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Abstract

A commutative ring A with 1 is associate provided whenever two
elements ¢ and b generate the same principal ideal there is a unit «
such that wa = b. The main results proved here are:

e Every commutative Noetherian ring with 1 is a subdirect product
of rings which have the property that all their unital subrings are
associate.

*The research of these authors was partially funded by the Naval Academy Research
Council.



e Every commutative ring embeds into an associate ring.

e Every commutative unital algebraically closed or principal ideal
ring is associate.

e The direct sum of associate rings is associate.

One novel feature here is that we prove these results using model
theory. For comparison and completeness, the main result is also
sketched using a localization argument.

1 Ring Theoretic Preliminaries

A ring here shall always have an associative multiplication together with a
multiplicative identity 1 # 0. Subrings are required to contain the identity 1
of the over ring in question and ring homomorphisms are required to respect
unities. The unrestricted direct sum of an indexed family { A; };¢s of rings
is the set of all choice functions

P A= {a|a:]—>UAi with a(i) € A;, for alliel} (1)

el el

with operations defined componentwise. When we refer to the direct sum of
rings, we shall always mean the unrestricted direct sum given in (1), especially
in the case where I is infinite. Following McCoy [Mc] a subring A of @, A;
is a subdirect sum provided for each fixed ;7 € I, projection onto the j-th
coordinate remains an epimorphism with image A; when restricted to A.

If X is a nonempty class of rings closed under isomorphism, then we call
the ring A residually-X provided to every nonzero element a # 0 in A there
isaring B, € X and an epimorphism ¢, : A — B, which does not annihilate
a (see [C], page 101). An immediate consequence of the treatment in McCoy

(see [Mc|, Theorem 3.6, page 52) is

Lemma 1 Let X be a nonempty class of rings closed under isomorphism.
The ring A is residually-X if and only if A is embeddable as a subdirect sum
of an indexed family {A;}ier of rings such that A; € X for all i € 1.

It is easy to see that



Lemma 2 Let X be a nonempty class of rings closed under isomorphism.
The ring A is residually-X if and only if (VK = {0}, where the intersection
is taken over all two-sided ideals K such that AJK € X.

A ring A is called the direct union of a family F = {A,},ea of subrings
of A if and only if F satisfies the following two properties:

(i) For each a € A there is at least one o € A such that a € A,, and

(ii) Whenever «, 3 € A there is at least one v € A such that A, C A, and
As C A,

Note that (i) is equivalent to A = (J, ¢, Aa. We call A finitely gener-
ated provided that, as an associative Z-algebra with 1, it has at least one
finite set of generators. It is easy to see that every ring is the direct union of
its finitely generated subrings (see [G], Lemma 3, page 130). Furthermore, a
finitely generated commutative ring is a homomorphic image of a polynomial
ring Z[ Xy, ..., X,] (see [L], page 60) and so, as an immediate consequence
of the Hilbert Basis Theorem, must be Noetherian. It follows that every
commutative ring is the direct union of a family of Noetherian subrings.

Finally a commutative ring A is algebraically closed provided given
any commutative extension £/ O A it is the case that any finite system

pilXe, o X)) =0, i=1,...k (pi € A[Xy,..., X,], 1<i<k)

of equations which has a solution (Xi,...,X,) = (e1,...,€,) € E” must
already have a solution (X1,...,X,) = (a1,...,a,) € A" (see [H], page
47). It follows from Theorem 3.2.1 of Hodges (see [H], page 48), that every
commutative ring can be embedded in an algebraically closed commutative
ring.

2 Model Theoretic Preliminaries

Let Lpgn, be the first-order language whose only relation symbol is =, al-
ways to be interpreted as the identity relation, and whose only function and
constant symbols are: two binary operation symbols 4+ and -, a unary oper-
ations symbol —, and two constant symbols 0 and 1. (For a more complete
description of such a language see [BS] or [CK].) Observe that the axioms for
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a commutative ring can be formalized within Lg;,,. Recall that a sentence
of Lping 1s a formula of Lg;,, containing no free occurrences of any variable.
We define two increasing chains of sets of formulas of Lg;,, ,

Yo C ¥y and Il C II; C 11,

as follows.

