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Abstract

If G is a finite subgroup of the automorphism group of a projective
curve X and D is a divisor on X stabilized by G, then under the
assumption that D is nonspecial, we compute a simplified formula for
the trace of the natural representation of G on Riemann-Roch space
L(D).

1 Introduction

Let X be a smooth projective (irreducible) curve over an algebraically closed
field k of characteristic zero and let G be a finite subgroup of automorphisms
of X over k. If D is a divisor of X which G leaves stable then G acts on the
Riemann-Roch space L(D). We ask the question: is there a simple formula
for the character of a (modular) representation! which arises in this way?

This character has been computed, for example, in the work of Borne [B]
in some cases. (Others include: Chevalley-Weil, Ellingsrud-Lonsted, Naka-
jima, Kéck, and Kani, for example. We refer to [B] for references.)
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Lemma 1 (Borne’s formula) If D is a G-equivariant nonspecial divisor,
then the (virtual) character of L(D) is given by

[L(D)] = (1 = gv)[¥[G]] + [degeg(D)] — [T, (1)
where Y s the quotient of X by G, gy is its genus, degeq(D) 1S the equivariant
degree of D, and T is the ramification module.

The definitions of equivariant degree and ramification module will be
recalled below. Our contribution to simplifying the formula is to find a
simple expression for the character of the ramification module, under some
rationality conditions.

Let V be a k[G]-module and let F' be a subfield of k. We say that V' has
an F|G]-module structure if there is an F-vector space Vp, such that (a)
Vp is an F[G]-module, and (b) V' = Vi ®p(q k[G].

Theorem 2 If T'¢ has a Q[G]-module structure, then it decomposes into
irreducible Q[G]-modules as

fg’:@
J

Here the first sum is over the set Gty of all irreducible Q[G]-modules, and
for each irreducible Q[G]-module V;, m; is its Schur index and d; is the
number of distinct irreducible k|G]|-modules in a decomposition of V; ® k.
The second sum is over all conjugacy classes of cyclic subgroups of G, Hy is
a representative cyclic subgroup, VjH‘Z indicates the dimension of the fized part
of V; under the action of H,, and R, denotes the number of branch points in
Y where the inertia group is conjugate to Hy.

(S (im(V;) — dim(V4) v,
773y

In fact, we prove this as a corollary to Proposition 4 below.
In this paper, we will give the proof of this theorem and of some partial
results in the case that I'¢ does not have a Q[G]-module structure.

2 Definitions and Proof

Let X be a smooth projective curve over an algebraically closed field k& of
characteristic zero. Let G be a finite group of automorphisms of X over k.
For any point P € X (k), let Gp be the inertia group at P (i.e. the subgroup
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of G fixing P). Since char k is zero, the quotient 7 : X — Y = X/G is tamely
ramified, and this group Gp is cyclic. Gp acts on the cotangent space of X (k)
at P by a k-character. This character is the ramification character of X
at P.

The ramification module is defined by

ep—1
Tg= Y, Tndg. () ),
PeX(k)ram £=1

where ep = |Gp|, and 1p is the ramification character at P. By Theorem 2
in [N], there is a unique G-module I'¢ such that

FG’ = ‘G|fG
We abuse terminology and also call T' the ramification module. The goal
of this paper is to compute the decomposition of I'g into irreducible k[G]-
modules. We do this by computing the character of L(D) for a particular
choice of D, then using Borne’s formula.
Now consider a G-invariant divisor D on X (k). If D = i > gec 9(P)

then we call D a reduced orbit. The reduced orbits generate the group of

G-invariant divisors Div(X)¢.

Definition 3 The equivariant degree is a map from Div(X)¢ to the
Grothendieck group Ri(G) = Z[G%] of virtual k-characters of G,

degeq : Div(X)% — R(G),
defined by the following conditions:

1. degeq 1s additive on G-invariant divisors of disjoint support,

2. If D= ré > gec 9(P) is an orbit then

Indg, (30 v, ifr>0,
degeq(D) = —Indg,,( Z:(:)H) 1/Jf3), if r <0,
07 T = 0,

where Yp is the ramification character of X at P.



