
Riemann-Roch space representations from
bad hyperelliptic curves: questions and computations1

5-27-2005, D. Joyner2

Much of this is joint work with Amy Ksir, the rest is “in progress”.

1 Motivation

Let F = C temporarily and let X be a non-singular projective curve of
genus > 1 with automorphism group G. This group acts on the vector space
of differentials on X and, more generally, on the Riemann-Roch space of a
G-equivariant divisor D.

Question: What are these representations? Can we compute their char-
acter? Their multiplicities?

For the group action on the differentials, the trace of an individual element
can be computed using the Eichler trace formula. For more general character
computations, we use the Borne character formula.

1.1 Borne’s formula

For any point P ∈ X(k), let GP be the decomposition group at P (i.e. the
subgroup of G fixing P ). Since char k is zero, the quotient π : X → Y = X/G
is tamely ramified, and this group GP is cyclic. GP acts on the cotangent
space of X(k) at P by a k-character. This character is the ramification
character of X at P .

The ramification module is defined by

ΓG =
∑

P∈X(k)ram

IndG
GP

(

eP−1∑

`=1

`ψ`
P ),
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where eP is the size of the inertia group, and ψP is the ramification character
at P . By a result of Nakajima, there is a unique G-module Γ̃G such that

ΓG = |G|Γ̃G.

We abuse terminology and also call Γ̃G the ramification module.
Now consider a G-equivariant divisor D on X(k). If D = 1

eP

∑
g∈G g(P )

then we call D a reduced orbit. The reduced orbits generate the group of
G-equivariant divisors Div(X)G.

Definition 1 The equivariant degree is a map from Div(X)G to the
Grothendieck group Rk(G) = Z[G∗k] of virtual k-characters of G,

degeq : Div(X)G → R(G),

defined by the following conditions:

1. degeq is additive on G-equivariant divisors of disjoint support,

2. If D = r 1
eP

∑
g∈G g(P ) is an orbit then

degeq(D) =





IndG
GP

(
∑r

`=1 ψ
−`), if r > 0,

−IndG
GP

(
∑−(r+1)

`=0 ψ`), if r < 0,
0, r = 0,

where ψ = ψP is the ramification character of X at P .

Note: In general, this is not additive (except on those divisors which are
pull-backs via π).

If D = π∗(D0) is the pull-back of a divisor D0 ∈ Div(Y ) then degeq(D)
has a very simple form. In this case, r is a multiple of eP , so the equivariant
degree on each orbit is r/eP times IndG

GP
of the regular representation of GP .

In this case, we have

degeq(D) = deg(D0)[k[G]], (1.1)

We recall the following formula of Neils Borne [Bo].

Lemma 2 (Borne’s formula) If D is a G-equivariant nonspecial divisor,
then the (virtual) character of L(D) is given by
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[L(D)] = (1− gY )[k[G]] + [degeq(D)]− [Γ̃G], (1.2)

where Y is the quotient of X by G, gY is its genus, degeq(D) is the equivariant

degree of D, and Γ̃G is the ramification module.

1.2 A multiplicity formula

For each conjugacy class γi ∈ G∗, pick a cyclic subgroup Hi generated by a
g ∈ γi.

Let ρ denote an irreducible representation of G, let H be a cyclic sub-
group, and denote by nρ,j = nρ,j(H) ≥ 0 the integers defined by

ResH(ρ) =

|H|∑
j=1

nρ,jψ
j, (1.3)

where ψ is a primitive character of H. Note that nρ,j = nρ,j+|H| and

|H|∑
j=1

nρ,j = dim(ρ). (1.4)

Recall thatDiv(X)G is generated by orbits r
∑

g∈G/GP
g(P ). If supp(D) =

∪s
i=1{g(Pi) | g ∈ G/GPi

}, is a disjoint union then we write supp(D)/G =
{Pi | 1 ≤ i ≤ s}. In this case, we may write D uniquely as

D =
∑

P∈supp(D)/G

rP

∑

g∈G/GP

g(P ),

for some rP ∈ Z.
Let L(D)ρ denote the ρ-isotypical component of L(D)
Another consequence of Borne’s formula is the following formula.

