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Abstract

We study the action of a finite group on the Riemann-Roch space of
certain divisors on a specific hyperelliptic curve X defined over a finite
field with “large” automorphism group G. If D and E = P1 + ... + Pn

are G-equivariant divisors on X (Pi ∈ X(F )) then G acts on associated
AG code C = C(D, E) by permuting coordinates. This note discusses
the permutation decoding of these AG codes. The main “results”
are conjectures regarding the complexity of the permutation decoding
of these hyperelliptic codes. The open source GAP error-correcting
codes package GUAVA is used to compute examples.

1 Introduction

Let X be a plane curve defined over a finite field F = GF (q) by means
of some polynomial equation f(x, y) = 0, where f has coefficients in F .
(Though strictly speaking we are identifying, by abuse of notation, X with
the associated projective algebraic curve.) Let D be a formal integer linear
combination of F -rational points in X(F ), D = d1Q1+...drQr. The Riemann-
Roch space L(D) is an F -vector space of rational functions in x, y on X
whose zero/pole at Qi is controlled by di, 1 ≤ i ≤ r. (See Stichtenoth [Sti]
or Hartshorne [H] for a precise definition.) Let E = P1 + ... + Pn be a sum
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of distinct distinct whose support is disjoint from that of D. The AG code
C = CX(D, E) associated to X is defined by

C = {(f(P1), ..., f(Pn)) | f ∈ L(D)}. (1.1)

This is the image of L(D) under the evaluation map

evalE : L(D) → F n,
f 7−→ (f(P1), ..., f(Pn)).

(1.2)

These codes were originally introduced by Goppa in the 1980s and have
proven to be a rich source of efficient error-correcting linear block codes.
The special case where D is a multiple of a single point in X(F ) (often
the point at infinity, if it is unique, and then E is usually the sum of the
remaining points) is called a one-point AG code.

We say that the divisor D above is G-equivariant if the action of G on
X(F ) leaves D invariant. (Therefore, D must in fact be an integer linear
combination of G-orbits of X(F ).) If D is G-equivariant then L(D), and
hence C, is a G-module.

This paper investigates one small class of such AG codes which seems
to have an unusually large amount of symmetry. The hope is that this
symmetry can be used to create a class of codes which has a very efficient
decoding procedure.

Some of these ideas are part of joint research with Amy Ksir and Will
Traves. For related research, see Joyner and Ksir [JK1]. See [JK2] and [JT]
for further background.

Acknowledgements: The author thanks Bob Guralnick for the proof of
Proposition 3, and an anonymous referee for many helpful comments.

2 AG codes associated to y2 = xp − x

Properties of y2 = xp − x are discussed for example in Göb [G].

2.1 Background on the curve

In general, if X is a curve defined over a field F with finite automorphism
group G = AutF (X) then we call G large if |G| > |X(F )|.
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Lemma 1 If G is large then every point of X(F ) is ramified for the covering
X → X/G.

Proof: Suppose P ∈ X(F ) is not ramified, so the stabilizer of P , GP , is
trivial. In this case, |G · P | = |G|/|GP | = |G|. But G · P ⊂ X(F ) so
|G · P | ≤ |X(F )|, a contradiction. ¤

2.1.1 Case F = GF (p)

Let p ≥ 3 be a prime, F = GF (p), and let X denote the curve defined by

y2 = xp − x.

This has genus p−1
2

and p + 1 F -rational points1. We assume that the au-
tomorphism group G = AutF (X) is a central 2-fold cover of PSL(2, p), we
have a short exact sequence,

1 → Z → G → PSL2(p) → 1, (2.1)

where Z denotes the center of G (Z is generated by the hyperelliptic involu-
tion). The following transformations are elements of G:

γ1 =

{
x 7−→ x,

y 7−→ −y,
, γ2 = γ2(a) =

{
x 7−→ a2x,
y 7−→ ay,

γ3 =

{
x 7−→ x + 1,

y 7−→ y,
, γ4 =

{
x 7−→ −1/x,

y 7−→ y/x
p+1
2 ,

(2.2)

where a ∈ F× is a primitive (p−1)st root of unity. This group acts transitively
on X(F ), so it has an orbit of size |X(F )| = p + 1.

Let P1 = (1 : 0 : 1) and let H be its stabilizer in G. A counting argument
shows that H is a solvable group of order 2p(p − 1) generated by γ1, γ2(a)
and γ3. By Lemma 1, every point in

X(F ) = {(1 : 0 : 0), (0 : 0 : 1), (1 : 0 : 1), ..., (p− 1 : 0 : 1)}
is ramified over the covering X → X/G in the sense that each stabilizer
GP = StabG(P ) is non-trivial, P ∈ X(F ).

