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A long standing problem has been to develop “good” binary linear codes to be used
for error-correction. This paper investigates in some detail an attack on this problem us-
ing a connection between quadratic residue codes and hyperelliptic curves. Codes with
this kind of relationship have been investigated in Helleseth [H], Bazzi-Mitter [BM],
Voloch [V1], and Helleseth-Voloch [HV]. This rest of this introduction is devoted to
explaining in more detail the ideas discussed in later sections.

Let F = GF (2) be the field with two elements and C ⊂ Fn denote a binary block
code of length n. For any two x,y ∈ Fn, let d(x,y) denote the Hamming metric:

d(x,y) = |{1 ≤ i ≤ n | xi 6= yi}|. (1)

The weight w of v is the number of non-zero entries of v. The smallest weight of any
non-zero codeword is denoted d - the minimum distance if C is linear. When C is
linear, denote the dimension of C by k and call C an [n, k, d]2-code.

Denoting the volume of a Hamming sphere of radius r in Fn by V (n, r), the bi-
nary version of the Gilbert-Varshamov bound asserts that (given n and d) there is an
[n, k, d]2 code C satisfying k ≥ log2(

2n

V (n,d−1) ) [HP].

Conjecture 1 (Goppa’s conjecture [JV],[G]) The binary version of the Gilbert-Varshamov
bound is asymptotically exact.

For each odd prime p > 5, a QQR code1 is a linear code of length 2p. Like
the quadratic residue codes, the length and dimension are easy to determine but the
minimum distance is more mysterious. In fact, the weight of each codeword can be
explicitly computed in terms of the number of solutions in integers mod p to a certain
type of (“hyperelliptic”) polynomial equation. To explain the results better, some more
notation is needed.

For our purposes, a hyperelliptic curve X over GF (p) is a polynomial equation
of the form y2 = h(x), where h(x) is a polynomial with coefficients in GF (p) with
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1This code is defined in §2 below.
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distinct roots2. The number of solutions to y2 = h(x) mod p, plus the number of
“points at infinity” on X , will be denoted |X(GF (p))|. This quantity can be related
to a sum of Legendre characters (see Lemma 4 below), thanks to classical work of
Artin, Hasse, and Weil. This formula yields good estimates for |X(GF (p))| in many
cases (especially when p is large compared to the degree of h). A long-standing open
problem has been to improve on the trivial estimate when p is small compared to the
degree of h.

For each non-empty subset S ⊂ GF (p), consider the hyperelliptic curve XS de-
fined by y2 = fS(x), where fS(x) =

∏
a∈S(x− a). Let B(c, p) be the statement: For

all subsets S ⊂ GF (p), |XS(GF (p))| ≤ c · p holds. Note that B(2, p) is trivially true,
so the statement B(2− ε, p), for some fixed ε > 0, might not be horribly unreasonable.

Conjecture 2 (“Bazzi-Mitter conjecture” [BM]) There is a c ∈ (0, 2) such that, for
an infinite number of primes p the statement B(c, p) holds.

It is remarkable that these two conjectures are related. In fact, using QQR codes we
show that if, for an infinite number of primes p with p ≡ 1 (mod 4), B(1.77, p) holds
then Goppa’s conjecture is false. Although this is a new result, it turns out that it’s an
easy consequences of the QQR construction given in [BM] if you think about things in
the right way. Using LQR codes3 we will remove the condition p ≡ 1 (mod 4) at a
cost of slightly weakening the constant 1.77 (see Corollary 2).

Though of secondary importance here, the Duursma zeta function of these QQR
codes is discussed in a brief section below and some examples are given (with the help
of the software package SAGE [S]).

We close this introduction with a few open questions which, on the basis of this
result, seem natural.

Question 1: For each prime p > 5 is there an effectively computable subset S ⊂
GF (p) such that |XS(GF (p))| is “large”?

Here “large” is left vague but what is intended is some quantity which is unusual.
By Weil’s estimate (valid for “small”-sized subsets S), we could expect about p points
to belong to |XS(GF (p))|. Thus “large” could mean, say, > c ·p, for some fixed c > 1.