If D = 7*(Dy) is the pull-back of a divisor Dy € Div(Y") then deg.,(D) has
a very simple form. On each orbit, r is a multiple of ep, so every character of
the cyclic group Gp appears. The equivariant degree on this orbit is induced
from a multiple of the regular representation of Gp. Thus we have

degeq(D) = deg(Do)[k[G]], (2)

(This is also a special case of Corollary 3.10 in [B].)

Therefore, as a corollary to Theorem 2, when D is a pullback of “large degree”
then L(D) may be described in representation-theoretic terms (that is to say,
the ramification characters are not needed).

Let (G) denote the set of conjugacy classes of cyclic subgroups of G. Let
Gg denote the set of equivalence classes of irreducible Q[G]-modules. By
results in ([Se|, §13.1, §12.4), this set has the same number of elements as
(G), and the character table of G over Q is a square matrix with rows labelled
by G§ and columns labelled by (G). The rows are linearly independent (as
Q-class functions), so in fact the character table is an invertible matrix.

Let F' be a finite extension of Q such that all £[G]-modules have F[G|-
module structure ([Se|, p. 94). For each irreducible Q[G]-module V}, V; ®qiq
F[G] decomposes into irreducible F[G]-modules. The Galois group of F' over
Q permutes the components transitively, so each must have the same mul-
tiplicity (the Schur index of the representation V;) and the same dimension.
We write V; ®qa) F|G] ~ m; Eij:l W;,, where m; is the Schur index, the
W;,’s are irreducible F[G]-modules, and dimg V; = m;d; dimp W}, for each
r. We also have V; ®qa) k[G] ~ m; @F, W;, @ria) k[G.

For each F-representation (p,V) of G, p : G — Autp(V), let xy = x,
denote the character of V: xy(g9) = trp(g), for ¢ € G. For brevity, let
X; denote the character of V; over Q (which is equal to the character of
Vi ®qa k[G] over k), and x;, denote the character of Wj, over F' (which
equals the character of W, ®pig) k[G] over k). Then we have

d;
Xj =My Z Xjr (3)
r=1

Proposition 4 Let D = 7*(Dg) be a nonspecial divisor on X and assume
L(D) has a Q[G]-module structure L(D)gq. For each irreducible Q[G]-module
V;, its multiplicity in L(D)q is given by
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2.
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nj=

(dim(Vj)(deg(Do) +1—gy)— Y (dim(V;) — dim(V;.H‘»’))%) ,

=1
i @
where V;™* denotes the subspace of V; fized by H,.

Proof: First, we recall some notation from [Ks|: For each class choose
a representative cyclic subgroup Hy, £ = 1... M, and partially order them
according to the order of the group so that H; is the trivial group. For each
branch point of the cover 7 : X — Y, the inertia groups at the ramification
points P above that branch point will be cyclic and conjugate to each other.
For each ¢, let R, denote the number of branch points in Y where the inertia
groups are conjugate to Hy.

The proof is similar to the proof of Theorem 2.3 in [Ks]. We consider the
quotients X/H, of X by cyclic subgroups H,. The morphism 7 : X — Y
factors through this quotient, so on each X/H, there is a pullback divisor D;
of Dy.

First, note that our assumption that D is nonspecial means that for any
quotient X/Hy, the pullback D, of Dy to X/H, is also nonspecial. This is
because

KX — D= WE(KX/HZ) + Rl - ’ﬂ'z((Dg) = W;(KX/Hg — De) +Rl

where R, is the ramification divisor of the covering 7, : X — X/H,. Any
element of L(K x,y, — D,) would pull back to X to give an element of L (K x —
D — Ry). Since Ry is effective, this would also give an element of L(Ky — D),
contradicting our assumption that D is nonspecial.

Now we decompose L(D)q as

L(D) = PV, 6)

where V;, j = 1... M are the elements of G. For each H, in Gg, consider the
dimension of the piece of this module fixed by H,. Since L(D)"t = L(D,),
we get a system of equations



M
dim L(Dy) = Y n;dim(V/™), 1<0< M. (6)
j=1

This is a system of M equations in the M unknowns n;. We need to show that
the matrix (dim(V;-H" ))j,e is invertible, so this system has a unique solution,
and that the above equation is the claimed solution.