1Indeed, say P ∈ X(F ) is not the point at infinity, so P = (x, y), for some x, y ∈ F .
By Fermat’s Little Theorem, xp − x = 0, so y = 0. There are p such points.
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It is known (Proposition VI.4.1, [Sti]) that, for each m ≥ 1, the Riemann-
Roch space of D = mP1 has a basis consisting of monomials,

xiyj, 0 ≤ i ≤ p− 1, j ≥ 0, 2i + pj ≤ m.

Lemma 2 The semisimplification ρss of the representation ρ of H acting on
L(D) is the direct sum of one-dimensional representations of G.

Proof: The generator γ1 acts trivially on the basis of L(D), whereas

γ2(a) :




1
x
...

xrys


 7−→




1
a2x
...

a2r+sxrys


 =




1 0 ... 0

0 a2 ...
...

...
. . . 0

0 ... 0 a2r+s







1
x
...

xrys


 ,

and

γ3 :




1
x
...

xrys


 7−→




1
x + 1

...
(x + 1)rys


 =




1 0 ... 0

1 1 ...
...

...
. . . 0

0 ... r 1







1
x
...

xrys


 ,

where the non-zero terms in the bottom row of the matrix representation of
γ3 are in the last r + 1 row entries and consist of the binomial coefficients

r!
(r−j)!j!

, 0 ≤ j ≤ r. Therefore, the group generated by these matrices is
lower-triangular, hence solvable. ¤

2.1.2 Case F = GF (p2)

Let F = GF (p2) and let F0 = GF (p).
The automorphism group G = AutF (X) is a central 2-fold cover of

PGL(2, p) and we have a short exact sequence,

1 → Z → G
τ→ PGL2(p) → 1, (2.3)

where Z denotes the subgroup of G generated by the hyperelliptic involution
(which coincides with the center of G), by Göb [G]. The group G has order
2|PGL(2, p)| = 2p(p2 − 1). The following transformations generate G:
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γ1 =

{
x 7−→ x,

y 7−→ −y,
, γ2 = γ2(a) =

{
x 7−→ a2x,
y 7−→ ay,

γ3 =

{
x 7−→ x + 1,

y 7−→ y,
, γ4 =

{
x 7−→ −1/x,

y 7−→ y/x
p+1
2 ,

where a ∈ F× is a primitive 2(p− 1)st root of unity.

Proposition 3 Let p > 3 be a prime.

(a) Case p ≡ 3 (mod 4):

Let P1 = (1 : 0 : 1) and fix some P2 ∈ X(F ) − X(F0). The set of
rational points X(F ) decomposes into a disjoint union

O1 = X(F0) = G · P1, O2 = X(F )−X(F0) = G · P2,

with |O1| = p + 1 and |O2| = 2p(p− 1).

(b) Case p ≡ 1 (mod 4):

The automorphism group of X/F acts transitively on X(F ) and the
stabilizer of any point is a group of order 2p(p− 1).

Remark 1 The proof of this proposition is omitted. It has been proven by
Bob Guralnick [Gu].

This and Lemma 1 imply every point in X(F ) is ramified for the covering
X → X/G.

Let P1, P2 be as above and let Hi be the stabilizer of Pi in G (for i = 1, 2).
We have already seen that H1 is a solvable group of order 2p(p−1) generated
by γ1, γ2 = γ2(a), and γ3, where a ∈ F× is a primitive 2(p−1)st root of unity.
As a consequence, |O1| = |G · P1| = |G|/|H1| = p + 1. In fact, if B denotes
the (“Borel”) upper-triangular subgroup of PGL(2, p) then H1 = τ−1(B).
Since B is solvable and any abelian cover of a solvable group is solvable, H1

is solvable. Since B is not normal in PGL2(p), H1 is not normal in G.
Using H1 = 〈γ1, γ2, γ3〉 and the explicit expressions for the γi, it can

be checked directly that no g ∈ H1, g 6= 1, fixes any P ∈ O2. Therefore,
H1 ∩ H2 = {1}. According to the proposition, the stabilizer H2 of P2 has
order p + 1. This and |G| = |H1| · |H2| implies G = H1 ·H2. In other words,
H2 is a complement of H1 in G. (As sets, G/H1

∼= PGL2(p)/B ∼= P1(F0).)
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By the proposition, the divisor D2 =
∑

P∈O2
P associated to O2 has

degree 2p(p − 1) > 2g, so by the Riemann-Roch theorem, dim(L(D2)) =
2p(p− 1) + 1− p−1

2
.

3 AG code constructions

Throughout this section, we assume X, G, and D are as above and that F
is finite.

