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A long standing problem has been to develop “good” binary linear codes to be used
for error-correction. We show in this paper that the Goppa conjecture regarding “good”
binary codes is incompatible with a conjecture on the number of points of hyperelliptic
curves over finite fields of odd prime order. This rest of this introduction is devoted to
explaining the precise result.

Let C' denote a binary block code. The length of C' is denoted n and the smallest
weight of any non-zero codeword, is denoted d. (Note d is equal to the minimum
distance of C, though this is generally not true if C' is a non-linear code.) If C' is, in
addition, linear the dimension of C' is denoted k and, in the usual terminology, we say
C C F™isa|[n,k,d]a-code, where F = GF'(2) is the field with two elements. For any
two x,y € F”, let d(x,y) denote the Hamming metric:

dx,y) = {1 <i<n |z #y}l (1)

The weight w of v is the number of non-zero entries of v.

We will construct an interesting family of non-linear binary codes C; which have
the property that W has a limit = + and ¢ has a limit > 1. This family of
non-linear codes forms the codes which we call long quardatic residue codes (defined
precisely later). They are motivated by a clever construction of Bazzi-Mitter [BM].

Denoting the volume of a Hamming sphere of radius r in F™ by V' (n,r), the bi-
nary version of the Gilbert-Varshamov bound asserts that there is an [n, k, d]2 code C'

satisfying k > logz(v(%;il)) elements [HP].

Conjecture 1 (Goppa’s conjecture [JV],[G]) The binary version of the Gilbert-Varshamov
bound is asymptotically exact.

A hyperelliptic curve X over GF(p) is a polynomial equation of the form 3? =
h(x), where h(x) is a polynomial with coefficients in GF(p) with distinct roots. The
number of solutions to y?> = h(z) mod p, | X (GF(p))|, can be related to a character
sum (see Remark 1 below), thanks to classical work of Artin, Hasse, and Weil. This
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formula yields good estimates for | X (GF(p))| in many cases (especially when p is
large compared to the degree of k). A long standing problem has been to improve on
the trivial estimate when p is small compared to the degree of h. We are interested in
a special type of hyperelliptic: For each non-empty subset S C GF'(p), consider the
hyperelliptic curve Xg defined by y*> = fs(x) where fs(z) = [[,cq(z — a). Let
| Xs(GF(p))| denote the cardinality of the set of all (x,y) satisfying y*> = fs(z) plus
the number of points at infinity on Xg.

Conjecture 2 (“small cardinality conjecture”) For an infinite number of primes p for
which p = 1 (mod 4), the number of GF (p)-rational points on Xg satisfies, for all
subsets S C GF(p), the bound | X s(GF(p))| < 1.57p.

This paper proves, using the long quadratic residue codes constructed below, that
both of these conjectures cannot be true.

We close this introduction with a few open questions.

Question 1: For each p = 1 (mod 4) is there an effectively computable subset
S C GF(p) such that [ Xs(GF(p))| > 2p?

Question 2: Does there exist a ¢ < 2 such that, for all p = 1 (mod 4) and all
S C GF(p), we have | Xs(GF(p))| < c-p?

1 Quasi-Quadratic Residue Codes

These are some observations on the interesting paper by Bazzi and Mitter [BM].

If S € GF(p), let fs(x) = [[,cq(x —a) € GF(p)[z]. Let x be the quadratic
residue character, which is 1 on the set () quadratic residues in GF'(p)*, —1 on the set
N non-quadratic residues, andis 0 on 0 € GF(p). Let R = F[z]/(zP — 1) and rg € R
denotes the polynomial

rs(z) = Z ',
€S
where S C GF(p). (Note that 7% = rag, where 25 is the set of elements 2s € GF(p),
for s € S. In particular, since Q C GF(p)* is a subgroup, er = rq if and only if
2 € Qifand only if p = +1 (mod 8) (by the quadratic reciprocity law). Moreover, if

2 € Nthenrd =ry.)
Define the QOR code as

Cng ={(rnrs,mqrs) | S C GF(p)},

where N, () are as above.

These are binary codes of length 2p and dimension p (if p = 3 (mod 4))orp — 1
(ifp=1 (mod 4)).



Lemma 1 (Bazzi-Mitter [BM], Proposition 3.3) Assume 2 and —1 are non-quadratic
residues mod p (i.e. p =3 (mod 8)).