The next question is a strong version of the Bazzi-Mitter conjecture.
Question 2: Does there exist a c < 2 such that, for all sufficiently large p and all

S ⊂ GF (p), we have |XS(GF (p))| < c · p?
In the direction of these questions, for Question 1, a coding theory bound of McEliese-

Rumsey-Rodemich-Welsh allows one to establish the following result (see Theorem 2):
There exists a constant p0 having the following property: if p > p0 then there exists a
subset S ⊂ GF (p) for which the bound |XS(GF (p))| > 1.62p holds. Unfortunately,
the method of proof gives no clue how to compute p0 or S. Using the theory of self-
dual codes, we prove the following lower (Corollary 1): If p ≡ 3 (mod 4) then there
exists a subset S ⊂ GF (p) for which the bound |XS(GF (p))| > 5

3p− 4 holds. Again,
we do not know what S is.

2This overly simplistic definition brings to mind the famous Felix Klein quote: “Everyone knows what
a curve is, until he has studied enough mathematics to become confused through the countless number of
possible exceptions.” Please see Tsafsman-Vladut [TV] or Schmidt [Sc] for a rigorous treatment.

3These codes will be defined in §4 below.
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Finally, Felipe Voloch [V2] has kindly allowed the author to include some inter-
esting explicit constructions (which do not use any theory of error-correcting codes) in
this paper (see §5 below). First, he shows the following result: If p ≡ 1 (mod 8) then
there exists an explicit subset S ⊂ GF (p) for which the bound |XS(GF (p))| > 1.5p
holds. A similar result holds for p ≡ 3, 7 (mod 8). Second, he gives a construction
which answers Question 2 in the negative.

1 Cyclotomic arithmetic mod 2

Let R = F[x]/(xp − 1) and rS ∈ R denotes the polynomial

rS(x) =
∑

i∈S

xi,

where S ⊆ GF (p). By convention, if S = ∅ is the empty set, rS = 0. We call |S| the
weight of rS . Note that r2

S = r2S , where 2S is the set of elements 2s ∈ GF (p), for
s ∈ S. In particular, since Q ⊆ GF (p)× is a subgroup, r2

Q = rQ if and only if 2 ∈ Q
if and only if p ≡ ±1 (mod 8) (by the quadratic reciprocity law). Moreover, if 2 ∈ N
then r2

Q = rN .
For S1, S2 ⊂ GF (p), a ∈ GF (p), let

H(S1, S2, a) = {(s1, s2) ∈ S1 × S2 | s1 + s2 ≡ a (mod p)}.
In particular,

• H(S1, S2, a) = H(S2, S1, a),

• there is a natural bijection H(GF (p), S, a) ∼= S,

• if S1 ∩ S′1 = ∅ then H(S1, S2, a) + H(S′1, S2, a) = H(S1 + S′1, S2, a).

Let

h(S1, S2, a) = |H(S1, S2, a)| (mod 2).

Adding |H(S1, S2, a)| + |H(Sc
1, S2, a)| = |S2| to |H(Sc

1, S
c
2, a)| + |H(Sc

1, S2, a)| =
|Sc

1|, we obtain

h(S1, S2, a) ≡ h(Sc
1, S

c
2, a) + |Sc

1|+ |S2| (mod 2), (2)

so

rS1rS2 =
∑

a∈GF (p)

h(S1, S2, a)xa.

Let Sc = GF (p)− S and let ∗ : R → R denote the involution defined by (rS)∗ =
rSc = rS + rGF (p). We shall see below that this is not an algebra involution.

Lemma 1 For all S1, S2 ⊂ GF (p), we have
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• |S1| odd, |S2| even: rS1rS2 = r∗S1
r∗S2

has even weight.

• |S1| even, |S2| even: (rS1rS2)
∗ = r∗S1

r∗S2
has even weight.

• |S1| even, |S2| odd: rS1rS2 = r∗S1
r∗S2

has even weight.

• |S1| odd, |S2| odd: (rS1rS2)
∗ = r∗S1

r∗S2
has odd weight.

This lemma follows from the discussion above by a straightforward argument.
Note that Reven = {rS | |S| even}, is a subring of R and, by the previous lemma,

∗ is an algebra involution on Reven.

2 QQR Codes
These are some observations on the interesting paper by Bazzi and Mitter [BM]. We
shall need to remove the assumption p ≡ 3 (mod 8) (which they make in their paper)
below.

If S ⊆ GF (p), let fS(x) =
∏

a∈S(x − a) ∈ GF (p)[x]. Let χ = (p ) be the
quadratic residue character, which is 1 on the set Q quadratic residues in GF (p)×, −1
on the set N non-quadratic residues, and is 0 on 0 ∈ GF (p).