First, let us consider the matrix (dim(V;-H‘)) ;- Each matrix entry is equal
to the multiplicity of the trivial representation of H, in the restricted repre-
sentation of H, on Vj;. This is the inner product of characters (Resgé X, 1),

where Y is the character of Vj;, which is defined as

-
dim V™ = @ Z x;j(a) (7)

a€Hy

Thus each column of the matrix (dim(VjH‘)) ;¢ is a sum of columns of the
character table. Each element a in H, generates either all of H, or a cyclic
subgroup of lower order, hence earlier in the list (G). Thus if we write our
matrix in terms of the basis of columns of the character table over Q, we get
a lower triangular matrix with nonzero entries on the diagonal. This implies
that our matrix is also invertible.

It remains to verify that our equation is the correct solution.

Note that

dim L(D0) = {{deg(Da) + 1 - g(X/H), ©
for 1 < /¢ < M, by the Riemann-Roch theorem and the hypothesis that D,
is nonspecial.
We will now substitute (4) into (6) and verify that the result agrees with
(8), for each 1 < £ < M. The argument is similar to that in [Ks].
Plugging (4) into (6) gives

M M

. 1. .
> nydim(V,") = (deg(Do) +1 - gy) D~ ——dim(V;"*)dim(V})
j=1 j=1 37

m-dj 2

Z<Z ; [dim“”jm’dim%)dimﬂfij)dim(VjHi)]Ri)



Note that
d; d;
dim(V;-H[) = (Resgg Xj; 1) =m; Z(Resﬁl XWo» 1) =m, z:(Xer,Indg/Z 1),

r=1 r=1
9)
using (3) and Frobenius reciprocity. This gives us

dim VH‘ dimV; = Z dim Z Xjrs Indge 1)

M:

j=1 d j=1 mjd; r=1
M d]
=533 dimWj,(Res§, x;r, 1) (10)
=1 r=1

S 55 ) oo

a€Hy j=1 r=1

The last part of this is summing over all irreducible k-characters of GG, so
the last expression is in fact the inner product of two columns of the character
table for G over k. This inner product will be zero unless a = e, so the sum
becomes

M 4

2 G
T e = i

j=1 r=1

We would like to do a similar simplification of

M

1
2 e

j=1 "3

dim(V;) dim (V") (12)

J

using (9) twice. The induced representation Ind§; 1 is the action of G
by permutations on the cosets of H;, and thus has a Q[G]-module struc-
ture as well as an F|[G]-module structure. It can be decomposed into irre-
ducible k[G]-modules, such that for each j the multiplicities of the W;, ® k’s,
<XWW Indgi 1), are all equal. Using the above, Frobenious reciprocity, and
the definition of the Schur inner product, we have



oMo dlm(V )dlm(VH)

J=1 mZd;
= 3050 4 i (Resf, xgr 1) L (s, Ind, x)
=M S (Res$, Xr, 1) (e, Ind$, Xjr) (13)
= Z;\il Zfi1<ReS?IZ Xjrs 1><Resgi Xjr> 1)
= ﬁ |1;| ZaEHZ ZbeHi 29{1 2?;1 Xir (@) Xjr (b).-
Again, this last is an inner product of columns of the character table of G

over k, so will be zero unless ¢ and b are in the same conjugacy class. Let
Cc(a) denote the conjugacy class of a in G. We end up with

M d;
I :
Z 24 dim(V;") dim(V;™") = | H|[H| HH‘ Z #(Hi N Cala ZZXV
j=1 mg J ¢ acH, j=1r=1
= [H\G/Hi|

(14)

the number of double cosets.
From this we get

- el el
an dimVjH‘Z = (deg(Dy) + 1 — )|H | Z(|H | — |H; \G/HZD
j=1 =1

_ 3 |G\ \G\ B

G
= deg(Do)% +1—9gx/mH,-

where the last equalities come from applying the Hurwitz formula to the
cover X/Hy — Y (see [Ks| for details). This is (8), as desired. [J
Proof of Theorem 2. We choose a divisor Dy on Y sufficiently large so
that D := 7*(Dy) is nonspecial.
Recall from (2) that Borne’s formula gives us

[L(D)] = (1 = gy + deg(Dy))[K[G]] - [Tc].
Since the regular representation k[G] has a natural Q[G]-module structure
Q[G], the character [L[D]]+ [I'g] must be in the Grothendieck ring Rg(G) of
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characters generated by the traces of irreducible Q[G]-modules. This means
that for any pullback divisor D = 7n*(Dy), L(D) will have a Q[G]-module
structure if and only if ' does.