If c = (rnrg,TQTs) is a nonzero codeword of the [2p, p] binary code Cn¢ then
the weight of this codeword can be expressed in terms of a character sum as

wt(e)=p— Y. x(fs(a)),
a€GF(p)

if |S|] is even, and

=p+ Z X(far@p)-s(a)),

a€GF(p

if |S| is odd.
In fact, looking carefully at their proof, one finds the following result:

Lemma 2 Let c = (ryrs,rqrs) be a nonzero codeword of Cng.

(a) If |S| is even
i) =p— 3 x(fs(@):

a€GF(p)
(b) If |S| is odd and p = 1 (mod 4) then the weight is
wit(c) =p— Z X(farp)-s(a)).
a€GF(p)

(c) If p =3 (mod 4) and |S| odd both hold then

=p+ Z X(far@)-s(a)).

a€GF(p

Proof If A, B C GF(p) then we claim

wt(rATB) = Z parlty |A M (k — B)|, (2)
keEGF(p)

where k — B = {k — b | b € B}. In general it is true that (}_, a,z%)(},, bpa™) =
Do Cn®”, Cp =Yy Ggbr,. Indeed,

where ny;, counts the © € A, y € B such that z + y = k. Now

me= Y 1=[AN(k-B)| (mod?2),
z€AN(k—B)



so (2) is true.
Let S C GF(p), then we have

p—wt(rgrs)—wt(ryrs) = Z 1— parity |@N(a—S)|— parity [NN(a—5)|.
acGF(p)

Let
T,(S) =1 — parity |Q N (a — 5)| — parity |[N N (a —5)]|.

Case 1. If | S| isevenand a € S then 0 € a — S so |Q N (a — S)| odd implies that
NN (a—.S)|is even, since 0 is not included in Q@ N (a — S) or NN (a— S). Likewise,
|Q N (a — S)| even implies that [N N (a — S)| is odd. Therefore T,,(S) = 0.

Case 2. If | S| is even and a ¢ S then parity |@Q N (a — S)| =parity|N N (a — 5)].
If |Q N (a— S)|is even then T, (S) = 1 and if |@Q N (@ — S)| is odd then T, (S) = —1.

Case 3. |S| is odd. We claim that (¢ — 5)¢ = a — S°. (Proof: Let s € S and
5€ S5°% Thena—s = a—5 = s = §, which is obviously a contradiction.
Therefore (a — S) N (a — S¢) =0, s0 (a — S)° D (a — S°). Replace S by S to prove
the claim.) Also note that

QN(a-S)UQN(a—5) =GFp)NQ=Q

has |Q| = 25+ elements (Ll denotes disjoint unon). So

parity |Q N (a — S)[ = parity |@ N (a — S°)|

if and only if |@Q] is even and

parity |Q N (a — S)| # parity [@Q N (a — S°)|
if and only if and only if |Q)] is odd.
Conclusion.
x
|S] even: T,(S) = H ()
r€a—S p
|[S|oddand p =3 (mod 4): T,(S) = —T,(5°)
|Sjoddandp=1 (mod 4): T,(S) = T,(S°)

From which the lemma follows. []
Remark 1 o |S|even: The 3. ,cr(p) X([fs(a)) is equal to —p — 2 plus the num-

ber of GF (p)-rational points on the (smooth projective model of the) hyperellip-
tic curve Xg : y? = fs(x). In other words,

> x(fs(a) = —p—2+|Xs(GF(p))|.

a€GF(p)



o |S|odd: The 3 ,cr(y) X(fs(a)) is equal to —p—1 plus the number of GF (p)-
rational points on the (smooth projective model of the) hyperelliptic curve Xg :
y? = fs(z). In other words,

> x(fs(a)) = —p—1+|Xs(GF(p))|.

a€GF(p)

o The genus of the (smooth projective model of the) curve y* = fs(z), when |S|

; . 1S|-2 . . L
is even, is % Therefore, Weil’s estimate gives in this case

Y xUs@)l < (51 -2)¢" +1,

a€GF(p)

which is trivial if |S| > q*/%. (The estimate when S is odd is similar.)

2 Long Quadratic Residue Codes

We now introduce a new code, constructed similarly to the QQR codes discussed
above:

C ={(rnrs,rqQTs,*NTse,7QTse) | S € GF(p)}
where, for p prime and T C GF(p),
rp(z) = Z zt.
icT

Observe that this code is non-linear with respect to the usual coordinate-wise addition.
For any S C GF(p), let

cs = (rNTg,TQTS, INTSCe, TQTSe)

and let

Vs = (TNTs, rQrs,TNTs, TQTs).