A formula is in Il if and only if it is logically equivalent to a quantifier
free formula of Lgi,,. A formula is in ¥ if and only if it is in IIy. A formula
is in Il if either it is in Il or is logically equivalent to a formula of the form
Vzd(x), where Z is a tuple of variables and ¢(z) is in ¥g. A formula is in ¥
if either it is in ¥g or is logically equivalent to a formula of the form Jz¢(z),
where z is a tuple of variables and ¢(z) is in Ily. A formula is in Il if either
it is in II; or is logically equivalent to a formula of the form Vz¢(z), where z
is a tuple of variables and ¢(z) is in ¥;. A formula which is simultaneously
a Il,-formula and a sentence of Lg;,, 1s a 1I,,-sentence of Lg;,,. Similarly,
a formula which is simultaneously a ¥,-formula and a sentence of Lg;,, is a
Y,-sentence of Lgi,,.

A universal sentence is one of the form Vz¢(z), where z is a tuple
of variables and ¢(z) is a quantifier free formula of Lg;,,. An existential
sentence is one of the form 3z¢(z) with similar provisos. A universal-
existential sentence of Lg;,, is one of the form Vz3y¢(z,y) with similar
Provisos.

Allowing vacuous quantifications and regarding each of Vx¢ and Jz¢ as
logically equivalent to ¢ if the variable x does not occur in the formula ¢ , we
may assert that a sentence of Lg,, is II; if and only if it is logically equivalent
to a universal sentence of Lgj,,, a sentence of Lgi,, is 2 if and only if it is
logically equivalent to an existential sentence of Lgi,,, and that a sentence
of Lping 1s Il if and only if it is logically equivalent to a universal-existential
sentence of Lpj,.

A set T of sentences of a language is called a theory in the language.
Henceforth we tacitly assume all sets of sentences of Lg;,, under consider-
ation contain the ring axioms. A model of a theory 7" of L,;,, is a ring
satisfying all the sentences of T' (see [H], page 9). Let T' be a theory of Lgin,.
T is said to be inconsistent if at least one contradiction, i.e., a formula
of the form YA ~ @, is a formal consequence of T' ; otherwise, T is said to
be consistent. The Godel-Henkin Completeness Theorem asserts that T is



consistent if and only if 7" has a model (see [BS], page 102, or [CK]). In the
event that 7" is a consistent theory in Lp;,, containing the ring axioms, we
may form the model class M(7') consisting of all rings satisfying all of the
sentences T" and be assured that M(7') is not empty. It will be convenient for
us to summarize here some of the preservation theorems of classical model

theory. (See [CK] and [G]).
Lemma 3 Lel T be a consistent sel of senlences of Lpn,. Then

1. M(T) is closed under the formation of subrings if and only if there is
a consistent set S of Ily-sentences of Lping such that M(T) = M(S).

2. M(T) is closed under the formation of extensions if and only if there is
a consistent set S of ¥y -sentences of Lpin, such that M(T) = M(S). !

3. M(T) is closed under the formation of direct unions if and only if there
is a consistent set S of lly-sentences of Lpin, such that M(T') = M(S).

Lemma 3 may be paraphrased by asserting that a model class is closed
under

1. Subrings if and only if it has a set of universal axioms;
2. Extensions if and only if it has a set of existential axioms;

3. Direct unions if and only if it has a set of universal-existential axioms.

Recall that II; C Il; (or that universal sentences are considered degenerate
cases of universal-existential sentences). We see that every class axiomatized
by a consistent set of Ilj-sentences (or universal sentences, if one prefers) of
LRing 1s closed under the formation of direct unions.

