ¥ denote the set of
reduced roots of & relative to A and A the corresponding reduced fundamental
system. These are also left invariant by I". The character lattice

X*(A) = Homp_yps(A, GL(1)), (2.1)

may be regarded as a quotient of X* containing 3. Let

X.(A):= Homyz(X"(A),Z), (2.2)
denote the co-character lattice. Let ¥+t C X be the subset of positive roots of G
containing A. As in [Art2], we let AY denote the set of dual roots {w, | @ € A}
associated to A. For parabolic subgroups P and Q) with A C P C @, let Ag denote
the set of simple positive roots of (P N Mg, Ap), where Q) = MgNg denotes the
Levi decomposition and Ap denotes the center of Mp as in [Art2]. As usual, if
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Q = G then we drop the superscript: A% = Ap. Fach w € Wg = Ng(A)/Ca(A)
has a representative in K by means of the identification Ng(A)/Ce(A) = (K N
Ne(A))/(K N Cg(A)) [Car], p. 140 (here Cgs denotes the centralizer and Ng
denotes the normalizer). W is generated by the simple reflections S 1= {w, | o €
A} [Cas2], §1). Let R denote the root lattice generated by A and L the coroot
lattice generated by AY. If G is semi-simple these four lattices are all of rank /£ as
Z-modules and the quotients, X*(A)/R and X.(A)/L are both finite (g is adjoint if
the first quotient is trivial and is simply connected if the second quotient is trivial.)
For each subset § C A, we denote by Py the parabolic subgroup containing B
associated to 0, by Py = MyNj its Levi decomosition (so P, = B, My = A), and
by Ay = Ay the split component of the center of M = M,;. We abuse language
and call a Levi component M = Mp of a parabolic subgroup P = MN = MpNp
a Levi subgroup of . Furthermore, by a Levi (parabolic) subgroup we will always
mean a Levi (parabolic) subgroup containing the torus A above. We denote by
P(M) the set of parabolic subgroups of GG having Levi component M. If P C @ are
parabolic subgroups there is a surjective map between the Lie algebras ap — ag
whose kernel will be denoted ag. From [Art3] we know that there are orthogonal
decompositions ap = ag & ag and a}, = a; & (ag)*. Furthermore, (Ag)v forms
a basis for ag and (Ag)’\ forms a basis for (ag)*. The projection ag — ab will
be denoted X —— Xj;, where X € ag and P = M N is the Levi decomposition
of the parabolic P. The projection agp — ap will be denoted X —— XM Let Tg
denote the characteristic function on ag of the set

{X ed? | a(X)>0, ac Al
and let ?g denote the characteristic function on ag of the set
{X €af | a(X)>0, a€AZ},

as in [Art3].

The kernel of the map Ha : M(F) — ap defined in [Art3] will be denoted by
M(F)'. This may also be described as the intersection of all the kernels of the
absolute values of the rational characters of M(F'). The Haar measure on M (F')?
will be that measure determined by those on M (F'), ap, and the pull-back by the
map Hpyy.

The pairing < .,. >: X.(A4) x X*(A) — Z defined by < A, A" >:= A (X)
allows us to identify X*(A) with the dual lattice of X.(A). Using this, we may
define an isomorphism



Homp_zps(GL(1), A) = X.(A) (2.3)
by associating to each A € Homp_ s (GL(1), A) the unique A € X.(A) for which

)\*()\(t)) — t</\*7/\*>7

for all t € F* and all A* € X*(A). We fix a uniformizing parameter © of F
|7|r = ¢!, and let a, € A(F) denote the image aV(m) of m, regarding the
coroot aV as an element of Homp_,,s(GL(1),A). If G is split over F' then
it satisfies (a) dp(a,) = q7%, (b) {as | @ € A} generates the abelian group
A(F)/(A(F)N K) freely, and (c) w;'aw, = aa;<yA(a)’a>, where v4 is as in (2.4)
below and a € A(F)/(A(F)N K) ([Car], pp. 141-142, [M], pp. 42-43). To each
B € XU 1Y, we associate as in [Car] a real number gz > 0. If G/ is split and o € ¥
then q, = g and ¢,/ = 1.
Let

AA,R = X*(A)R = X*(A) X7 R = ags, X*(A)R = X*(A) X7 R,

and extend < .,. > to X.(A)r X X*(A)r. We use this pairing to identify X*(A)r
and its R-vector space dual with A4 g. Thus we have two bases A C X*(A)r and
AY C X (A)r of Agr such that < a¥, 8 >= 20,5 for all o, B € A.

There is a surjection v4 : A(F) — X.(A) characterized by

<wvala),\" >=vp(X*(a)), VA" € X7(A), a € A(F), (2.4)
where vr 1 F'* — Z denotes the normalized valuation. Thus we obtain an isomor-
phism

vl X (A) = A(F)/(A(F) N K). (2.5)

Thus every unramified character of A(F') may be identified with a character of
the discrete group X.(A). More generally, to each Levi M of G we have

Xo(Ay) ={X € Xu(A) | v (X) € Au(F)/(Am(F) N K)}.

Denote

Aupr :=ap = Xi(Am) @z R.

Let
A% ={X e X.(A) | v (X)e M (F)/(A(F)n KN M'(F))}
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and let AM := AY @7 R. Denote the projection Ayp — AY by X — XM,
The Pontryagin dual of X,(A) is

Xo(A) = X7 (A)c/ X (A), (2.6)

where X, (A)* denotes the lattice of all \* € X*(A)¢ such that, for all A, € X.(A),
< A, A" >€ 2miZ. We will use the notation A% i to denote the complex dual of
A4 r, so that

Homun, (A(F),C) = A5/ L, (2.7)

as complex varieties, where
L={ e Ar | Ma)€Z, Vac A}.

In fact, once we fix an ordering of the roots A this isomophism is canonical. Here
Homyy, is defined as follows. If H(F') is any closed subgroup of G(F'), with
the inherited compact-open topology and if V' is any (complex) Hilbert space,
with the discrete topology, then Homy, (H(F), End V) is the set of continuous
homomorphisms H(F) — End V with a non-zero H(F) N K-fiexed vector.

2.2. Intertwining operators

For the unramified principal series representations (v, [(x)) of G(F), associated
to a character x of A(F), we refer to [Car]. We remark that the pairing <
. >on I(x) x I(x™') defined in [Car| allows us to identify the contragredient
representation (v, I(x)~) with (v,—1, I(x7")).