Theorem 3 ([JK1]) Let F = C, G ⊂ Aut(X), and let D be a G-equivariant
nonspecial divisor. Assume all the irreducible characters of G are rational-
valued. The multiplicity of an irreducible representation ρ of G in L(D) is
given by

dim(L(D)ρ) = dim(ρ)(1−g(XG))+
∑

P∈supp(D)/G

TP,ρ−
∑

`

(dim(ρ)−dim(ρH`))
R`

2
,

(1.5)
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where

TP,ρ =

{ ∑rP

`=1 nρ,`(GP ) =
∑rP

`=1〈ψ`
P ,ResG

H`
ρ〉, rP > 0,

−∑−(rP +1)
`=0 nρ,−`(GP ) =

∑−(rP +1)
`=1 〈ψ−`

P ,ResG
H`
ρ〉, rP < 0,

ρH` denotes the restriction of ρ to H`, R` = R(H`) is the number of branch
points with decomposition group conjugate to H`, and ρ1, ...., ρk denote a
complete set of irreducible Q[G]-modules (=irreducible C[G]-modules).

This theorem is false without the rationality criteria (“... all the ir-
reducible characters of G are rational-valued”). Indeed, the paper [JK2]
computes explicitly the G-equivariant Riemann-Roch spaces for the modu-
lar curves X(N), as PSL(2,Z/NZ)-modules where N > 5 is a prime. Even
though none of these groups PSL(2,Z/NZ) have rational characters, in some
cases the above multiplicity formula still holds since the “irrational represen-
tations” don’t occur in the decomposition. In other cases, the multiplicity
formula does not hold!

2 Bad curves over finite fields

In general, if C is a curve defined over a field F with finite automorphism
group G = AutF (C) then we call G large if |G| > |C(F )|. Obviously F must
be finite or else C has only finitely many F -rational points.

Lemma 4 If G is large then every point of C(F ) is ramified for the covering
C → C/G.

Proof: Suppose P ∈ C(F ) is not ramified, so the stabilizer of P , GP , is
trivial. In this case, |G · P | = |G|/|GP | = |G|. But G · P ⊂ C(F ) so
|G · P | ≤ |C(F )|, a contradiction. ¤

A curve C satisfying this lemma will be called bad over F .

Open problem: Find multiplicity formulas for bad curves.
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3 A bad hyperelliptic curve

Let p ≥ 3 be a prime, F = GF (p), and let X denote the curve defined by

y2 = xp − x.

This has genus p−1
2

and p + 1 F -rational points3. The automorphism group

G = AutF (X) is a central 2-fold cover of G = PSL(2, p), we have a short
exact sequence,

1 → Z → G→ G→ 1, (3.1)

where Z denotes the center of G (Z is generated by the hyperelliptic involu-
tion). We have G ∼= SL(2, p), in general4. The following transformations are
elements of G:

γ1 =

{
x 7−→ x,
y 7−→ −y, , γ2 = γ2(a) =

{
x 7−→ a2x,
y 7−→ ay,

γ3 =

{
x 7−→ x+ 1,
y 7−→ y,

, γ4 =

{
x 7−→ −1/x,

y 7−→ y/x
p+1
2 ,

(3.2)

where a ∈ F× is a primitive (p− 1)st root of unity and Z = 〈γ1〉. This group
acts transitively on X(F ), so it has an orbit of size |X(F )| = p+ 1.

Let P1 = (1 : 0 : 1) and let H be its stabilizer in G. A counting argument
shows that H is a solvable group of order 2p(p − 1) generated by γ1, γ2(a)
and γ3.

Example 5 It is known (Proposition VI.4.1, [St]) that, for each m ≥ 1, the
Riemann-Roch space of D = mP1 has a basis consisting of monomials,

xiyj, 0 ≤ i ≤ p− 1, j ≥ 0, 2i+ pj ≤ m.

Observation The semisimplification ρss of the representation ρ of H
acting on L(D) is the direct sum of one-dimensional representations of H.