Define
CNQ = {(rNrS , rQrS) | S ⊆ GF (p)},

where N, Q are as above. (When S is the empty set, we associate to (rNrS , rQrS) the
zero codeword.) We call this a QQR code (or a quasi-quadratic residue code). These
are binary codes of length 2p and dimension

k =
{

p, if p ≡ 3 (mod 4),
p− 1, if p ≡ 1 (mod 4).

This code has no codewords of odd weight.

Remark 1 If p ≡ ±1 (mod 8) then CNQ contains a binary quadratic residue code.
For such primes p, the minimum distance satisfies the well-known square-root lower
bound, d ≥ √

p.

Lemma 2 For any p, the associated QQR code is self-orthogonal: C⊥NQ ⊂ CNQ. If
p ≡ 3 (mod 4) then the associated QQR code is self-dual: C⊥NQ = CNQ.

Recall a code C is self-orthogonal if C is a subcode of its dual code C⊥.
Proof: By Lemma 1 (and the fact that |Q|, |N | are either both even or both odd),

we know that each codeword in CNQ has even weight. (In fact, when p ≡ 1 (mod 4),
each codeword in CNQ has doubly even weight, i.e., all codewords have weight divis-
ible by 4.) Therefore, C⊥NQ ⊂ CNQ. However, if p ≡ 3 (mod 4) then dim(CNQ) is
half its length, so dim(C⊥NQ) = dim(CNQ). This forces them to be equal. ¤

The self-dual binary codes have useful upper bounds on their minimum distance
(for example Theorem 9.3.5 in [HP]). Combining this with the lower bound mentioned
above, we have
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Lemma 3 If p ≡ 3 (mod 4) then

d ≤ 4 · [p/12] + 6.

If p ≡ −1 (mod 8) then √
p ≤ d ≤ 4 · [p/12] + 6.

Note that these upper bounds (in the cases they are valid) are better than the asymp-
totic bounds of McEliese-Rumsey-Rodemich-Welsh for rate 1/2 codes.

Example 1 When p = 5, CNQ has weight distribution

[1, 0, 0, 0, 5, 0, 10, 0, 0, 0, 0].

When p = 7, CNQ has weight distribution

[1, 0, 0, 0, 14, 0, 49, 0, 49, 0, 14, 0, 0, 0, 1].

When p = 11, CNQ has weight distribution

[1, 0, 0, 0, 0, 0, 77, 0, 330, 0, 616, 0, 616, 0, 330, 0, 77, 0, 0, 0, 0, 0, 1].

When p = 13, CNQ has weight distribution

[1, 0, 0, 0, 0, 0, 0, 0, 273, 0, 598, 0, 1105, 0, 1300, 0, 598, 0, 182, 0, 39, 0, 0, 0, 0, 0, 0].

The following well-known result4 shall be used to estimate the weights of code-
words of QQR codes.

Lemma 4 (Artin, Hasse, Weil) Assume S ⊂ GF (p) is non-empty.

• |S| even:

∑

a∈GF (p)

χ(fS(a)) = −p− 2 + |XS(GF (p))|.

• |S| odd:

∑

a∈GF (p)

χ(fS(a)) = −p− 1 + |XS(GF (p))|.

• |S| odd: The genus of the (smooth projective model of the) curve y2 = fS(x) is
g = |S|−1

2 and

|
∑

a∈GF (p)

χ(fS(a))| ≤ (|S| − 1)p1/2 + 1.

4See for example Weil [W] or Schmidt [Sc], Lemma 2.11.2.
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• |S| even: The genus of the (smooth projective model of the) curve y2 = fS(x) is
g = |S|−2

2 and

|
∑

a∈GF (p)

χ(fS(a))| ≤ (|S| − 2)p1/2 + 1.

Obviously, the last two estimates are only non-trivial for S “small” (e.g., |S| <
p1/2).

Lemma 5 (Bazzi-Mitter [BM], Proposition 3.3) Assume 2 and −1 are non-quadratic
residues mod p (i.e. p ≡ 3 (mod 8)).

If c = (rNrS , rQrS) is a nonzero codeword of the [2p, p] binary code CNQ then
the weight of this codeword can be expressed in terms of a character sum as

wt(c) = p−
∑

a∈GF (p)

χ(fS(a)),

if |S| is even, and
wt(c) = p +

∑

a∈GF (p)

χ(fSc(a)),

if |S| is odd.

In fact, looking carefully at their proof, one finds the following result:

Proposition 1 Let c = (rNrS , rQrS) be a nonzero codeword of CNQ.