Because of this and our hypothesis, the hypotheses of Proposition 4 hold,
so the conclusion is satisfied. This gives us the multiplicities of the irreducible
Q[G]-modules in T'¢. O.

Corollary 5 Suppose that T has a Q[G]-module structure. Let W be an
irreducible k[G)-module which is a component of V; ®qia k for an irreducible

Q|G]-module V;. Then the multiplicity of W in I'g, is

B

1
2)'

m;d;

(D _(dim(V;) — dim(V;™))
L

(15)

Proof: From equation (3), the multiplicity of W, in V; ®qq k is the
Schur index m;. O

3 Action of the Galois group

Again, k is algebraically closed with characteristic 0.

Now we move to the case where I'¢ does not necessarily have a Q[G]-
module structure. In this case, we do not get the complete decomposition
into irreducible k[G]-modules, but we get some useful information.

As in section 2, let F' denote a finite extension of Q over which all ir-
reducible representations of G are defined. Then there is an F[G]-module
L(D)p such that L(D) = L(D)r ®pq) k[G]. The Galois group Gal(F'/Q)
acts on L(D)p. The full orbit of L(D)r under this action will have a Q-
vector space structure, and hence a Q[G]-module structure. In general the
full Galois orbit is not needed to get a Q[GJ-module structure; instead let G
be a smallest subgroup of Gal(F/Q) such that

B L(D)r

YEG

has a Q[G]-module structure. (In the case of Theorem 2, G will be the trivial
group). We denote this module by

L(D)r :== @ yL(D)r

YEG
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and its Q[G]-module structure as L(D)g.

Proposition 6 Let D = 7*(Dy) be a nonspecial divisor on X. For each
irreducible Q[G]-module Vj, its multiplicity in L(D)q is given by

9

2.
mjd]

n; = (dim(Vj)(deg(Do) +1—gy) =Y (dim(V;) - dim(VjH‘))&> :
=1
(16)

Proof: The proof is similar to that of Proposition 4. We take the fixed
part of the decomposition

L(D)g ~ P n,V;
J
under the action of a cyclic subgroup H, C G. Since

Resfj, L(D)r = @D Res§j, v(L(D)r)

YEG

and G fixes the trivial representation, this will simply be

dimg L(D)q " = dimp L(D)p " = |G| dim(L(D)p)™ = |G| dim L(Dy)p
and on the other hand,

dimgL(D)g * =Y n; dimg V.
J

This gives us the system of equations (6) from Proposition 4, but solving for

% instead of n;, so the solution is:

49

R,

[dim(V;)(deg(Do) +1 = gv) — Y _(dim(V) — dim(V;"))

=1

]

n; =
]
Now we would like to decompose L(D) into irreducible k[G]-modules, or

equivalently L(D)p into irreducible F[G]-modules:

10



M dj
D)r = D D nirWir
j=1 r=1
where W;, and d; are as in section 2. Given such a decomposition of L(D),
L(D)p will decompose as

M 4
D)r =~ O P ne (P v(W;0))- (17)
j=1 r=1 v€G
Since B, 7(Wjr) is fixed by the Galois group, it will have a Q[G]-module
structure, and because G fixes Q[G]-modules, the Q[G]-module structure will
be a multiple of the irreducible V;. By counting dimensions we see that this
multiple must be

g
@’Y jr) = |C‘lv®@ FlG]
m;

Y€G

where as in section 2, mj; is the Schur index of V;. Thus we have

— AN g
D= me
j=1 r=1 773

Corollary 7 Let D = n*(Dy) be a nonspecial divisor on X, and let

M dj
~ @ @aner X k

j=1 r=1

be a decomposition of L(D) into irreducible k|G]-modules. Then the multi-
plicities nj, for each j satisfy

Znﬂ = (dlm(V)(deg(Do) +1—gy) Z (dim(V;) — dim(V}H‘))%
R (13)

Theorem 8 We have

11



> 10x(Ce) = D my(Yy (dimV;) = dim Vi) <),

v€9 J =1

M
Ry
(
where G is the Galois group of a smallest extension of Q for which

Y e Y(x(Te)(9)), g € G, has all its values in Q.