Let x be a regular unramified character of A(F) (so wy, w € Wg, are all
distinct), and let T, : I(x) — [(wx) denote the intertwining operator of [Car].
If ®x, € I(x)¥ denotes the unique K-fixed vector satisfying ®x (1) = 1 then
Casselman [Casl], [Car], Theorem 3.9 has shown that

Tw(q)K,x) = cw(X)q)K,wxy (28)
where

wx)i= [ e

a€Xt, wa<0
1/2 _ —1/2
(1= g0 (@) (14 41 x(aa)
bo) = 1= x(a)” '
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It is also known that Ty, = T, Tw,, provided £(wiwy) = (wq) + £(ws) (here
{(w) denotes the length of w € W - this is also the number of singular hyperplanes
(“walls”) in A4 g which separate the positive Weyl chambers of B* and B [Cas2],
chapter 1).

2.3. Plancherel’s formula and Macdonald’s formula

Let H(G, K) denote the subalgebra of C'2°(() consisting of bi- K-invariant func-
tions and C* (G, K') the analogous subalgebra of C'*°(() - the space of locally con-
stant functions on G(F). Let G(F)' denote the kernel of the map Hg : G(F) —

ag.
For f € I(x), and x unramified, define

Flo)= | I(kg)dk.

where the measure on K has total volume 1, and let I'y = CI)E(X. Macdonald’s
formula states that

Lemma 2.1. { x is an unramified regular character of A(F') then
(@) = Q'dp(a)'? Y clwx)(wx)(a), a€ A(F),
weW

where

Q= Z([w[ 1),

weW

I denoting the Iwahori subgroup of G and ¢(x) = ¢y,(x), where w, € W denotes
the largest element.

For f € H(G, K) and x unramified, define the Fourier transform of f at x by

Po= [ o i (2.9

Let Q(G) denote the set of all zonal spherical functions of G(F)! relative to K:

Ak (G) ={w e C*(G,K) |w(l) = 1and, Vf € H(G, K), f+w = Ajw, some A; € C}.
(2.10)



Let Q% (G) denote the subset of all positive definite zonal spherical functions. It
is known that, if y is unitary then T, € Q% (&) [M], Theorem 3.3.12. We define,
more generally, the Fourier transform of [ € H(G, K) at w € QL (G) by

fY(w) = /G(F)l f(g)w(g)dg. (2.11)

The relation between the Fourier transform and the Satake transform is given on
[M], p. 47. The Plancherel measure du(w) is a positive measure on Q1 (G) such
that, for all f € H(G, K),

F(w) € L*(Q(G), dp) (2.12)

and

/ Flg)dg = / Y (@) Pdp(w). (2.13)
G(F)! 2% (@)

By a theorem of Godement, such a measure exists and is unique.

Lemma 2.2. (Macdonald [M], Theorem 5.1.2) The support of the Plancherel
measure is the complex torus (2.7). Let s = (s1,...,5¢) € A}, let ds denote the
Haar measure on A% /L having total volume 1, and let dx be the corresponding
Haar measure on Hom ., (A(F),C*') obtained by transport of measure by (2.7).
The Plancherel measure of G(F') with respect to K is

Q

= e dx
i)

dp(x)
Corollary 2.3. For all f € H(G, K), we have

19) = Jop ) Y (@)e(g™")dp(w)
= fAj&,m/L fV(X)Fx g)dﬂ(X)-

Also, for all fi1, fo € H(G, K), we have

Sty 10 TG = it ¥ () TV @) ()
= Ja . 7Y OOR (0 dp(x).




proof: First, observe that dy is supported on A% 5 /L [M], Theorem 5.1.2, that
w =T, for some x [M], Theorem 3.3.12, that I'y(¢7") = I'y-1(g) [M], Proposition
3.3.2, and that I',~1(g) = I'y(g) for unitary x [Car|, p. 150. Therefore, for both
the first statement and the second statement of the corollary, the second equation
follows from the first.

We verify the first equation, for each of the two statements of the corollary. The
second statement of the corollary follows from (2.13) by using the “polarization”
identity (replace f by fi+ f2 in (2.13), multiply it out, and cancel common terms).
The first identity of the corollary follows from the second by a simple argument,
replacing f; by a function supported on a fixed coset KgK and using the definition
of the Fourier transform. O

2.4. The Jacquet functor

The maximal compact subgroup K has the property that for any parabolic sub-
group P = MN of G, G(F) = P(F)K, and for each Levi M of G, and every
parabolic PM of M, we also have M(F) = PM(F)(K N M(F)) [Car], p. 140. In
this case, the notion of “compactly induced” representations [BZ], §1.8. agrees
with the usual notion of “unitarily induced” representations. Let

igm - Alg M — Alg G, (2.14)
denote unitary induction, in the notation of [BZ] (so igm(7) = Vp(7) in Arthur’s
notation), and let

rmg: Alg G — Alg M, (2.15)

denote the Jacquet functor [BZ], §2.3 (called the first Jacquet functor in [Car],
§2.2). We shall sometimes write 7y = rarg(7m) and Vp(7) = 1M (7).

Let Whs denotes the Weyl group of M. The special case of the “Geometrical
lemma” of Bernstein-Zelevinsky which we need is the following

Lemma 2.4. ([BZ], §2.12) There is an enumeration wy, ..., wy of W/Wjs (which
we regard as a subgroup of W as in [Cas2], §1) such that, for each x € Alg A, we
have the following decomposition of M-modules

rmGoiealx) =Ve D Vici D ... D VI DV =10},
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where each
Vigr/Vi = iara(wjx),

is an irreducible M-module.
Let V(,) denote the semi-simpliflication of an M-module V.

Corollary 2.5. For each x € Alg A, we have the following decomposition of
M-modules

G © 1a,A(X ) (s) = Bwewwiin,a(wx),

where the coset representatives w are choosen as in Lemma 2.4.

Remark 1. If y is regular, so wy # x for all w € W/Wy;, then a result of
Casselman [Cas2], §§3 and 6, implies that ry ¢ o ig,a(x) is a semi-simple M-
module.

proof Follows from Lemma 2.4 and the definition of the semi-simpliflication.
O

2.5. (G, M)-families
2

For a collection {cp(A) | P € P(A)} of functions in C°(i A4 k), we say that
this forms a (G, A)-family, provided for any neighboring standard minimal par-
abolics P, P’, we have cp(A) = c¢pi(X) on the hyperplane shared by the positive
chambers of P and P’ [Art2], §6. Let A(F)"' denote the unitary dual of A(F').
For a collection {¢p(A) | P € P(A)} of functions in C2°(A(F)M), we say that this
forms a (G, A)~-family, provided for any neighboring standard minimal parabol-
ics P, P', we have ép(x,) = épi/(xa) on the set

-
N Cidap | <a)>c 27y,

log q

where a € ¥ denotes on of the two roots separating P and P’ [W], p. 26, and
xa(a) =< vy (a), A >.