(a) If |S| is even

wt(c) = p−
∑

a∈GF (p)

χ(fS(a)) = 2p + 2− |XS(GF (p))|.

(b) If |S| is odd and p ≡ 1 (mod 4) then the weight is

wt(c) = p−
∑

a∈GF (p)

χ(fSc(a)) = 2p + 2− |XSc(GF (p))|.

(c) If |S| is odd and p ≡ 3 (mod 4) then

wt(c) = p +
∑

a∈GF (p)

χ(fSc(a)) = |XSc(GF (p))| − 2.

Proof: If A,B ⊆ GF (p) then the discussion in §1 implies

wt(rArB) =
∑

k∈GF (p)

parity |A ∩ (k −B)|, (3)
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where k −B = {k − b | b ∈ B}. Let S ⊆ GF (p), then we have

p−wt(rQrS)−wt(rNrS) =
∑

a∈GF (p)

1− parity |Q∩(a−S)|− parity |N∩(a−S)|.

Let
Ta(S) = 1− parity |Q ∩ (a− S)| − parity |N ∩ (a− S)|.

Case 1. If |S| is even and a ∈ S then 0 ∈ a− S so |Q ∩ (a− S)| odd implies that
|N ∩ (a−S)| is even, since 0 is not included in Q∩ (a−S) or N ∩ (a−S). Likewise,
|Q ∩ (a− S)| even implies that |N ∩ (a− S)| is odd. Therefore Ta(S) = 0.

Case 2. If |S| is even and a /∈ S then parity |Q ∩ (a− S)| =parity|N ∩ (a− S)|.
If |Q∩ (a− S)| is even then Ta(S) = 1 and if |Q∩ (a− S)| is odd then Ta(S) = −1.

Case 3. |S| is odd. We claim that (a − S)c = a − Sc. (Proof: Let s ∈ S and
s̄ ∈ Sc. Then a − s = a − s̄ =⇒ s = s̄, which is obviously a contradiction.
Therefore (a− S)∩ (a− Sc) = ∅, so (a− S)c ⊇ (a− Sc). Replace S by Sc to prove
the claim.) Also note that

Q ∩ (a− S) tQ ∩ (a− Sc) = GF (p) ∩Q = Q

has |Q| = p−1
2 elements (t denotes disjoint union). So

parity |Q ∩ (a− S)| = parity |Q ∩ (a− Sc)|
if and only if |Q| is even and

parity |Q ∩ (a− S)| 6= parity |Q ∩ (a− Sc)|
if and only if and only if |Q| is odd.

Conclusion.
|S| even: Ta(S) =

∏

x∈a−S

(
x

p

)

|S| odd and p ≡ 3 (mod 4) : Ta(S) = −Ta(Sc)

|S| odd and p ≡ 1 (mod 4) : Ta(S) = Ta(Sc)

The relation between wt(c) and the character sum follows from this. For the remaining
part of the equation, use Lemma 4. ¤

Remark 2 It can be shown, using the coding-theoretic results above, that if p ≡ −1
(mod 8) then (for non-empty S) XS(GF (p)) contains at least

√
p + 1 points. This

also follows from Weil’s estimate, but since the proof is short, it is given below.
What part (c) of Proposition 1 gives is that If p ≡ −1 (mod 8) and |S| is odd

then XS(GF (p)) contains at least
√

p + 2 points. If |S| is even then perform the
substitution x = a + 1/x, y = y/x|S| on the equation y2 = fS(x). This creates a
hyperelliptic curve X in (x, y) for which |X(GF (p))| = |XS(GF (p))| and X ∼= XS′ ,
where |S′| = |S| − 1 is odd. Now apply part (c) of the above proposition and Remark
1 to XS′ . ¤
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As a consequence of this Proposition and Lemma 3, we have the following result.

Corollary 1 If p ≡ 3 (mod 4) then maxS |XS(GF (p))| > 5
3p− 4.

Example 2 The following examples were computed with the help of SAGE.
If p = 11 and S = {1, 2, 3, 4} then

(rS(x)rN (x), rS(x)rQ(x))
= (x10 + x9 + x7 + x6 + x5 + x4 + x2 + 1, x10 + x9 + x7 + x6 + x5 + x3 + x + 1),

corresponds to the codeword (1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1) of
weight 16. An explicit computation shows that the character sum

∑
a∈GF (11) χ(fS(a))

is −5, as expected.
If p = 11 and S = {1, 2, 3} then

(rS(x)rN (x), rS(x)rQ(x)) = (x9+x7+x5+x4+x3+x2+x, x10+x8+x6+x3+x2+x+1).

corresponds to the codeword (0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1) of
weight 14. An explicit computation shows that the character sum

∑
a∈GF (11) χ(fSc(a))

is 3, as predicted.