If S1ASs denotes the symmetric difference between S and S5 then it is easy to check
that

sy + €3, = Vs, A8, 3)
We know that
P Lacorg (B52), 18| even (any p),
Wi(rNTs, TQTS) = P~ 2acGF(p) fSLTw) , |Sloddandp =1 (mod 4),
P+ accrm) fscp(a) , |Sloddand p=3 (mod 4),



by Lemma 2.
If p=1 (mod 4) then

wt (ryrs, rQrs, INTSe, TQrse) = wt(rnrs,rors) + wt (ryrse, rQrse)

=p—- ZaGGF(p) (fSIEa)) +p— EaGGF(P) (fS;(a)

=2 = > ueGr(p) Kfs;a)) + (fSTmﬂ '

We have the following trivial estimates:

e (BY)isse

a€GF(p) p
and
T ()<
a€GF(p)
therefore
X () ()] 1< iser 18-

a€GF(p)

This implies the minimum non-zero weight p of C' satisfies p > p, whenp =1
(mod 4).

We now compute the size of C. We now prove the claim: if p = 3 (mod 4)
then the map that sends .S to the codeword (ryrs,rQrs, TNTSe, TQTs<) is injective.
This implies |C| = 2P. Suppose not, then there are two subsets S1, So C GF(p)
that are mapped to the same codeword. Subtracting, the subset 7' = S;AS, satisfies
rory = rnrr = rorre = ryrre = 0. If |[T]iseventhen 0 = (rg + rn)rr =
(rarp) — 1)rr = rr. This forces T to be the empty set, so S; = Sy. Now if |T|
is odd then similar reasoning implies that T°° is the empty set. Therefore, S; = ) and
Sa = GF(p) or vice versa. This proves the claim.

Incase p = 1 (mod 4), claim: |C| = 2P~1. Again, suppose there are two subsets
S1, S2 € GF(p) that are mapped to the same codeword. Then the subset 7" = S1A S,
for which rgry = ryrr = rorre = ryrre = 0. This implies either 7 = @ or
T = GF(p). Therefore, either S; = S5 or S; = S5.

We have proven the following result.

Theorem 1 The non-linear code C' has length n = 4p and minimum non-zero weight
p > p. It has size M = 2P~1 ifp =1 (mod 4), and size M = 2P if p =3 (mod 4).

2.1 Duality in the LQR code

First, a few observations.

For any T' C GF(p), let T denote the set which is T'U {0} if 0 ¢ T, and T — {0}
if0eT.

By (3), it suffices to find the minimum non-zero weight of vg, S C GF(p). We
first find a “duality” relation between vg and vge, and c¢g and cge.

)



By (4), it is obvious that if p = 1 (mod 4) then vg = vge.
Ifp=1 (mod 4) then TGF(p)TQ = TGF(p)TN = 0, 80

varp) = (0,0,0,0) € R, =F".

If p=3 (mod 4) then 7qp)rQ = Qs TGF(p)TN = T'N» SO

varp) = (TN, TQ, TN, TQ)-

These facts together with (3) imply: if p = 1 (mod 4) then cg = cge; if p = 3
(mod 4) then cg = cse + (rn,TQ, N, rg). Consequently, if p = 3 (mod 4) then

US,AS, = Cs; t+Cs,
=cs, t s + (TN, 7Q TN, TQ)
=vs,a85 + (TN, 7Q TN, TQ) = V(s,A8,)c + (TN, TQ, TN, TQ)-

In particular, if p = 3 (mod 4) then vg = vge + (rn,rQ,7n,7q), and this can be
more compactly re-expressed as

Us = VUge, ®)
provided p = 3 (mod 4).
By (3), we have
cs = Cge, (6)

provided p = 1 (mod 4). Now that we know this, we can write, if p = 1 (mod 4),

US,AS, = C§, T C5, = €5, + €3¢ = US;ASS = U(S;ASq)e-

In particular,

Us = Uge, (7

provided p = 1 (mod 4). This is also a consequence of (3) and (6). (So now we have
at least three proofs of this fact!)

2.2 Linear version of the LQR code

Let us denote the map S —— cg by ¢ and its inverse (which only exists if p = 3
(mod 4)) by .
When p = 3 (mod 4), define “addition” @ on C by

cs, ®cs, = €5,AS., (8)

for arbitrary subsets of GF'(p). It is easy to check that this operation & is well-defined
incase p = 3 (mod 4).
The surprising fact is the following result.