Given a consistent theory 7' in Lp;,, we let Ty be the set of all II;-
sentences of Lpi,, which are formal consequences of T'. Ty is surely consistent
since every model A of T' must also be a model of Ty. Furthermore, M(7y) is
closed under the formation of subrings since it has a set of Ily-axioms. Thus,
every subring of a model of 7" is a model of Ty. The converse is Corollary
3.1.2. of Hodges (see [H], page 37), which we here record as a lemma.

1This is to be interpreted in the present context as asserting that other than the ring
axioms the remaining sentences in S (if any) are all in X;. Moreover by extensions, of
course, we mean ring extensions. (One direction of this requires Corollary 4, page 273, of

[G].)



Lemma 4 : IfT is a consistent set of sentences of Lpin, then M(Ty) consists
of precisely the subrings of models of T'.

3 Associate and Superassociate Rings

Definition 5 Let A be a commulalive ring with identity. A is associate
provided whenever a,b € A and Aa = Ab there is a unit u € A such that
ua = b. The associale ring A is superassociate provided every subring of
A is associate.

Remark 1 (A) We will give an example of an associate ring which is not
superassociale.

(B) FEvery integral domain is superassociate.

(C) FErxercises requesting the construction of nonassociate rings have ap-
peared earlier in the literature as have explicit constructions of nonas-

sociate rings. (See [A], [B], [F] and [K].)
The following fact is easy to prove

Theorem 6 Let A= (D, ; A; (unrestricted direct sum). Then A is associate
if and only if A; is associate for all 1 € I.

Proof: If Aa = Ab for some a and b € A, then for each 1 € I, Aja; =
(Aa)l; = (Ab)1; = Ab; implying that there is a unit w; € A; such that
a; = u;b;. Taking u(i) = u; for all © € I gives us a unit v € A with a = ub.
Hence A is associate.

The other direction is similar and omitted. O

Thus, the class of associate rings is closed under the formation of unre-
stricted direct sums. A straightforward argument (which we omit) establishes

Theorem 7 The class of associate rings is closed under the formation of
direct limits.

(Here by a direct limit we can take the direct union of a family of rings -
see p. 130 of [G]. However, the theorem is true more generally even in cases
where the direct limit is not the direct union.)
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Lemma 8 The class of associate rings is not closed under the formation of
subrings, subdirect sums, or homomorphic images.

Remark 2 The erroneous assertion that all commutative rings are associate
appears in the literature (see [CF], page 118).

Proof: Consider the rings Ry = Z[X,Y] and R = Z[X,Y]/(X — XY?).
Clearly, Ry is associate. We will show its homomorphic image R is not
associate. We will also embed R as a subdirect sum in the associate ring
ZY| D Z[X] D Z[X].

Letting x and y be the images of the indeterminates X and Y respectively
under the canonic epimorphism Ry — R , it is not difficult to show that every
element of R is uniquely of the form zp(x) + ¢(y) + zyr(z) where p,q and r
are integral polynomials in a single indeterminate.

If R were associate then, since x R = xy R, there would exist a unit u € R
satisfying xy = ux. This implies that there exist polynomials F,G, U,V € R,y
such that

UX,Y)V(X,Y) = 1+(X=XY)F(X,Y), U(X,Y)X = XY+(X-XY)G(X,Y),

where UU maps to u under the map Ry — R and V maps to u~!. These imply
UX,Y)—=Y = (1 -YH)GE(X,Y). Let U(Y) denote the image of U(X,Y)
under the canonical map Ry — Ro/X Ry = Z[Y]. Similarly for V(Y), G(Y).
The above equations imply

TYV(Y)=1, TY)-Y=(1-YY)GEY).

The first equation implies U(Y) = 1. If U(Y) = 1 then the second equation
implies 1 = (1 + Y)G(Y), a contradiction. If U(Y) = —1 then the second
equation implies —1 = (1 — Y)G(Y), a contradiction. These contraditions
imply R is not associate.

There are canonical epimorphisms

o RO — Ro/XRO = Z[Y]

B:Ry— Ro/(1 =Y)Ry = Z[X]
v: Ro— Ro/(1 +Y)Ry = Z[X].