Recall B(c, p) is the statement: |XS(GF (p))| ≤ c · p for all S ⊂ GF (p).

Theorem 1 (Bazzi-Mitter) Fix c ∈ (0, 2). If B(c, p) holds for infinitely many p with
p ≡ 1 (mod 4) then there exists an infinitely family of binary codes with asymptotic
rate R = 1/2 and relative distance δ ≥ 1− c

2 .

This is an easy consequence of the above results and is essentially in [BM] (though
they assume p ≡ 3 (mod 8)).

Theorem 2 If the B(1.77, p) is true for infinitely many primes p with p ≡ 1 (mod 4)
then Goppa’s conjecture is false.

Proof: Recall Goppa’s conjecture is that the binary asymptotic Gilbert-Varshamov
bound is best possible for any family of binary codes. The asymptotic GV bound states
that the rate R is greater than or equal to 1−H(δ), where

H(δ) = δ − δ log2(δ)− (1− δ) log2(1− δ)

is the entropy function (for a binary channel). Therefore, according to Goppa’s conjec-
ture, if R = 1

2 then the best possible δ is δ0 = .11. Assume p ≡ 1 (mod 4). Goppa’s
conjecture implies that the minimum distance of our QQR code with rate R = 1

2 satis-
fies d < δ0 · 2p = .22p, for sufficiently large p. Recall that the weight of a codeword
cS in this QQR code is given by Lemma 4, for S ⊂ GF (p). B(1.77, p) (with p ≡ 1
(mod 4)) implies (for all S ⊂ GF (p)) wt(cS) ≥ 2p − |XS(GF (p))| ≥ 0.23p. In
other words, for p ≡ 1 (mod 4), all nonzero codewords have weight at least 0.23p.
This contradicts the estimate above.¤

Using the same argument and the first McEliese-Rumsey-Rodemich-Welsh bound
([HP], Theorem 2.10.6), we prove the following unconditional result.
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Theorem 3 For all sufficiently large primes p for which p ≡ 1 (mod 4), the statement
B(1.62, p) is false.

Proof: If a prime p satisfies B(1.62, p) then we shall call it “admissible.” We show
that the statement “B(1.62, p) holds for all sufficiently large primes p for which p ≡ 1
(mod 4)” contradicts the first asymptotic MRRW bound. Indeed, this MRRW bound
states that the rate R is less than or equal to h(δ) = H( 1

2 −
√

δ(1− δ)). This, and
the fact that R = 1

2 for our QQR codes (with p ≡ 1 (mod 4)), imply δ ≤ δ0 =
h−1(1/2) ∼= 0.187. Therefore, for all large p (admissible or not), d ≤ δ0 · 2p. On
the other hand, if p is admissible and |XS(GF (p))| ≤ c · p (where c = 1.62) then
by the above argument, d ≥ 2 · (p − c

2p). Together, we obtain 1 − c
2 ≤ δ0, so

c ≥ 2 · (1− h−1(1/2)) ∼= 1.626. This is a contradiction. ¤

Corollary 2 There is a constant p0 (ineffectively computable) having the following
property: if p > p0 then there is a subset S ⊂ GF (p) for which the bound |XS(GF (p))| >
1.62p holds.

This is of course the same as the above theorem, except that we have used Corollary
1 to remove the hypothesis p ≡ 1 (mod 4).

3 Duursma zeta functions
In [D1] Iwan Duursma associates to a linear code C over GF (q) a zeta function Z =
ZC of the form

Z(T ) =
P (T )

(1− T )(1− qT )
,

where P (T ) is a “zeta polynomial” of degree n + 2− d− d⊥ which only depends on
C through its weight enumerator polynomial (here d is the minimum distance of C and
d⊥ is the minimum distance of its dual code C⊥). If γ = γ(C) = n + k + 1 − d and
ξC(T ) = ZC(T )T 1−γ then the functional equation in [D1] can be written in the form
ξC⊥(T ) = ξC(1/qT ). If we let ζC(s) = ξC(q−s) then it can be written

ζC⊥(s) = ζC(1− s).