2This subsection is not in the published version. It is a review of material closely related to
results proven later but will not be needed.
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Let ) C R denote parabolic subgroups, let Lg denote the lattice generated
by the coroots {a" | o € AF}, let

O5(\) = vol(af/LE)™" T Meh), A €iay, (2.16)

aEAR

and define 05 = 0 by

0(x) == [](1 = x(aa)). (2.17)

a€A

Lemma 2.6. ([Art2], Lemma 6.2) If {cp(X) | P € P(M)} is a (G, M)-family

then
em(X) ==Y ep(NOp(N)7!
PeP (M)

can be extended to a smooth function on iaj,.

Lemma 2.7. (W], §7) If {¢p(x) | P € P(A)} is a (G, A)~-family then

éalx):= Y er(x)0p(x)™"

PeP(4)

can be extended to a smooth function on A(F)M = iA, k. Here Op is defined
by 0p(x) := 0p(wpx), where 0p is defined in (2.13) and wp € W is the unique
element such that P = w;lB.

Let R denote the lattice generated by the dual roots. The factor 6 is analogous
to the factor #. The connection between the two is contained in the following

Lemma 2.8. ([W], I.7.1) There exists a function ug € C°(iAar/iAcr) such
that
(a) for all X\ € iAsr we have

27Tzr 2mr ~
> up() 93(/\ +o—) 7 =05(xa) ",

reR

where I denotes the dual lattice (generated by the dual roots A™) and x,(a) :=<
vi't(a), X >.
(b) If r € R and if % belongs to the support of ug then r = 0.
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Lemma 2.9. ([W],§7) If {¢p(A) | P € P(A)} is a (G, A)~-family and r € R" let

(N = ep(xy_pes Jup(N),

s
]
H
]
<
]
>
I
<
u]
E
=
B
E
m
G.
8y
n
jav)
o
o}
<
Ry
\T_/
<
u]
G.
8y
[¥))
E.
b‘
g
sv)
o
[0%)
av)
o
S
\.C'D
sy
=
Q.

2w

éalo) = 30 p(h+ ).

TERA log q

Remark 2. This follows from Lemmas 2.6, 2.7, and 2.8. These results will not
be needed here since in the particular example we have all the facts we require
can be proven directly. They are included for the reader who wishes to relate the
(G, A)~-families implicitly occuring here with Arthur’s (G, A)-families [Art2].

3. Inner products of some matrix coefficients

3.1. Matrix coefficients

Assume as before that G is connected, unramified, and reductive.

We choose measures da, dn, dg so that meas(A(F)NK) = meas(N(F)NK) =
meas(K) = 1, let y denote an unramified regular character of A(F'), and let
Va(x) denote the space of the full principal series representation induced unitarily
from y. From Casselman [Cas2], §4, there is a canonical pairing < .,. >x on
Vi(x)n x Va(x™ ")~ such that, for some ¢ > 0 (independent of )

<tiga(x)a)f, [ >e=<ragoigalx)(a)fn, [y >n, (3.1)
for all @ € A~ (€), where
A™(e) ={a € A(F)/Z(G(F)) | la(a)|r < €,V € A},

and where < ... >¢ is as in [Car]. When ¢ = 1 we denote this by A~™. This pairing
allows us to identify Vg(x~!)n with the contragredient of Vg (x)n. The fact that
¢ is independent of (unramified) x follows from [Car], §3.

Lemma 3.1. For y unramified regular, and any a € A™,

ruclica()(@)f) = > ima(wx)(a)fu,
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where f, is defined by rya(f) = fv = @uwfuw for f € Va(x). Here the decom-
position is by Corollary 2.5 above and the coset representatives w are choosen
(without further mention) as in Lemma 2.4.

proof: This is an immediate consequence of the fact that

In=> RuoT.,f (3.2)
and hence
(iga()(@ )y =22, Bar o Tuiga(x)(a) f
= > ima(x)n(a)Ry o Tyv
= inra(X)n(a) v
|

Lemma 3.2. If the image of f € Vg(x) under the Jacquet functor is fy =
Buwew/wy fu € VB(X)N and the image of f' € Vp(x™") under the Jacquet functor
is fx = Buwewwy fr, € V(X )N then

<fN7f]/V >N= Z C(w,M,X)<fw,fZU >4,

for some constants ¢(w, M, x) (to be determined later) and where

< u,u’ >yi= / u(k)u'(k)dk.
M(F)nK

Remark 3. We remark that for our choice of Haar measures, ifu, v’ € H(M, MnN
K) then < u,u’ >p=u(1)u'(1).

proof: Identify Vz(x)n with the M-module ®,ew/w,, tam(wx) and Va(x™")n
with the M-module & ew/w,,iam(wx™"). As vector spaces, any bilinear pairing
on
Ve(x)v x Va(x™")n

is of the form
< Z,Z’ >= E Aoyt < zw,z;, >0,
waw' €W/ Wy
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where the a,, are constants, z = (z, | w € W/Wu) € Suimalwy), 2/ =

(20, | w' € W/Wha) € Guwinra(w'x™), and < 2,2, >q denotes the pairing on
VM (x) = iar.a(x). Using (3.1), we want to show that a,, ., = 0 if w # w'.

Suppose not: if a, . # 0 for some w # w’, choose z to be such that every
component is zero except z, and choose 2z’ to be such that every component is
zero except z!,. We have

1.6 © i6,a(00)(@) iy 4w + 7 8 (a)(wx)(a)z,

MG © Z.G,A(X_l)(a)|iM7A(wx_1) P 51/2(a)(wx_1)(a)z’,

and, of course, (w'xy™")(a) = (w'x)(a)~". In particular,

!/

< TrmGo Z'G7A(X)(CL)Z, 2 >7£< Z,"M,G © Z'G7A(X_1)(G)Z >,

for a € A=(¢). This contradicts (3.1). O

The following result generalizes Macdonald’s formula (for split groups). An
analogous result is in [W], Lemma [.3.1. The proof given here, which is more
of a verification than a derivation, is different from that in [W] in that we use
Macdonald’s formula (twice, in fact) to evaluate the coefficients instead of a direct
calculation.

Lemma 3.3. Let x be as in Lemma 3.1, f € Vg(x), and f' € Vg(x™"). For
a € A (e), we have

<iga(x)(a)f, [">
= EwEW/WM C(’Uj, M7 X) < ZM7A(UJX)(CL)RM © wa7 RM o Tu)f/ >M,

for some ¢ > 0 which depends only on the level of f, f'. Here c(w, M, x) is given
by

L ()
Ua M M (V) em(wn)’

and the restriction map Ry is as in [W], §1. In particular, if M = A then

7 =1 c(wx)
olw, 4,X) =@ cw(X)ew(x1)’

as in [M] (for f = @k, and [’ = @k ).
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Remark 4. Suppose that f is bi-invariant under Ky C K and f' is bi-invariant
under Ky C K. We will use the fact that we may choose ¢ > 0 once and for all
with the property that the analogous identity holds true (with this fixed value of €)
even if GG is replaced by a Levi M and f is replaced by f(w, k) := ipr a(wx)RuTw f,
where w € W/Wyr and k € K N M(F') are arbitrary.

proof: The identity itself, modulo the evaluation of the constants, follows
from (3.1) and Lemmas 3.1 and 3.2. To evaluate the constants when M = A, take
f=®k, and f" = ®g -1 (in the notation of [Car]). Then < ig a(x)(a)f, f >=
I'y(a), by [Car], p. 151. Moreover,

Tuf = Tu®rx = cw(X) P un;

and

Tol" = Tu®r -1 = (X )P un-1,
by (2.8), so by the remark following Lemma 3.2, the identity becomes

Ty(a) =Y e(w, A, x)5(a)(wx)(a)(wx ") (@)ew(x)ew(x ™).

weW

Comparing this with Macdonald’s formula (Lemma 2.1) gives the result claimed
when M = A.