Letting f = a & [ & v we get a homomorphism
f: Ry — ZY|® Z[X] & Z[X].

If a € Rg lies in the kernel of f then a is a multiple of X, of 1 — Y, and
of 1 +Y. Since Ry is a unique factorization domain ([ZS], vol I, page 32),
it follows that a is a multiple of X — XY?2. This implies that f induces an
injection

¢: R— ZY| 8 Z[X]|® Z[X].

Thus R embeds into the direct sum Z[Y] & Z[X] & Z[X] of integral
domains. In fact ¢ embeds R as a subdirect sum. To see that consider
Pz -0+ q(y) +zy-0) = (q(Y), q(1),q(—1)). Now let h(X) = h(0) + Xg(X)
be arbitrary.

¢(zg(x) + 1(0) + 2y - 0) = (h(0), h(X), h(X)).

Since ¢(Y) € Z[Y] and h(X) € Z[X] are arbitrary, the image of R is, as
claimed, a subdirect sum in Z[Y] & Z[X] & Z[X]. (Alternatively, a simple
argument shows that R contains no nonzero nilpotent elements; hence, R is
a subdirect sum of integral domains.)

Thus, although direct sums of integral domains are associate, they need
not be superassociate. O

Definition 9 A commutative ring A will be called domainlike provided ev-
ery zero divisor is nilpotent.

Note that every integral domain is domainlike.
Lemma 10 Fvery domainlike ring is superassociale.

Proof: Assume A is domainlike. Let B be a subring of A and assume
a,b € B generate the same principal ideal in B. If Ba = 0 = Bb , then
a=b=0and 1-a =0>0. Assume Ba = Bb is a nonzero ideal in B. Then
a # 0 and b # 0. Now there are elements u,v € B such that ua = b (since
b € Ba) and vb = a (since a € Bb). Then uvb = b and (uv — 1)b = 0. But
b # 0 so uv—1is a zero divisor. Since A is domainlike r = uv — 1 is nilpotent
so there is an integer n > 0 such that r* = 0. But then it is well-known that
l+risaunit (14+7r)"' =1—r+ ..+ (—r)""") and so, since uv = 1 + r,
each of u and v individually is a unit as well. O
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Remark 3 There are superassociate rings which are not domainlike. For
example, let R be a unital Boolean ring with more than 2 elements. A partial
order on R is well-defined by a < b provided ab = a. Thus, a € (b) implies
a <bandb € (a) implies b < a, whence a = b. Thus R is superassociate.
If a #0,1 then a(1 —a) = 0, so a is a zero divisor which is not nilpotent.
Thus R is not domainlike.

Theorem 11 FKvery Noetherian commutative ring with identily is residually
superassociate.

Proof: From the Noether-Lasker Primary Decomposition Theorem (see
[L.], Theorem 4, page 154), it follows that in any Noetherian commutative
ring A, (0) has a primary decomposition, i.e., the trivial ideal is a finite
intersection of primary ideals,

(0) =@

=1

Qi being primary (see [L] p.152) means that A/Q; is domainlike and hence
is superassociate by Lemma 10. This is sufficient, according to Lemma 2, for
A to be residually superassociate. O

We next observe that the class of associate rings is the model class M(T")
of a set T' of sentences of Lgj,,. T' may be taken to be the commutative ring
axioms together with the single additional axiom

VfL’lv{L’valvaHZlaZg(((yl.’lfl = l’g)/\(ygflfg = l’l)) — ((le’l = CL’Q)/\(ZQ.’L’Q = Jfl)/\(ZlZQ = 1)))
In particular, we prove

Lemma 12 Any universal sentence (1l;-sentence) of Lpin, lrue in every as-
soctale ring is true in any commutative ring. In other words, every commu-
tative ring is a model of Ty.

Proof: Let ¢ be any universal sentence of Lg;,, true in every associate
ring. A commutative ring A is the direct union of its finitely generated sub-
rings. Since universal sentences are preserved by direct unions (see Lemma
3 (3) and subsequent discussion), it will suffice to show that ¢ is true in
every finitely generated subring of A in order to deduce that ¢ holds in A.