In fact, if ρi denotes the i-th zero of Z(T ) then equation (4.1) of [D2] implies (for the
even weight codes we are considering here) the relation

d = 2−
∑

i

ρ−1
i .

Therefore, further knowledge of the zeros of Z(T ) could be very useful.
If C is self-dual (or actually only formally self-dual) then the zeros of the ζ-function

occur in pairs about the “critical line” Re(s) = 1
2 . Following Duursma, we say (for

formally self-dual codes C) the “normalized” zeta function ζC satisfies the Riemann
hypothesis if all its zeros occur on the “critical line”. (The conjecture is that, for all
extremal self-dual codes C, the ζ-function satisfies the Riemann hypothesis.)
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Example 3 If p = 7 then the [14, 7, 4] code CNQ has zeta polynomial

P (T ) =
2

143
+

4
143

T+
19
429

T 2+
28
429

T 3+
40
429

T 4+
56
429

T 5+
76
429

T 6+
32
143

T 7+
32
143

T 8.

Using SAGE, it can be checked that all the roots ρ of this polynomial have |ρ| = √
2.

It would be interesting to know if the Duursma zeta function Z(T ) of CNQ (for
p ≡ 3 (mod 4)) satisfies the Riemann hypothesis.

If p ≡ 1 (mod 4) then we conjecture that the code C ′ spanned by CNQ and
the all ones codeword (i.e., the smallest code containing CNQ and all its comple-
mentary codewords) is a formally self-dual code of dimension p. Moreover, we if
A = [A0, A1, ..., An] is the weight distribution vector of CNQ then we conjecture that
the weight distribution vector of C ′ is A+A∗, where A∗ = [An, ..., A1, A0]. However,
the Riemann hypothesis is not valid for these codes in general.

Example 4 If p = 13 then C ′ is a [26, 13, 6] code with weight distribution

[1, 0, 0, 0, 0, 0, 39, 0, 455, 0, 1196, 0, 2405, 0, 2405, 0, 1196, 0, 455, 0, 39, 0, 0, 0, 0, 0, 1]

and zeta polynomial

P (T ) = 3
17710 + 6

8855T + 611
336490T 2 + 9

2185T 3 + 3441
408595T 4 + 6448

408595T 5 + 44499
1634380T 6

+ 22539
520030T 7 + 66303

1040060T 8 + 22539
260015T 9 + 44499

408595T 10 + 51584
408595T 11

+ 55056
408595T 12 + 288

2185T 13 + 19552
168245T 14 + 768

8855T 15 + 384
8855T 16.

Using SAGE, it can be checked that only 8 of the 12 zeros of this function have absolute
value

√
2.

4 Long Quadratic Residue Codes
We now introduce a new code, constructed similarly to the QQR codes discussed
above:

C = {(rNrS , rQrS , rNr∗S , rQr∗S) | S ⊆ GF (p)}.
We call this a long quadratic residue code or LQR code for short.

For any S ⊆ GF (p), let

cS = (rNrS , rQrS , rNr∗S , rQr∗S)

and let

vS = (rNrS , rQrS , rNrS , rQrS).

Observe that this code is non-linear. If S1∆S2 denotes the symmetric difference be-
tween S1 and S2 then it is easy to check that
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cS1 + cS2 = vS1∆S2 . (4)

We now compute the size of C. We now prove the claim: if p ≡ 3 (mod 4) then the
map that sends S to the codeword (rNrS , rQrS , rNr∗S , rQr∗S) is injective. This implies
|C| = 2p. Suppose not, then there are two subsets S1, S2 ⊆ GF (p) that are mapped
to the same codeword. Subtracting, the subset T = S1∆S2 satisfies rQrT = rNrT =
rQrT c = rNrT c = 0. If |T | is even then 0 = (rQ + rN )rT = (rGF (p) − 1)rT = rT .
This forces T to be the empty set, so S1 = S2. Now if |T | is odd then similar reasoning
implies that T c is the empty set. Therefore, S1 = ∅ and S2 = GF (p) or vice versa.
This proves the claim.