3In the weighted projective model (X, Y, Z) (x = X/Z, y = Y/Zg+1) with weights 1,
g + 1 = p+1

2 , and 1, in which the point at infinity is nonsingular: Y 2 = XpZ − XZp.
Indeed, say P ∈ X(F ) is not the point at infinity, so P = (x, y), for some x, y ∈ F . By
Fermat’s Little Theorem, xp − x = 0, so y = 0. There are p such points.

4When p ≡ −1 (mod 4) one can check γ2
4 = γ1, which implies that G 6∼= G0×Z. When

p ≡ 1 (mod 4) one can check γ
p−1
2

2 = γ1, which also implies G is not the direct product.
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Indeed, the generator γ1 acts trivially on the basis of L(D), and the other
generators act by

γ2(a) :




1
x
...

xrys


 7−→




1
a2x
...

a2r+sxrys


 =




1 0 ... 0

0 a2 ...
...

...
. . . 0

0 ... 0 a2r+s







1
x
...

xrys


 ,

and

γ3 :




1
x
...

xrys


 7−→




1
x+ 1

...
(x+ 1)rys


 =




1 0 ... 0

1 1 ...
...

...
. . . 0

0 ... r 1







1
x
...

xrys


 ,

where the non-zero terms in bottom row of the matrix representation of γ3 are
in the last r+1 row entries and consist of the binomial coefficients r!

(r−j)!j!
, 0 ≤

j ≤ r. Therefore, the group generated by these matrices is lower-triangular,
hence solvable. ¤

Note every point in

X(F ) = {(1 : 0 : 0), (0 : 0 : 1), (1 : 0 : 1), ..., (p− 1 : 0 : 1)}
is ramified over the covering X → X/G in the sense that each stabilizer
GP = StabG(P ) is non-trivial, P ∈ X(F ).

Background on the function field K = F (X) = F (x, y) of this curve from
Stichtenoth [St], §VI.4:

(a) [K : F (y)] = p, so as an F -vector space

F (x, y) = F (y)⊕ xF (y)⊕ ...xp−1F (y).

(b) K/F (y) is Galois and

Gal(K/F (y)) = F
σ 7→ a

σ(x) = x+ a
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(c) The pole P∞ of y in F (y), a place on the projective line P1, has a unique
extension Q∞, a place of X, which is totally ramified, e(Q∞/P∞) = p.
Q∞ is a place of X of degree 1.

(d) P∞ is the only place of P1 which ramifies with respect to the projection
map X → P1, (x, y) 7−→ y.

(e) (dy)∞ = (p− 3)Q∞,

(f) (x)∞ = 2Q∞, (y)∞ = pQ∞.

(g) L(rQ∞) = Span[ xiyj | 2i+ pj ≤ r, 0 ≤ i, 0 ≤ j ≤ p− 1 ].

Let

DF =
∑

P∈X(F )

P,

so deg(DF ) = |X(F )| = p+ 1 = 2g + 2 and therefore rDF is non-special for
each r ≥ 1. In particular,

dimL(rDF ) = deg(rDF )− g+ 1 = r(p+ 1)− p+ 1

2
+ 1 = (2r− 1)g+ 2r+ 1.

Taking r = 1 for instance, we have dimL(DF ) = p+5
2

. Each successive
quotient L((r+ 1)DF )/L(rDF ) has dimension p+ 1 = 2g, r ≥ 1. The vector
space L(rDF ) is a G-module, hence so is each such quotient. Indeed, the
hyperelliptic involution acts trivially on X(F ), so this action actually factors
through an action of G.

Question: Is L(DF ) an irreducible G-module or G-module? Is L((r +
1)DF )/L(rDF ) an irreducible G-module or G-module?

Answer: No! No! No! No!
The irreducible G-modules are known explicitly [Al]. They only occur in

degrees 1, 2, ..., p. We denote the degree n G-module by Vn,

Vn = {
∑

i

aiX
iY n−i−1}.

Therefore, no G-module of dimension p+ 1 can be irreducible. We shall see
below that L(DF ) is a reducible G-module.
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The irreducible G-modules are also known explicitly ([BN], §30). Indeed,
if n is odd then the G-module Vn is also an irreducible G-module. (Guess:
There are half as many p-regular conjugacy classes of G as there are of G, so
this must be all of them. Prove this...) Therefore, no G-module of dimension
p+5
2

or p+ 1 can be irreducible.
Now we turn to trying to compute a basis of L(rDF ). Consider the vector

space

W = Span{ yxk

xp − x
| 0 ≤ k ≤ p+ 1

2
}.