Proof: This follows from the definition of G, Corollary 5. [J

4 Examples

Example 9 Consider the genus 2 curve

v =a(z—2)(x—4), 22=x4+4,
over F' = C. This has an action of G = Cy x Cy given by
Q: (.Z',y,Z) — (SL’, _yaz)a

/6 : (.T,y,Z) — ('T’ya _2)7
aﬁ : (-’E,y, Z) — (33, Y, _Z)'

This group has character table

1 a B af
i1 1 1 1
Y21 1 —1 —1
ys|1l =1 1 =1
yall =1 =1 1

The divisor
D =(0,0,2) + (0,0, —2) 4 (—4,8V/3,0) + (—4, —8V/3,0)
is G-equivariant and supp(D)/G = {(0,0,2), (—4,8V/3,0)}. One can show

1
L(D) = {ao + ar + a%}.

Direct computation: This Riemann-Roch space splits up into a direct sum
of irreducible 1-dimensional G-modules. As a matriz representation,

12



. 1 0
pla’f)=1{ 0 (1) 0
0 0 (—1)+
The character of p agrees with x1 + X2 + x4 on G, so
L(D) = p; @ p2 ® pa-

Geometric computation using the formula: We have

dim(p)(1 - 9(X¢)) = 1,

for each wrreducible p.

Note that each orbit of G in supp(D) is represented by a point P where
the inertia group is Gp = Cs and the multiplicity of the orbit is rp = 1.
Therefore,

07 P = Pis 7':17

TP,p: 17 P = Pi, ’1;2273’
2, p=ps,
where
Tp = { ZZil—?p,ﬁ-(lc);P) = Zil <¢§375€S_§i[ﬁo>a Tp > O:
’ — >0 me—e(Gr) =320 W;e, Resglp% rp <0,

For p =1, we therefore have

dim(L(D),) =1+0—0=1.

This means that L(D) contains the trivial representation py with multiplicity
1, as predicted.

The cover X — X/G has 5 branch points: three with inertia group Gp =
Cy = {1,a} (at x = 0,2,4), one with inertia group Gp = Cy = {1,5} (at
x = —4), and one with inertia group Gp = Cy = {1,aB} (at © = o). This
means

R({1,a})=3, R({1,8}) =1 R({l,aB8}) =1
Plugging these into Borne’s formula Lemma 1 and our Theorem 2 yields
X1 + X2 + xa for the character of L(D).
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Example 10 If k contains the cyclotomic field Q(C;) of £ roots of unity
and if X = P' /k is the projective line, regarded as the complez plane with the
point added at oo. Let g € G = Cy C k act by g : z — gz. The only fixed
points are the points P, = 0 and P, = co. At Py, the action on the cotangent
space is via the identity character vy of G. At Py, the action on the cotangent
space is via the character 1/1[1 = f’l. Therefore, the ramification module is
given by

Lo = Ind§(y 0y v + 0wy )
=D W+ i iy ) =L e
Since 3{"y ¥i(g) = 0 for g # 1, Talg) is =0 if g € G — {1}, and = —C at

g =1. In any case, it is rational-valued, though the action of G on X 1is not
defined over Q, if £ > 2.

The following example illustrates Corollary 7.

Example 11 If k contains the cyclotomic field Q(¢;) of 7" roots of unity
and if C is the Klein quartic X3Y +Y3Z + Z3X = 0 then the cyclic group
of order 3 acts on X by cyclically permuting the coordinates and the cyclic
group of order 7 acts by sending (X :Y : Z) — ((; X : (7Y : (3Z) [E].

Let G = C3 x C; be the semi-direct product of these groups. This has
character table*:

1 1 1 1 1
1 ¢ 1 (3 1
1 G 1 & 1
30 G+E+E 0 G+E+¢

30 G+G+¢G 0 G+E+¢

The conjugacy class for the columns are as given by GAP’s ConjugacyClasses
command (the same ordering is used by MAGMA).