In case p ≡ 1 (mod 4), claim: |C| = 2p−1. Again, suppose there are two subsets
S1, S2 ⊆ GF (p) that are mapped to the same codeword. Then the subset T = S1∆S2

for which rQrT = rNrT = rQrT c = rNrT c = 0. This implies either T = ∅ or
T = GF (p). Therefore, either S1 = S2 or S1 = Sc

2.
Combining this discussion with Lemma 4, we have proven the following result.

Theorem 4 The code C has length n = 4p and has size M = 2p−1 if p ≡ 1 (mod 4),
and size M = 2p if p ≡ 3 (mod 4). If p ≡ 3 (mod 4) then the minimum non-zero
weight is 2p and the minimum distance is at least

dp = 4p− 2 max
S⊂GF (p)

|XS(GF (p))|.

If p ≡ 1 (mod 4) then C is a binary [4p, p− 1, dp]-code.

Remark 3 If p ≡ 3 (mod 4), there is no simple reason I can think of why the minimum
distance should actually be less than the minimum non-zero weight.

Lemma 6 If p ≡ 1 (mod 4) then

• vS = cS ,

• cS1 + cS2 = cS1∆S2 ,

• the code C is isomorphic to the QQR code CNQ.

In particular, C is linear, dimension p− 1, and self-orthogonal (by Lemma 2).
Proof: We shall show later (see the proof of Theorem 4) that if p ≡ 1 (mod 4)

then rNrS1 = rNrS2 and rQrS1 = rQrS2 if and only if S2 = Sc
1. The lemma follows

rather easily as a consquence of this and (4). ¤
Assume p ≡ 3 (mod 4). Let

V = {vS | S ⊂ GF (p)}
and let

C = C ∪ V.

Lemma 7 The code C is

11



• the smallest linear subcode of F4p containing C,

• dimension p + 1,

• minimum distance min(dp, 2p)

• self-orthogonal.

By abuse of terminology, we call C an LQR code.
Proof: The first part follows from (4). The second part follows from a counting

argument (as in the proof of Theorem 4 below). The third part is a corollary of Theorem
4 below. The fourth part follows easily from Lemma 1. ¤

We know that

wt(rNrS , rQrS) =





p−∑
a∈GF (p)

(
fS(a)

p

)
, |S| even (any p),

p−∑
a∈GF (p)

(
fSc (a)

p

)
, |S| odd and p ≡ 1 (mod 4),

p +
∑

a∈GF (p)

(
fSc (a)

p

)
, |S| odd and p ≡ 3 (mod 4),

by Proposition 1.

Lemma 8 For each p, the codeword cS = (rNrS , rQrS , rNr∗S , rQr∗S) of C has weight

wt(cS) =

{
2p− 2

∑
a∈GF (p)

(
fS(a)

p

)
, p ≡ 1 (mod 4),

2p, p ≡ 3 (mod 4).

In other words, if p ≡ 3 (mod 4) then C is a constant weight code.
Proof: Indeed, Proposition 1 implies if p ≡ 1 (mod 4) then

wt (rNrS , rQrS , rNr∗S , rQr∗S) = wt (rNrS , rQrS) + wt (rNr∗S , rQr∗S)
= 2 · wt (rNrS , rQrS)
= 2p− 2

∑
a∈GF (p)

(
fS(a)

p

)
,

(5)

if p ≡ 3 (mod 4) and |S| is even then

wt (rNrS , rQrS , rNr∗S , rQr∗S) = wt (rNrS , rQrS) + wt (rNr∗S , rQr∗S)
= p−∑

a∈GF (p)

(
fS(a)

p

)
+ p +

∑
a∈GF (p)

(
fS(a)

p

)

= 2p,
(6)

and if p ≡ 3 (mod 4) and |S| is odd then

wt (rNrS , rQrS , rNr∗S , rQr∗S) = wt (rNrS , rQrS) + wt (rNr∗S , rQr∗S)
= p +

∑
a∈GF (p)

(
fS(a)

p

)
+ p−∑

a∈GF (p)

(
fS(a)

p

)

= 2p.
(7)

¤
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Example 5 The following examples were computed with the help of SAGE. When p =
11 and S = {1, 2, 3, 4}
“

rN rS, rQrS, rN r
∗
S, rQr

∗
S

”
= (x

9+x
7+x

5+x
4+x

3+x
2+x, x

10+x
8+x

6+x
3+x

2+x+1, x
10+x

8+x
6+1, x

9+x
7+x

5+x
4)

corresponds to the codeword

(0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0)

of weight 22. When p = 11 and S = {1, 2, 3}
“

rN rS, rQrS, rN r
∗
S, rQr

∗
S

”
= (x

10+x
9+x

7+x
6+x

5+x
4+x

2+1, x
10+x

9+x
7+x

6+x
5+x

3+x+1, x
8+x

3+x, x
8+x

4+x
2)

corresponds to the codeword

(1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0)

of weight 22.