In general we must proceed as follows. Taking f, f’ as above, we find that

Fola) = Soewpny el Mox) < inaOO(@ T LTl s >
= EweW/WM c(wv M, X)Fwa(a)cwM(X)cwM(X/)

= 8(a)'? 3 ew (W) (@)e(w'x).

The last equality is just Macdonald’s formula for G. On the other hand, Macdon-
ald’s formula for M states that

LI (a) = du(a)'? Y (vwx)(a)ear(vwy).

’UEWM

Plugging this into the above equation gives

Fx(a)
= 5(a)'?Qof Y ewymy, (w0, MyX) Y e, (vwx)(@)ear(vwx)el (x)en (x1).
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Comparing these two equations gives

(vwy)

. M —
el M) = )T )T T

for any v € W/Wj;. Taking v = 1 gives the lemma. O

Lemma 3.4. Let x, x' be two regular unramified characters of A(F') and let
ue Ve(x™!) and v’ € Vg(x'™'). For all a € A~ (¢€), with € > 0 as in Lemma 3.3,

f]mh <ig,A)(9) Pk u >a<i6,a(X)(9) Pk, v >c dg
= meas(KaK) Ew,w W Wy em(a,w, x)enm(a, w'y X' < u(w, *),u'(w', %) >q,

where u(w, g) =< ig,a(x)(@)RuTyw Pk, RiuTwm(k)u >, for g = kak! € KaK,
where cyr(a,w, x) = c(w, M, x)cy(x), and where m = ig,4(x)|k.

Remark 5. Observe that if k is an unramified character of G(F') then

Jicare ©(9) < ica(x)(9) Pk x, u >6< ica(X)(9)Pr 1, v/ >G dg
= £(9) Jxare < ic.a(X)(9)Prx,u >a<ica(X)(9)Px v > dg.

This remark will be used later.

proof Using Lemma 3.3, we have

Jiar < ica(X)(9)Pr,u >a<ica(X)(9)Pry, v > dg
= meas(KaK) fK <iga(X)(a)Pry, m(k)u >a< iga(X)(a)Px v, T(k)u' >¢ dk
= meas(KaK) EwweW/WM c(w, M, x)x
(w M X f]x < ZGA( )( )RMT dx X,RMTMW(]C)U >wm X
X < ZGA( )( )RMTU,/(I)A xl,RMTwﬂT(k)u >M dk,

where m = ig a(x)|k = te.a(X')|x is independent of (unramified) x. Plugging
Casselman’s (2.8) into this, we find that the above equation equals

d(a)meas(KaK) Zw,w’GW/WM c(w, M, x)e(w', M, x")ew(x)ew (X)X
X [ < ima(wx)(@) Rar®r g, RarTum(k)u' > X
X < Z.MvA(w/X/)(a>RM®I{,wlxl7 RMTw’ﬂ-(k>uH >M dk

Putting these equations together gives the desired result. O
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3.2. A truncated inner products of matrix coefficients

Let T € Asr and assume that d(T') := inf,ea < T, > is positive, so T' belongs
to the positive Weyl chamber. The set

A4(T) ={a € Xu(A)modva(Z(G(F)))| < a,a>>0, < &,a—T > < 0,Va € A},
(3.3)
is obviously finite. By (2.4), we may choose T as above so that

va' (Aa(T)) C A (o),
where A4 (T)e = va(A7) — Aa(T). Define G(T) = Kv;' (As(T))K C K- A~ (e)-
K.
Using the bijection (2.5), we define

T X s uy )
= ZaeuZI(AA(T)) Jicare < 16,4009 K x, u >6< ica(X)(9) Pk, u' >¢ dg.
(3.4)

Before calculating this, we need the following

Lemma 3.5. Let x be a regular unramified character of A(F) and let T =
Yo, ThaY € X (A) C Asr be as above. For each subset w C A with correspond-
ing parabolic P = P, there is an entire function of x, denoted F,, v(x) = Fpr(x),
uniformly bounded on the support of the Plancheral measure (2.3), such that

ZQEUzl(.AA(T)) X(a) = EUJCA Fw,T(X) HaEw(l - X(aa))_l
= [Loea(l = x(aa)) ™" Xoca Fur(X) [loea—n (I — x(aa))
= 0007 Xgcp Frr(X) Haea-a, (1 = x(aa));
where 0 is defined in (3.8) below. (Of course, the zeros of F,, r(x) cancel with the
poles of [],,c..(1 — x(as))™", since v (AA(T)) is finite.) In fact, F,, r(x) may be

written as
For(x) = [T x(aa)™ - Fu(v),

where F,(x) is independent of T

Remark 6. The statement of the lemma remains true if we replace v;'(A4(T))
by A=(1), provided the sum is defined (either x is is in the product of half-planes
where the sum converges absolutely, or, if x belongs to the complement of this
region inside (2.6) define the sum is by analytic continuation). In this case, the
poles of this meromorphic function of x are precisely those of [] . (1 — x(aa))™".

18



proof: First consider the part of v;'(A4(T)) away from the walls:

Aa(T)reg =
{a € Xu(A) mod va(Z(G(F))) | <a,a>>0, <av,a—T > <0,Va e A}.