Lemma 3 In case p =1 (mod 4), (8) is well-defined.



Proof Assume p = 1 (mod 4). Recall from the above discussion that ¢ is a 2-to-1
map from the set 267 (®) of subsets of GF(p) to the codewords of C. For all ¢ € C,
thereisa S C GF(p) and ¢ = ¢p (for T C GF(p))ifandonly if T'= S or T = S°.
We know cseas, = Cs,A85 = CseASs = €(5,A8,)c- This implies & does not depend
on the choice in ¢~ !(cs,) = {S1,55}, ¢~ (cs,) = {S2,55} made to compute the
right-hand side of (8). [J

This operation ¢ is commutative, since the symmetric difference operation A is
symmetric, and it is associative since A is associative. Each element is the inverse of
itself and the element cy = 0 is the identity.

Therefore, C is a vector space over F with the operation ©. When p = 3 (mod 4),
the set of codewords cg, S a singleton subset of GF(p), forms a basis. When p = 1
(mod 4), the set of codewords cg, .S a singleton subset of G F'(p), is linearly dependent
(their sum is 0), so do not form a basis. However, if you just omit one (any one — pick
your least favorite), you get a basis.

Define the metric dg, as follows. For ¢, ¢ € C, let

dg(c1,c2) = wt(cr ® c2).
Of course, the Hamming metric, denoted d g to be unambiguous, satisfies d g (¢1, c2) =
wt(q —+ CQ).
We make a few remarks comparing dg to dgy. If ¢ € C = Rz is written ¢ =
(p1(c), p2(c), ps(c), pa(c)), for polynomials p;(c) € Ry, then

wit(c1®ez) = wi(pi(cr @ cz)) +wi(p2(cr cz)) +wt(ps(c1 Sez)) +wt(pa(cr S e2)),
and

wt(e1+c2) = wit(pr(c1+¢2))Fwt(pa(cr +e2)) +wt(ps(er+c2)) +wt(pa(er +c2)).
By definition of C,

wt(p1(c1 @ c2)) = wt(pi(er + ¢c2)), wt(pe(er ® c2)) = +wt(pz(er + c2)).

On the other hand, if ¢; = cg,, c2 = cs,,

wt(pz(c1 @ c2)) + wt(pa(cr © c2)) = wt(rnr(s, as,)e) + wt(rqr(s, Asy)e)

and

wt(pz(c1 + c2)) + wt(pa(cr + c2)) = wt(ryrs,as,) + wt(rqrs,as,)-

The difference between dg,(c1, ¢2) and dg (c1, ¢2) can now by computed using Lemma
2.

We assert that, with this notion of addition, the “®-Hamming metric” on (C, ®) is
the more “natural” one to use.

This and the previous section prove the following result.

Theorem 2 The linear code (C, @) has length n = 4p and minimum ®-distance d >
p. It has size M = 2P~1 ifp =1 (mod 4), and size M = 2P if p =3 (mod 4).



2.3 Connection with hyperelliptic curves

The goal of this section is to prove the main result of this paper.
Theorem 3 [f the small cardinality conjecture is true then Goppa’s conjecture is false.

Proof Recall Goppa’s conjecture is that the binary asymptotic Gilbert-Varshamov
bound is best possible for any family of binary codes. The asymptotic GV bound
states that the rate R is greater than or equal to 1 — H(4), where H(§) = § —
§logy(8) — (1 — &)logy(1 — 6). According to Goppa’s conjecture if R = } then
the best possible § is 0y = .215. This means that the minimum distance of our long
quadratic residue code with rate R = i satisfies d < Jp - 4p = .859p. Recall that
the weight of a codeword c in this LQR code is the weight of the 4-tuple of polyno-
mials (rn7rg,TQTs, 'NTse, rQrse). Let us assume |S| is even for simplicity. Then by
Lemma 8 and remark 1 we know that the wt(ryrs,rqrs) = 2p + 2 — | Xs(GF(p))|.
Now suppose |S|isodd and p = 1 (mod 4). Then By lemma 8 and remark 1 we know
that the wt(rnrg, rors) = 2p + 1 — | Xs(GF(p))|. By the small cardinality conjec-
ture, wt(rnrg,rors) > 2p+ 1 — | Xg(GF(p))| > 2p — 1.57p = .43p. Therefore
d = ming wt((rnrs,rQrs,rNrse,rQrse)) > 2 - mingwt(ryrg,rors) > .86p.
This contradicts the estimate above.[]
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