There are p+3
2

elements in this spanning set, all of which are linearly inde-

pendent, so that dimW = p+3
2

. It is clear that W remains invariant under
the action of γ1, γ2(a), and γ3. Note that

γ4 :
yxk

xp − x
7−→ −yx

p+1
2
−k

xp − x
,

so W is indeed a G-module.
Lemma: L(DF ) = W ⊕ 1, as G-modules.
proof: By the above, W is a G-module. By definition of the Riemann-

Roch space, W ⊂ L(DF ), and L(DF ) contains the constant functions on X.
SinceDF is non-special, the Riemann-Roch theorem tells us that dimL(DF ) =
1 + dimW , and the claimed result follows. ¤

One might hope that some vector space like

W?? = Span{ yxk

(xp − x)j
| 1 ≤ j ≤ r, 0 ≤ k ≤ (2r − 1)p}

might lead to an explicit description of L(rDF ).
Question: What is the character of the representation ρ of G on W?

What is the decomposition of this representation?
Answer: The first of these seems to have a simple answer. In the basis of

W given above, γ2(a) acts diagonally, γ3 acts by a unipotent upper-triangular
matrix (or a lower-triangular one, depending on how the basis is ordered),
and γ4 acts by a signed permutation matrix. Consequently, it is not hard to
compute (with d = p+1

2
)

tr ρ(γ2(a)) =
d∑

k=0

a2k−1 = a−1a
2d+2 − 1

a2 − 1
= a−1a

p+3 − 1

a2 − 1
= a−1a

4 − 1

a2 − 1
= a+a−1,
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tr ρ(γ3) = deg ρ =
p+ 3

2
, tr ρ(γ4) = 0.

What is the character of the representation Vn of G at t =

(
a 0
0 a−1

)
?

Since t sends (X, Y ) to (aX, a−1Y ), it follows that t sends X iY n−i−1 to
a2i−n+1X iY n−i−1. Therefore, t acts “diagonally” on Vn and the trace is easy
to compute:

trVn(t) =
n−1∑
i=0

a2i−n = a1−na
2n − 1

a2 − 1
=
an − a−n

a− a−1
,

when n ≥ 1. When n = 2 this agrees with tr ρ(γ2(a)). When n = p−1
2

this is
0.

In the modular representation case, two representations can have the same
character yet not only be inequivalent but have different decompositions.
Therefore, it is still unclear what these character formulas definitively say
about the decomposition of the semi-simplification of L(DF ) . However,
they suggest the following decomposition.

Conjecture: W = V2 ⊕ V p−1
2

.

Example 6 Let F = GF (7) and let C denote the curves defined by

y2 = x7 − x.

This has genus 3. The automorphism group G is a central 2-fold cover of
PSL2(F ): we have a short exact sequence,

1 → Z → G→ PSL2(7) → 1,

where Z denotes the subgroup of G generated by the hyperelliptic involution
(which happens to also be the center of G). (Over the algebraic closure F ,
AutF (C)/center ∼= PGL2(F ), by [G], Theorem 1.) The following transfor-
mations are elements of AutF (C):

γ1 =

{
x 7−→ x,
y 7−→ −y, , γ2 =

{
x 7−→ a2x,
y 7−→ ay,

( a ∈ F×),

γ3 =

{
x 7−→ x+ 1,
y 7−→ y,

, γ4 =

{
x 7−→ −1/x,
y 7−→ y/x4,

.

There are 8 F -rational points:
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C(F ) = {P1 = (1 : 0 : 0), P2 = (0 : 0 : 1), P3 = (1 : 0 : 1), ..., P8 = (6 : 0 : 1)}.
The automorphism group acts transitively on C(F ). Consider the projection
C → P1 defined by φ(x, y) = x. The map φ is ramified at every point in
C(F ) and at no others.