We can assume x(a) is of the form
X(G) — H qsana — H qsa<a,a>’
a€A a€A
where Re s, < 0. In this case, one can see directly that
> xla)=Far(x) [T = x(aa)™,
a€vy! (Aa(T)reg) a€A
where Fa 7(x) is a polynomial in the x(a,). Now let
As(T)y :={a € As(T) | <a,a>>0,Va€€w, <a,a>=0,Ya € A —w},
s0 Aa(T)a = Aa(T)ey and
As(T) = [] Aa(T).. (3.5)
wCA
In each case, one can see directly that
> xla) = Far00) [T = x(aa)™, (3.6)
aEl/ATl(.AA(T)w) a€w
and the result follows. O
From [M], Proposition 3.2.15 we find that, for a € A7(1),
meas(KaK) = §(a)™'Q,, (3.7)

where Q, = Q. € Z is constant on each l/Zl(AA(T)w). The case of the above
lemma which we will need is the following. Assume that x, x’ are unramified
regular unitary characters of A(F'). Then

Yo D ()(@)(wX)(@)Qu

aeuzl(.AA(T)) w,w' €W
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equals

o bwxw')T Y QeFer(wxw'y) [ (1 - (wyw'x)(a.),  (3.8)

w,aw!' €W Py CP a€EA—-Ap

where

00x) = JJ(1 = x(aa)).

a€A

Proposition 3.6. Assume that y, ' are unramified regular characters of A(F),
that v € Vg(x™'), v’ € Ve(x'™'), and that T € A,g is choosen as above (de-
pending on G and the “level” of u, u'). We have

‘]T(Xv Xla u, u/) = Z CT(X, X/, w, w’) < Twu, Tw/ul >a,
w,w! €W

If T € X.(A) is choosen sufficiently regular as in Lemma 3.5 then C(y, X', w,w’)
may be eflectively calculated using Lemma 3.5 and (3.8). In any case, CT(x, X', w, w’)
meromorphic in x and x' and has no poles on the support of the Plancheral mea-
sure Lemma 2.2. (Note that the sum here is over W and not W/Wy;.)

Remark 7. Weonly indicate below the formal derivation of the formula, referring
the proof of the statement about the poles and meromorphicity to Lemma 3.5 and
(3.8). In fact, our induction hypothesis will be that the equation in Proposition
3.6 holds, with GG replaced by a proper Levi M and C7 satisfying (3.20) below.

Proposition 3.7. ? If x is an unramified character of G(F') then wx = &, for all
w € W (represented in K ), and if

JTR (X, ')
= Y aerzt (aa(m) Jrcar £(9) <1aa(X)(9) Pkt >6< ica(X)(9)Px v, v’ >a dg,

then
JT’H(X7 X5 s u/) = E OT(“{Xv X', w, w/) < Tyu, Tyu' >q .
w,w' €W

Remark 8. We only prove Proposition 3.6 since the proof of 3.7 is similar, using
the remark following Lemma 3.2.

3This result did not appear in the published version
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proof: The proof is by induction on the semi-simple rank of G.
If the semi-simple rank of G is 0 then (G is a torus A and the result follows
immediately from definition (3.4), (3.7), Lemma 3.4 and the case G = GL(1)" of

Lemma 3.5 mentioned in (3.8). Indeed, in this case
vi'(Aa(T)) ={(a1,...,a,) | 0 <vp(a;) < T}, T =(Ty,..,T,),
so (3.7) gives

ZGEUATl(AA(T)) d(a)(wx)(a)(w'x")(a)meas(KaK)
= Zaeygl(AA(T))(wX)(“)(w'XI)(“)Qa-

By (3.8), this is

Y QuF.r(wxw'x') JT(1 = (wxw'x")(aq))™". (3.10)

wCA a€w

Putting these together gives the result since

0o w)
= EaEuZl(,AA(T)) f]’(ﬂ,]’( < ZG,A(X)(Q)(I)BZM u >g< ZG,A(X/)(.Q)(I)ICX’? u' >a dg
= Ew,w’EW Eaéyzl(AA(T)) CM(CL, w, X)CM(CL, ,w/7 X/) < Twuv Tw’ul >G5

by Lemma 3.4. This implies that C'7 satisfies (3.20) below.

Now suppose that the semi-simple rank of G is greater than zero. By the
induction hypothesis the result holds true for all Levi subgroups of G.

Let D C va(Z(G)) @ R be a subset invariant under translation by v4(Z(G)),
let T,U € Asr be such that d(U —T) > 0 with T" as above. Let {(M, D, T,U)
denote the characteristic function of the set of X € A4 g such that

X(;ED,

<a, XM >>0, <a, XM ><<a,TM >, Vo e AM,
<o, Xy >>< o, Ty >, < b, Xy ><< & Uy >, VYae A9 — AM,

Here & may be identified with Arthur’s w,, provided we identify ag with it’s dual,
and, for each standard Levi M, AM denotes the set of simple roots of M regarded
as a subset of A = A% Let Ip(X) equal 1 if X5 € D and equal 0 otherwise.
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Observe that the statement and proof of [W], Lemma II.3.1, in the context of
G/L(n), is valid without change for the more general class of groups (& used here.
Multiplying both sides of the equation in [W], Lemma I1.3.1, by I, we obtain the
following equation (see also [W], p. 15):

§G,D,UU) =Y &M, D,T,U).

McG

We will use the same notation for the pull-back of £&(M, D, T,U) to A(F) via va
in (2.4).
Let

JE (06X u, u)
= Zaeygl(AA(U)) In(a) [ior < i6,a0)(9) P, u >6< i6,a(X)(9)Pr s v’ > dg
= EaeA— ‘f(Gv D7 U7 U)(a) f]{aK < Z.GvA(X)(g)(I)K,m u>g X
X <iga(X)(9)Pr v >q dg
=Y nce Laea- Jrar <ica(X)(9) Py, u >a X
X <1G,4(X')(9) Py, >adg-&E(M,D,T,U)(a)
= ZMcG J};U(M7 X le u, ul)v
(3.11)
where each Jg’U(M, Xs X'y u,u'), defined by the identity above, depends on T' and
U but the sum over M of them depends only on U.
To verify the proposition we calculate the Jg’U(M, X, X'y u, u') inductively. We
consider the cases M = G and M # (i separately.
Case M = (5. In this case there is no dependence on U:

JgU(GvaX/vuvu/) = ZaEA_ fKaK < iG,A(X)(g)(I)K,m u>g X
X <16,4(X')(9) P, v >q dg- (G, D, T,T)(a)
= JH00 X u, ).

(3.12)
Case M # (. In this case the semi-simple rank of M is strictly less than that
of G, so the induction hypothesis is applicable to M. Suppose X € ap is such
that (M, D, T,U)(X) = 1. For each a € ¥¢ — ¥ with a > 0 there exists a
B € A9 —AM such that a—f3 is either 0 or a positive root, so < a, X >>< 3, X >.
We thus have < a, X >>< ,X >>< 3,7 >. With T' choosen sufficiently
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regular, the proof of Lemma 3.4 gives

Jxax <16,A(X) (9P, v >6<iaa(X)(9)Pr s v >a dg
— Ew,w’EW/WM meas(Kak) f]« < g a(wx) (@) RuPr wy, RuTwm(k)u' >pr X
X < Z'G7A(w/X/)( )RM(I)]X wix's RMTw/Tr(]{?)u > dk
= Ew,w'eW/WM meas(KaK)e,(x)ew(x fh < iga(wy)(a )CI)%M wx,u(w,k) >n X
X <iga(wx')(a)®¥u 7w,x,,u’( k) >nr dk,