Let P1, ..., Pn ∈ X(F ) be distinct points and E = P1 + ... + Pn ∈ Div(X)
be stabilized by G. This implies that G acts on the support Supp(E) by
permutation. Assume Supp(D) ∩ Supp(E) = ∅. Let C = C(D,E) de-
note the AG code (1.1). The group G acts on C by g ∈ G sending c =
(f(P1), ..., f(Pn)) ∈ C to c′ = (f(g−1(P1)), ..., f(g−1(Pn))), where f ∈ L(D).
First, we observe that this map, denoted φ(g), is well-defined. In other
words, if evalE is not injective and c is also represented by f ′ ∈ L(D), so c =
(f ′(P1), ..., f

′(Pn)) ∈ C, then we can verify (f(g−1(P1)), ..., f(g−1(Pn))) =
(f ′(g−1(P1)), ..., f

′(g−1(Pn))). (Indeed, G acts on the set Supp(E) by permu-
tation.) This map φ(g) induces a homomorphism of G into the permutation
automorphism group of the code Aut(C), denoted

φ : G → Aut(C) (3.1)

(Prop. VII.3.3, [Sti]).
The papers [W], [JT], [JK1] investigate φ in more detail.

3.1 The kernel of φ

To investigate the kernel of this map φ, we recall the following notion. Let
H ∈ Div(X) be any divisor. We say that the space L(H) separates points
if for all points P, Q ∈ X, f(P ) = f(Q) (for all f ∈ L(H)) implies P = Q
(see [H], chapter II, §7). Recall that if D is ample then L(D) separates points
[H].

If G is a group of automorphisms of X defined over F then G induces
an automorphism on the image of the evaluation map evalE : L(D) → F n.
For this discussion, let us assume this is an injection. (This is not a serious
assumption.) To understand the kernel of this map φ in (3.1), we’d like
to know whether or not (f(P1), ..., f(Pn)) = (f(g−1P1), ..., f(g−1Pn)) implies
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Pi = g−1Pi, for 1 ≤ i ≤ n. In general, if L(D) separates points then

Ker(φ) = {g ∈ G | g(Pi) = Pi, 1 ≤ i ≤ n}.

It is known (see the proof of Prop. VII3.3, [Sti]) that if n > 2g + 2 then
{g ∈ G | g(Pi) = Pi, 1 ≤ i ≤ n} is trivial. Therefore, if n > 2g + 2 and D is
ample then φ is injective.

3.2 Permutation representations

In this subsection, we show how theorems about AG codes can, in some cases,
give theorems about representations on Riemann-Roch spaces.

Assume that X/F is a hyperelliptic curve defined over a finite field F of
characteristic p > 2 with automorphism group G = AutF (X). Let D be a
G-equivariant divisor on X, let O ⊂ X(F ) be a G-orbit disjoint from the
support of D, and let E =

∑
P∈O P . Let P be the permutation automorphism

group of the code C = C(D,E) defined in (1.1).
Theorem 4.6 in [W] (see [JK1] for a more general treatment) implies that

if n = deg(E) and t = deg(D) satisfy n > max(2t, 2g + 2) then the map
φ : G → P is an isomorphism. Using this, we regard C as a G-module.
In particular, the (bijective) evaluation map evalE : L(D) → C in (1.2) is
G-equivariant. Since G acts (via its isomorphism with P ) as a permutation
on C, we have proven the following result.

Proposition 4 Under the conditions above, the representation ρ of G on
L(D) is equivalent to a representation ρ′ with with property that, for all
g ∈ G, ρ′(g) is a permutation matrix.

The decomposition of L(D) (and hence also C) into indecomposable G-
modules, when p divides the order of G, is an interesting open question. For
a discussion of a situation related to the case when D is the canonical divisor,
see [S].

3.3 Permutation decoding application

If C is a linear code with non-trivial permutation group then this extra
symmetry of the code may be useful in decoding. Permutation decoding is
discussed, for example, in Huffman and Pless [HP]. It has also been imple-
mented in version 2.0 of the error-correcting codes computer algebra package
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GUAVA [GUAVA]. We recall briefly, for the convenience of the reader, the
main ideas.

We shall assume that C is in standard form. Let C be a [n, k, d] linear
code over F , let t = [(d − 1)/2], and let G = (Ik, A) denote the generator
matrix in standard form. From this matrix G, it is well-known and easy to
show that one can compute an encoder E : F k → F n with image C, and a
parity check matrix H = (B, In−k) in standard form, B = −At.

The key lemma is the following result: Suppose v = c + e, where c ∈ C
and e ∈ F n is an error vector with Hamming weight wt(e) ≤ t. Under
the above conditions, the information symbols of v are correct if and only if
wt(Hv) ≤ t.