Lemma 7 allows us to remove the condition p ≡ 1 (mod 4) in one of the results in
§2. The next subsection is devoted to this goal.

4.1 Goppa’s conjecture revisited
We shall now remove the condition p ≡ 1 (mod 4) in one of the results in §2, at a cost
of weakening the constants involved.

Assuming B(c, p) holds, we have that the minimum distance of C is≥ min(dp, 2p) ≥
4p(1− c

2 ) and the information rate is R = 1
4 + 1

4p . When R = 1/4, Goppa’s conjecture
gives δ = 0.214.... So Goppa’s conjecture will be false if 1− c

2 = 0.215, or c = 1.57.
We have the following improvement of Theorem 2.

Theorem 5 If the B(1.57, p) is true for infinitely many primes p then Goppa’s conjec-
ture is false.

5 Some results of Voloch
Lemma 9 (Voloch) If p ≡ 1, 3 (mod 8) then |XQ(GF (p))| = 1.5p + a, where Q is
the set of quadratic residues and a is a small constant, − 1

2 ≤ a ≤ 5
2 .

A similar bound holds if XQ is replaced by XN and p ≡ 1, 3 (mod 8) is replaced
by p ≡ 7 (mod 8) (in which case 2 is a quadratic residue).

Proof: By Lemma 4, we know that if p ≡ 3 (mod 8) (so |Q| is odd):
∑

a∈GF (p)

χ(fQ(a)) = −p− 1 + |XQ(GF (p))|.

13



Similarly, if p ≡ 1 (mod 8) (so |Q| is even):
∑

a∈GF (p)

χ(fQ(a)) = −p− 2 + |XQ(GF (p))|.

Since b
p−1
2 ≡ χ(b) (mod p), we have

x
p−1
2 − 1 =

∏

a∈Q

(x− a) = fQ(x), x
p−1
2 + 1 =

∏

a∈N

(x− a).

In particular, for all n ∈ N ,

fQ(n) =
∏

a∈Q

(n− a) = n
p−1
2 − 1 ≡ −2 (mod p).

Since p ≡ 1, 3 (mod 8), we have χ(−2) = 1, so χ(fQ(n)) = 1 for all n ∈ N . It fol-
lows that |XQ(GF (p))| = 3

2p+χ(fQ(0))+ 1
2 (if p ≡ 3 (mod 8)) or |XQ(GF (p))| =

3
2p + χ(fQ(0)) + 3

2 (if p ≡ 1 (mod 8)). ¤

Here is an extension of the idea in the above proof. Fix an integer ` > 2. Assuming
` divides p − 1, there are distinct `-th roots r1 = 1, r2, ..., r` in GF (p) for which
xp−1 − 1 =

∏`
i=1(x

p−1
` − ri). Also, x

p−1
` − 1 =

∏
a∈P`

(x− a) = fP`
(x), where P`

denotes the set of non-zero `-th powers in GF (p).
Claim: It is possible to find an infinite sequence of primes p satisfying p ≡ 1

(mod `) and χ(ri− 1) = 1, for all 2 ≤ i ≤ ` (where χ denotes the Legendre character
mod p). If the claim is true then we will have a lower bound for |XP`

(GF (p))| on the
order of (2 − 1

` )p, along the lines above, by Lemma 4. Proof of claim: It’s a well-
known fact in algebraic number theory that p ≡ 1 (mod `) implies the prime p splits
completely in the cyclotomic fieldQ` generated by the `-th roots of unity inC, denoted
r̃1 = 1, r̃2, ..., r̃`. The condition χ(ri−1) = 1 means that p splits in the extension ofQ`

obtained by adjoining
√

r̃i − 1 (here i = 2, ..., `). By Chebotarev’s density theorem
there exists infinitely many such p, as claimed. In fact, there are effective versions
which give explicit information on computing such p [LO], [Se].

This, together with the previous lemma, proves the following result.

Theorem 6 (Voloch) If ` ≥ 2 is any fixed integer then there exist primes p and subsets
S ⊂ GF (p) for which |XS(GF (p))| = (2 − 1

` )p + a, where a is a small constant,
− 1

2 ≤ a ≤ 5
2 .

Acknowledgements: I thank Prof. Amin Shokrollahi of the Ecole Polytechnique
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