(3.13)
where u(w, k) := RyT,m(k)u. (Note the change in notation.) Concerning the
integral in this last expression, reversing the reasoning in the proof of Lemma 3.4
above gives

f]{ < iG,A(wX)(a) wxvu(ka) >M X
X < iG,A(wX)(a) KM it U u'(w' k) > dk
= Jic Jien <ica(wx)(a )q)M s u(w, hk) >ar %
X <iga(wx) ()P U (w hk) >y dhdk
= Spr(a) 8 (a)vol(KMa KM)~1 fk fh I < i a(wy)(m )q)M " w(w, k) > X
X < i a(w X))@y ! (w' k) >a dmdk.
(3.14)
(This is the analog of the calculation on [W], bottom of p. 16.) We will now show
that this last expression is the integral over K of the summand of

JEUM (e w'x s u(w, k), u(w', k), (3.15)

where D' will be defined below. This inner product (3.15) is an M-analog of our
original inner product, so the induction hypothesis applies.
In more detail, by (3.7) there is a constant ¢jp; independent of a such that

evéar(a)d(a) ™ = vol([x"aK)vol(KMaKM)_l.
Now plug (3.14) into (3.13) to get

JHY (M, X, X' u )
= CMm Zw,w'eW/WM fK [ZaEA— (M, D, T,U)(a)x
X fKMaKM < iM,A(wX)(m)q)%waa u(w, k) >u
X < iara(wx)(m) Oy w'(w', k) >ar dm)dk.

(3.16)

I
w!x'?
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Denote by Dy (T,U) the set of X € Agg such that
XgeD, <a,X—T>>0and <& X —U ><0, Vae A9 - AM,
We have ([W], p. 17)
§M,D, T, U) = MM, Dy (T, U), T, T), (3.17)

which gives our D' mentioned above. Putting together (3.16), (3.17), and the
definition of the inner product integral, we obtain

Ip (M X, X us )
= CMpM ZW,MIEW/WM f]{ JgM(T,U)(wX7 w/X” u('u)’ k)7 ul(w/7 k))dk-

Note that the T choosen above depends only on G and the “level” of u and u'.
We want to apply the induction hypothesis with « and u’ replaced by u(w,k)
and u'(w', k), but with the same T. To check that this is valid it suffices to
check that the level of u(w, k) and v'(w’, k) in M is not worst that the level of u
and v’ in GG. Since W is finite, K is compact, and u, u' are supported in some
fixed compact set, we may fix T' so large that the induction hypothesis applies
to u, v and all the u(w,k), v'(w' k). Applying the induction hypothesis to
‘]gM(T,U)(wX7 w'x' u(w, k), u'(w', k)), we obtain

I (M, x, X' u, )
= CMm Ew,w’EW/WM f]{ EU,U’EWM C]E(““’X? w/X/7 U, U/) X (318)
x < TMu(w, k), TMu'(w' k) >z dk.

In fact, since u(w, k) := RyTym(k)u it follows that

/ Z < TMu(w, k), TS (w', k) >ar dk = Z < Tou, Tyu' >q
X

v,v' €Wy v €Wy
where 0 = wSwMvw, o' = wFwMv'w', and w¥ denotes the longest element of

W (see [W], p. 17, egs (2), (3)). Therefore,

IV (M, x, X'y u, )

= ¢y wa,ew C']\TJ’U(U, v') < Tyu, Ty’ >¢ dk, (3.19)
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where C]\TjU(v, v') takes the form
Cai (v,0) = ear(= 1) N X (M) (a)ya(x, x5 0, 0). (3.20)
a€A~

Here v,(x, X', v,v’) is meromorphic in x and x’, having no poles on the support
of the Plancheral measure (see Lemma 2.2), and x(M) denotes the characteristic
function of the set of a € A~ such that

va(a)g € D,
< a,vala)y — Ty >>0, <& vala)y — U > < 0, Va € A — AM,
< é&,va(a)™ —=TM >> 0, Ya € AM,
Collecting equations (3.11), (3.12), (3.18), (3.19), and (3.20), we get
I (X X5 u, )
= Jg’U(G,X7X’7 w, ') + Do ncamra JgU(MaXaX/a u, u')
= JH06G X u, ') + Ywwrew < Lwtts T >6 3 e mza Chi” (v, 0")
= JH0 X us )+
+em Zw,w/ew < Tyu, Ty > ZQGA— Ya (X5 X5 v, 0") ZMcG,M;éG(_l)rk(M)X(M)(a)'

(3.21)

Here is where we apply a combinatorial lemma. In the notation of [Art3], we have
x(M)(a) = 1p(vg(a)e)I§ (vala) = T, U = T)iM (vg(a) = T), (3.22)

where 1p denotes the characteristic function of D and T{(X,Y) = 75(X —

Y)#M(Y — X). We have (by [Morn], Lemma 13.1.3, lecture 13, or [Art2], §2)

> (=) (M)(a) = 1p(va(a)a) (1) M D[#M (va(a)=U)=#M (va(a)=T)].
MCGM#G
(3.23)
The function 1p(ve(a)e)™™ (va(a)—T)is the characteristic function of vy (A4(T)°).
From (3.22) and (3.23), we obtain

ZaEA— Ya (X5 X5 v, 0") EMcG,MgﬁG(_l)rk(M)X(M)(G)
= (_1)Tk(G) ZaEyZl(AA(U)C) fYa(X7 X/7 v, U/) - (_1)Tk(G) Eaeugl(.AA(T)c) 76(X7 Xla v, ’L)/)
= (=1)H9 Zaeygl(AA(T)) Ya(Xs X5 0, 0) = (1)) Zaeugl(AA(U)) Ya (X5 X5 v, v').

Plugging these into (3.21), we obtain the Proposition. Note that the dependence
on 1" in the final expression is fictitious since the left hand side depends only on

U.

In fact, these sums can be rewritten using Lemma 3.5 - see also (3.8). O
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4. Integrating the kernel

4.1. Introducing a (G, A)~-family
4

We prove in this section an analog of Proposition I1.5 of [W].
Let P € P(A) and let wp € W denote the unique element for which P =
wp' B. Let T, x, and X’ be as in section 2, let ¢ € C®((), and let

QT(x, X sw,w' )
= tr[TI’;Tw/iGA(X)(gﬁ)]C’T(X,X’_l, w, w)f(wx/w'x’),
in the notation of (3.8) and Propositions 3.6, 3.7. If wy = w'yx’ then CT(x, '™, w,w’)
is independent of T" € X,(A) by Proposition 3.6. Since T' depends indirectly in

o, QT (x, x',w,w',...) does not define a meromorphic family of distributions on
C(@) since they are not even linear in ¢. However, we will show that in the

(4.1)

limit aa " — x we will produce such a distribution. The following lemma will not
be needed here since in the example treated the necessary result can be proven
directly. However, it is included here as it helps put the calculation in the context
of Arthur’s (and Waldspurger’s) theory.