Let P denote the permutation automorphism group of C. The permuta-
tion decoding algorithm is:

1. For each p ∈ P , compute wt(H(pv)) until one with wt(H(pv)) ≤ t is
found (if none is found, the algorithm fails).

2. Extract the information symbols from pv, and use E to compute code-
word cp from them.

3. Return p−1cp = Decode(v).

For example, if P acts transitively then permutation decoding will correct at
least one error.

The key problem is to find a set of permutations in P which moves the
non-zero positions in every possible error vector of weight ≤ t out of the
information positions. (This set, called a PD-set, will be used in step 1
above instead of the entire set P .)

Example 5 We give an example using [GUAVA] of an AG code for which
permutation decoding seems to apply.

This is an example of a [7, 3, 5] one-point AG code over GF (7) arising
from the hyperelliptic curve y2 = x7−x. The following GUAVA (version 2.0)
commands help investigate this example.

p:=7;
F:=GF(p);
R := PolynomialRing(F,2);
indets := IndeterminatesOfPolynomialRing(R);x:=indets[1]; y:=indets[2];
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Pts:=AffinePointsOnCurve(y^2-x^p+x,R,F);; Length(P);
C:=OnePointAGCode(y^2-x^p+x,Pts,4,R);
MinimumDistance(C);
G:=GeneratorMat(C);
PutStandardForm(G);
Display(G);
P:=PermutationAutomorphismGroup(C);
IdGroup(P);
Wt2:=ConstantWeightSubcode(WholeSpaceCode(p,GF(p)),2);
for c in C do
e:=Random(Wt2);; v:=PermutationDecode(C,c+e);
if c<>v then Print("\n Decoding fails. c,v = ",c," ",v,"\n"); if;

od;

After many runs, no decoding failures were found, in support for Conjec-
ture 6 below. This code has generator matrix in standard form given by

G =




1 0 0 6 4 6 4
0 1 0 6 3 3 1
0 0 1 3 1 6 3


 .

Moreover, the permutation automorphism group of the code is a group of
order 42 generated by (1, 5, 4)(2, 3, 7) and (1, 3, 2, 6, 7, 4). The elements of
P − {1} can be used as a PD-set.

The reader may experiment him/herself by using similar GUAVA com-
mands to compute other examples2.

Define a codeword operation to be either

• a syndrome computation (i.e., Hv, where H is a parity check matrix
and v is a received word),

• a vector comparison (i.e., evaluating a Boolean v = v′, where v, v′ are
two vectors),

2The GUAVA command PermutationAutomorphismGroup(C), written in GAP’s
own interpretive language, is probably too slow for p > 11, as the case
p = 13 took over 1 day on an AMD64 bit linux machine. The command
ConstantWeightSubcode(WholeSpaceCode(p,GF(p)),2) is much faster on a suitably
configured linux/unix machine since in that case GUAVA can call on relatively fast binary
programs written in C.
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• a permutation of coordinates (i.e., pv, where p ∈ Sn is an element of
the symmetric group on n letters and v ∈ F n),

• a Hamming weight computation (i.e., wt(v)).

Conjecture 6 For one-point AG codes C in standard form associated to
y2 = xp−x over GF (p) of length n = p, permutation decoding always applies.
Its complexity in codeword operations is at worst the size of the permutation
group of C, which is O(p2) = O(g2) = O(n2).

Note that the size of the alphabet is changing as n →∞. This conjectured
complexity is to be compared with the decoding complexity of O(n3) field
operations for the well-known interpolation algorithm (see for example §3.3.1
of [TV] or [Sti] or [HvLP]).

Conjecture 7 Assume p ≡ 3 (mod 4), p > 3. For one-point AG codes
C = C(m · (1 : 0 : 0), O2) of length n = 2p(p− 1) in standard form associated
to the hyperelliptic curve X over GF (p2) defined by y2 = xp − x, permuta-
tion decoding always applies. We conjecture that, if the points in X(F ) are
arranged suitably then the image of StabG((1 : 0 : 0)) ⊂ G = AutF (X) in the
permutation group of C may be used as a PD-set. Its complexity in codeword
operations is at worst O(p2) = O(g2) = O(n).

If true3, this seems to beat the complexity of other decoding algorithms,
such as those surveyed in [HvLP]. (When comparing estimates, note other
complexity bounds of decoding algorithms usually assume the size of the
ground field q is fixed. Here it is a variable.)

Finally, we observe that known methods for computing the automorphism
group of a linear code in general are not very efficient (see for example Leon
[L]). However, the equations (2.2) allow one to compute in this case an action
of G on the code efficiently.
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