Let H1 = Stab(P1, G) denote the stabilizer of the point at infinity in C(F ).
All the stabilizers Stab(Pi, G) are conjugate to each other in G, 1 ≤ i ≤ 8.
The group H1 is a non-abelian group of order 42 (In fact, the group H1/Z(H1)
is the non-abelian group of order 21, where Z(H) denotes the center of H.)

It is known (Proposition VI.4.1, [St]) that, for each m ≥ 1, the Riemann-
Roch space L(mP1) has a basis consisting of monomials,

xiyj, 0 ≤ i ≤ 6, j ≥ 0, 2i+ 7j ≤ m.

Let D = 5P1, S = C(F )− {P1}, and let

C(D,S) = {(f(P2), ..., f(P8)) | f ∈ L(D)}.
This is a (7, 3, 5) code over F . In fact, dim(L(D)) = 3, so the evaluation
map f 7−→ (f(P2), ..., f(P8)), f ∈ L(D), is injective. Since H1 fixes D and
preserves S, it acts on C via

g : (f(P2), ..., f(P8)) 7−→ (f(g−1P2), ..., f(g−1P8)),

for g ∈ H1.
Let P denote the permutation group of this code. It a group of order

42. However, it is not isomorphic to H1. In fact, P has trivial center. The
(permutation) action of G on this code implies that there is a homomorphism

ψ : H1 → P.

What is the kernel of this map?
GAP will narrow the choices down to two possibilities: either a subgroup

of order 6 or a subgroup of order 21 (this is obtained by matching possible
orders of quotients H1/N with possible orders of subgroups of P ). Take the
automorphisms γ1, γ2 with a = 2 and γ3. If we identify S = {P2, ..., P8} with
{1, 2, ..., 7} then

γ1 ↔ (2, 7)(3, 6)(4, 5) = g1,
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γ2 ↔ (2, 5, 3)(4, 6, 7) = g2,

γ3 ↔ (1, 2, ...7) = g3.

The group N = 〈g2, g3〉 is a non-abelian normal subgroup of H1 = 〈g1, g2, g3〉
of order 21.

The character table (over C) of N is (both in GAP and MAGMA)

Class 1 2 3 4 5
Size 1 7 7 3 3

Order 1 3 3 7 7
p = 7 1 2 3 1 1
χ1 1 1 1 1 1
χ2 1 ω −1− ω 1 1
χ3 1 −1− ω ω 1 1
χ4 3 0 0 ζ ζ3

χ5 3 0 0 ζ3 ζ

where ω denotes a cube root of unity and ζ 6= 0 is a root of unity which will
be unimportant for our example. Accoding to GAP, the character table (over
F ) of N is

χ1a 1 1 1 1 1
χ1b 1 ω2 ω 1 1
χ1c 1 ω ω2 1 1

where the ordering on the conjugacy classes is the same. Note that the last
two conjuacy classes are irregular mod 7.

Finally, we compute the matrix representation of H1 on L(D), where
D = 5P1. First, note that γ1 acts as the identity,

γ2 :




1
x
x2


 7−→




1
4x
2x2


 =




1 0 0
0 4 0
0 0 2







1
x
x2


 ,

and

γ3 :




1
x
x2


 7−→




1
x+ 1

(x+ 1)2


 =




1 0 0
1 1 0
1 2 1







1
x
x2


 .
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In fact, every element of N may be written gi
2g

j
3, 0 ≤ i ≤ 2, 0 ≤ j ≤ 6. The

conjugacy classes of N are represented by 1, a, a2, b, b3. The matrices of the
representation ρ of H1 acting on L(D) are

ρ(1) =




1 0 0
0 1 0
0 0 1


 , ρ(a) =




1 0 0
0 4 0
0 0 2


 , ρ(a2) =




1 0 0
0 2 0
0 0 4


 ,

ρ(b) =




1 0 0
1 1 0
1 2 1


 , ρ(b3) =




1 0 0
3 1 0
2 6 1


 .

This is not a semisimple representation, but it is solvable. In particular, H1

is solvable.
The character table of N implies that the the semisimplification ρss is the

direct sum of the three one-dimensional representations: trρss = χ1a + χ1b +
χ1c.
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