But a finitely generated subring A of A is Noetherian. By Theorem 6 and
Lemma 1, such a ring Ag 1s embeddable into an unrestricted direct sum B of
an indexed family {B; };er of associate rings. By Theorem 6, B is associate.
Thus, ¢ is true in B. Since universal sentences hold in subrings whenever
they hold in an extension, ¢ must be true in Ag. Since Ay was an arbitrary
finitely generated subring of A and since A is the direct union of such, ¢
must be true in A. Since A was an arbitrary commutative ring and since ¢
was an arbitrary universal sentence of Lg;,, true in every associate ring we
must have that every commutative ring is a model of Ty. O
By Lemmas 4 and 12, we have therefore proven

Theorem 13 FKvery commutative ring is embeddable in an associate ring.

Corollary 14 Fvery algebraically closed commutative ring with 1 is asso-
ciale.

Proof: Let A be an algebraically closed commutative ring. By Theorem
13 there is an associate ring B into which A embeds. Suppose a,b € A are
such that Aa = Ab. Then there are elements ¢,d € A such that ca = b and
db = a. But then Ba = Bb and since B is associate the system of equations

ra=1>b
yb=a (2)
xy =1

has a solution in B. Since A is algebraically closed in the class of commutative
rings, (2) must have a solution in A. Thus, there is a unit u of A such that
ua = b. Hence, A is associate. O

Let R be a commutative ring with identity. What conditions on R insure
that whenever a,b € R generate the same ideal, a R = bR, then there is a
unit u € R such that ¢ = ub? This condition is true if R is either an integral
domain (as is well-known) or if R is (as is less well-known) a unital principal
ideal ring.

Theorem 15 A principal ideal ring with identity is associate.

The theorem is proven in [B], page 194. For completeness, we provide a

brief sketch.
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By Theorem 33 of [ZS], a principal ideal ring is a direct sum of principal
ideal domains and “special principal ideal rings” (see [ZS], page 245). It can
be shown without too much trouble using a result on page 245 of [ZS] that
a special principal ideal ring is an associate ring. We conclude from this and
Theorem 6 that a principal ideal ring with 1 is associate.

4 A Purely Algebraic Proof and an Open Ques-
tion

This section sketches a second proof of our main result Theorem 13. It
uses standard ring-theoretical arguments involving localization, rather than
the model-theoretic proof above using the interplay between logic and ring
theory. We thank an anonymous referee for this sketch.

We make four observations from which Theorem 13 follows. Let R denote
a unital commutative ring.

1. In a commutative ring, any ideal embeds in a maximal ideal.
This is a trivial consequence of Zorn’s lemma.

2. Localization of R at a maximal ideal M (or any prime ideal) gives a
local ring Ras.
See [L], (iii), page 69.

3. If M is a maximal ideal containing the annihilator of a, then a does
not map to zero under the canonical map R — Ryy.

This follows from Proposition 2.1 in [E].

4. If R is a local ring then R is associate.

Let R be alocal ring, M the maximal ideal of R, and let a,b € R satisfy
aR =0bR. If a = bx and b = ay, for some z,y € R, then a(1 — 2y) = 0.
If 1 — 2y ¢ M then it must be invertible,so a =b=0. If | —zy € M
then x and y must be units.

For each nonzero a € R, let M, denote a maximal ideal of R containing
the annihilator of @ and let R, denote the localization of R at M,. As was
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observed above, the image of a under the canonical map R — R, is nonzero.
This implies that the map

R < @ R, (3)

is an injection.

Now each R, is associate. Thus by Theorem 6, @aGR—{O} R, is associate.
So from (3) we conclude our result, Theorem 13.

We now end our paper with the following question which to the best of
our knowledge remains open:

Question: If A is an associate ring and X is an indeterminate over A, is
the polynomial ring A[X] still an associate ring?

Acknowledgement: We thank Chuck Hanna for helpful comments which
improved the presentation.
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