Lemma 4.1. The collection {QT (x, x',wp,w',¢) | P € P(A)} forms a (G, A)~-
family in x and {QT (x, x',w,wp,®) | P € P(A)} forms a (G, A)~-family in y'.

proof It follows from [Art2], §7, that ¢cp(N) := tr[Ru,i6.4(x))] forms a (G, A)-
family, where R, denotes the normalized intertwining operator associated to T,,.
From this, the definition of a (G, A)~-family, and the properties of the a, listed in
[Car| (for G is split see §1 following (2.3)), one sees that ¢p(x) := tr[Tw,i6.4(X)]
forms a (G, A)~-family. From the definition, (3.8), and Proposition 3.6, one
similarly concludes that ¢p(x) := CT(X,X’_l,w,w’)g(wx/w’x’) forms a (G, A)
family. Since the product of two (G, A)~-families is a (G, A)~-family, the result
follows. O

~

4.2. The Fourier transform of a truncated orbital integral

Let
Gry= |J Kk, (4.2)

a€vy' (Aa(T))

4This subsection did not appear in the published version
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and recall

(97 hg) =< iaa(x)(h)ic.a(X)(9)Prxica(x ) (9)Pry-1 >a - (4.3)
We wish to calculate, for ¢ € C°((F), the Fourier transform
f(x.9) = fG h) Jaer) 297 hg)dgdh (4.4
= Joqr ‘1h9)¢(h)dhdg- '

In §4, we will also consider

IM5(x, ¢) = / k(9)T (97" hg)é(l)dhdg, (4.5)
G'(T)xG(F)

where G = SL(n), G' = PGL(n), and & is an unramified character of order n on
G'(F).
The idea is to expand (4.3) into a double series using an orthonormal basis

and, for each term in the expansion, use the computations of the previous section
to evaluate (4.4) and (4.5).

Proposition 4.2. Let T' € X.(A) be as in Proposition 3.6 and let x be unrami-
fied, regular character of A(F'). We have

I, ¢)=lim Y Q" (x,x’w,w',¢)f(wy/w'x')™",

X'=x waw!'eW
where 0 is as in (3.8) and QT is as in (4.1). The map ¢ — I(x, ¢) is an invariant
(G-admissible distribution on Gy in the sense of [HC|.

Proposition 4.3. * Let G = SL(n) and G’ = PGL(n). Let x be unramified,
regular character of A’/(F). We have

I"(x,¢) = lim > Q" (kx, X, w,w', $)f(wrx/w'x')™,

X'=x woaw!' €W
independent of T', where A’ denotes the maximal split torus of G' and B’ the stan-
dard Borel. The map ¢ —— ["(x, ) is a G-invariant GG-admissible distribution
on Gell-

5This result did not appear in the published version
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Remark 9. We only prove part (a) since the proof of part (b) is similar.
proof of 4.2 The operator adjoint to
Tw:Va(x™") = Vau(wy™)
is
T : VB(wx) — Vi(x),

SO
< Tyu, Ty >g=< u, T;Tyu’ >¢ . (4.6)

Let {u; | i € I} denote an (A(F)N K)-bi-invariant orthonormal basis for Vg(x),
{ur | 1 € I} its dual basis for Vg(x™') (so < Ui, U >G= dij). Expand

i6,A0)(9)Prx = Y < iaa(X)(9) P uf > ui,

and
i6,a(x T )(9)Pr -1 = Z <iaa(X )9 Pry-1, uj > U

This and (4.3) give

I (97hg) = i jer < ia,a(X)(9)Pry, uf >6 X
X < iG7A(X)(h)ui,u; >a< Z'G7A(X_1)(g)q)](7x—1,u]' >a .

Plugging this into the definition of I (y, ¢) gives

[T(X7 ¢) = EaEyZI(AA(T)) Zi,jEI fKaK < iGA(X)(g)(I)Km uf >aG X
X < iG7A(X_1)(g)CI)K7X_1,u]~ >a ng
X fG(F) gb(h) < iGA(X)(h)ui,u; >a dh
= Zi,jel JT(X7X—17u;f7u;)x
X fG(F) qb(h) < iG7A(X)(h)ui,u; >a dh
= zi7je[ JT(X: X_lv Ufa u;) < iG,A(X)(Qb)Ui; u; >aG .

(4.7)

By Proposition 3.6 and (4.6), this is

Z Z C’T(X,X_l,w,w’) < g, Ty Tyru >a<iga(x)()ui, ul >a .

i€l waw'eW
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Since {u;}, {uf} are orthonormal bases,

Zi,jel < uy, T;:Tw/u; >a< iG,A(X)(Qb)uia u; >a
= tr[ 12T wic,a(X)(9)].

Collecting these results gives the first statement of the proposition, except for the
claim that the result is independent of T' € X,(A). Putting together Proposition
4.2, the definition (4.1), and the evaluation of the coefficients CT(x, x’,w,w’) in
(3.8), we obtain the last part of the Proposition. The claim that the result is
independent of T' follows from Proposition 3.6.

It remains to prove the admissibility. From [HC], §14, it follows that the
distribution ¢ —— tr [T*Tw/ig A()‘)(qb)] is a meromorphic family of admissible
distributions. Therefore, ¢ — QT (x, X', w,w’, ¢) satisfies the G-admissibility
property of [HC], §14. Slnce I(x, ) is the hmlt of a linear combination of the
QT (x, X', w,w', ¢), it also satisfies the G-admissibility property. This proves the
proposition completely. O

4.3. The spectral expansion

Let ¢ € C°(G) be an Ad-finite function, in the sense of [K], §4. The support of
the distribution

f—1(f, %) fG xG F ' [ lhg)gﬁ(h)dgdh
= fG ®y(h)dh (4.8)
= fG d(h)dh,

for f € C((), is compactly generated by [K]|, Lemma 6, §4. Here, for h € Gy,
Oy(h) = / é(g~" hg)dg,
G(F)!

with respect to ordinary Haar measure on G(F)'. Let f € C(G) and let ¢ be
any locally constant function with compact support in G,y so that, writing

U KakK,

a€EA—

there are only finitely many cosets Ka /K which support f and ¢.
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Lemma 4.4. Let ¢ be any locally constant function with compact support in
Gey and let f € H(G,K). There is a compact set Cys, C G(F) for which
flg7'hg)p(h) # 0 implies g € Cy 4. Moreover, if G = SL(n) and G' = PGL(n)
then there is a compact set C , C G'(F) for which f(g~"hg)¢(h) # 0 implies
g€ iy

proof For each h € GG there is a neighborhood Vj, ¢ of h and a compact set
Ch.s of G(F) for which f(g~'h'g) # 0 and k' € Vj; implies g € C} ;. Since ¢ is
compactly supported in G, we may take finitely many Vj, ¢’s to cover supp(¢).
The first part of the lemma follows. The proof of the second part is similar. O
For f and ¢ as above, by Lemma 4.4 we have

supp( / TG RORR) € KT (AT (4.9)

where T' is sufficiently large and satisfies the conditions of Proposition 3.6. Fix

such a T'="T(f,¢) and let
MG = [l kol dgd,
G(TYxG(F)!

so IT(f,¢) = I(f,¢). For f € H(G, K), the Plancherel formula (see Lemma 2.4)

gives

flg " hg) = / FYOOT (g7 hg)du(x).

A4 /L

From this we obtain the following “spectral expansion”:

Theorem 4.5. Let f and ¢ be as in Lemma 4.4, and T = T(f,¢) as in (4.9).
We have

I(f,¢) = Zaeugl(AA(T)) fKaKxG(F)l fAZR/L P00 (g7 hg)du(x)d(h)dgdh
- fAj&,ﬂR/L fV(X)[(Xa gb)dlLL(X),

where I(x, ¢) is given by Proposition 4.2.
The Weyl integration formula states that

1 2 -1 dg
h)dh = A(t)Y*meas(T(F —d
L, e > [, sy [ ot G
(4.10)
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where T' runs over a complete set of representatives of non-conjugate Cartans of
G(F)! and WT denotes the Weyl group of T'. Taking f, ¢ as in Lemma 4.4, we
have that [, ¢(c)dc = 0, for any regular non-elliptic conjugacy class C' C G(F)'.
Plugging ¢ = fCI)¢ into (4.10), we obtain the “geometric” expansion:

Z |WT| (1) ,(t)dt, (4.11)

where @ is the orbital integral of f as above.
The equality between the identity in Theorem 4.5 and (4.11) may be regarded
as a special case of Arthur’s local trace formula.

5. The k-stable trace formula on SL(n)

6

5.1. A relative trace formula on SL(n, F)

Let G := SL(n), G' := PGL(n), and let £ be an unramified character of order n
of G'(F'). Such a character is obtained as follows: let n : F* — C be an unramified
character of order n, let ¥'(g) := n(det g) be the corresponding character of order
n on GL(n, F), and, since £’ is trivial on the center of GL(n, F'), we may take s

to be the corresponding character on G'(F)).
Let f and ¢ be as in Lemma 4.4, and let

fG F)xG/(F (Q)f( ~'hg)¢(h)dgdh
—fG(F xG(F (Q)f( )o(g~ " hg)dgdh 51
o, 56 dgdh (5:1)
q’g(h) (h)dgdh,

where

%(h) = //(F)%(g)f(g‘lhg)dg,

with respect to ordinary Haar measure on G'(F'). The interchange of orders of
integration in (5.1) is valid by Lemma 4.4, . If b € G'(F').y, the properties of &%,

6This section did not appear in the published version
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as a function on the regular variety of the centralizer G'(F');”, were investigated
in [Kaz] (see also [Hen]).
Letting ¢» = @/ f in the Weyl integration formula (4.10), we find that

I"(f,¢) = ET |WT| fT meas(T(F))A(t) fT NG (F ¢ (g ltg)f( ~Ytg)dgdt

=Yrw Wrl fT (F) meas(T(F) A(t)* 0 fT \G/ k(g9)"' f(g™ tg)dgdt,
(5.2)

e 7 ( v lr) = fG, f (97 'z Hzg)dg
fG/ 9)f(g7'g)dg (5.3)

= ff( ‘1)@‘( )-

We have assumed that ¢ is supported on G'(F)y, so only elliptic Cartans occur
in the sum over T in (5.2). Since fG, ...dg = meas(T(F)) fT\G, e ‘;—i this is

H t)dt. 5.4
=S ] o 54

Kazhdan ([Kaz] or [Hen], §5.10, §5.21) has shown that, for all t € T'(F),.,,
Ara()@5(1) = &' (1), (5.5)

for some ¢T € C>(T,.,), where Az, is defined in [Hen], (3), §5.3. (If T/F
is unramified and ¢ € H(G, K) then ¢T = i.(¢)(1), where i, : H(G', K') —
H(T,T N K') is the usual map defined by L-parameters [Hen], §5.10). Observe
that A7 Ag,.—1 = |Ar.|* = A% Thus (5.4) and (5.5) imply that

1%(f,4) = / FT067(0) (5.6)

T elhptlc T |

With apologies for the overuse of 7', the method of proof of Theorem 4.5 gives us
an expression of the form

FUe =[P (5.7

where A is the maximal split torus of G. We therefore have

/AZR/LJE (I (x, 6 Z|WT|/ Ag ®5(1) - Ager @57 (1)d1. (5.8)
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which is a special case of an k-stable form of Arthur’s local trace formula.
For v € Gy, we may write (5.7) in the form

‘I’?(V):/A* /Lfv(x)f“(x,v)du(x), (5.9)

for f a spherical function on SL(n, F'). This equality holds for any unramified « of
order m|n. Roughly speaking, it has been conjectured that this x-orbital integral
is equal, up to a “A-factor”, to an ordinary orbital integral of a related spherical
function on H := Resgp(GL(m)/E), where E/F is an unramified extension
which depends on k. This group H is unramified over F' and split over F so our
Theorem 4.5 applies. We find that for any spherical function fz of H(F') and any
v € H.y we have

<I>fH(7H)=/A / IO T O, v ) dpr (X ). (5.10)
;H,IR Lu

Let us for the moment take the example where & is of order n and H = T' is an
elliptic Cartan of GL(n, F'). In this case, (5.10) may be written

/ £ Ocr) r (e )y (xr) = Fr(),
A% w/ DT

for v € T(F),e,. Here Ar is just the center of GL(n), I(xr,v) is the spherical
function I'y. in H(T,T N K) associated to yr and this is the well-known Fourier-
Satake inversion formula on 7', by Corollary 2.3 above.

Fixing an embedding n : H(F') — G(F') (which we may regard as the identity
in this case) and an embedding of L-groups ¢ : TH(C) — EG(C), we let +* :
H(G,K) — H(H, Kg) denote the homomorphism of the algebra of spherical
functions such that

() (xn) = [ (u(xn)).
Under the first embedding it is not hard to check that vy € H(F') elliptic in H
implies that n(vg) € G(F) is elliptic in G. The conjecture mentioned above may
be expressed in the form

@7 (n(vr)) = Auw(yu)® sy (v1), (5.11)

where fi = *f and Ap, is a “transfer factor” which we will not define here.
On the basis of this it seems reasonable to ask if the distribution on C(G),
¢ — 1"(e(xm), P), “transfers” or “is matching with” the distribution on C*°(H),
b — Ta(Xm, or).
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