There are 23 points of degree 1 on X/k, among them being P, = (1: 0: 0),
P,=(0:1:0), and Py = (0:0:1). The divisor P, + P, + P5, and all its

multiples, is G-equivariant. The functions®:

1, X/Z, Y/X, ZJY,

2This was obtained using [Gap]. Incidently, there is only one non-cyclic group of order
21, up to isomorphism.
3This was obtained “by hand” but has been verified using [MAGMA].

14



form a basis of L(D), where D = 2(P, + P, + P3). The functions*:

1, X/zZ, Y/X, ZzJY, XY, Z/X, Y/Z,

form a basis of L(D), where D = 3(Py + P, + P3). The first space is, as
a G-module, not defined over Q. In fact, it is the direct sum of the trivial
representation py (associated to the 15 row of the character table above) and
the 3-dimensional representation py (associated to the 4™ row of the table).
The second space is rational as a G-module. In fact, it is the direct sum of
p1, pa and ps. (These facts may be verified by computing the trace directly
using the above basis.)

If k does not contain (7 then only Cs acts on the curve X/k. The space
L(D), where D = 2(P, + P, + P3), decomposes into the Cs-modules

(e (x/z,y/z,2/y) = (1) & (z/2 +y/z+2/y) BV,

where V' 1s a 2-dimensional Cs-module. If k contains the cyclotomic field
Q(&3) then V' decomposes into a direct sum of two irreducible 1-dimensional
Cs-modules. If k does not contain the cyclotomic field Q((3) then V is irre-
ducible as a Cs-module.

Points of ramification are determined as follows:

e (5 action: The points ramified from the cyclic action on the coordinates
XY, Z of P2 are: (1:1:1), (1:¢:¢%), and (1: (2 : (3). Of these,
only P, =(1:(3:C2) and Ps = (1:¢2:(3). are in X (k) (assuming k
contains (3). We have

Gp, = Cs, Gp, = Cs.

e (% action: The points ramified from the above action of C; on the
coordinates X,Y,Z of P? are: Py, P,, and Ps, all of which belong to
C(k). We have Gp, = Cy, fori=1,2,3.

There 1s one orbit of points where the inertia group is isomorphic to C;.
There are two orbits of points where the inertia group is isomorphic to Cs.
This allows us to compute the number of branch points in X/G where the
wnertia group is conjugate to Hy:

4This was obtained using [MAGMA].
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2, if H, = (s,
degRe = 1, if Hg = 07,
0, otherwise.

How does C7 act on the cotangent space Tp (X)* at Py ¢ Local coordinates
on the patch containing Py are y =Y /X, 2 = Z/X, and the equation for C
on the patch is y + y*z + 2* = 0. Since (3y*z + 1)dy + (y* + 32%)dz = 0,
the cotangent space has basis dz/(3y*z + 1) = —dy/(y —i— 32%). The map
T:(X:Y:Z)}_)(X:C?Y:C?Z) maps ysigézz’ > (7 3+3z2

How does C7 act on the cotangent space Tp,(X)* at Py? Local coordinates
on the patch containing Py are x = X/Y, z = Z/Y, and the equation for C
on the patch is 2 + 2z + 23z = 0. Since (3y?z + 1)dy + (y> + 32%)dz = 0, the
cotangent space has basis dx/(?)z x+1). Themapt:(X:Y :2)— (X:
(7Y : (7Z) maps 322 z+1 — G 3z2m+1

How does C7 act on the cotangent space Tp,(X)* at P3¢ Local coordinates
on the patch containing Py are x = X/Z, y =Y /Z, and the equation for C
on the patch is 2y + x + 33 = 0. Since (3y?z + 1)dy + (y* + 322)dz = 0, the
cotangent space has basis dy/(3:c y +1). Themap7: (X :Y :Z)— (X :
GY 1 G Z) maps gzt y+1 — G g y+1

How does C3 act on the cotangent space Tp,(X)* at Py? The patch Z =1
with local coordinates x = X/Z and y = Y/Z contains Py = (G : (3 : 1).
Again, the cotangent space has basis dy/(3z*y + 1) = —dz/(y> + 322). The
action of the group Cs is generated by by (X :Y : Z) — (Y : Z : X). In
terms of the local coordinates, this sends

zr—ylr, y+—— 1/x.

Note d(y/z) = —%dz + 2dy = —dz + Gdy and d(1/z) = —Sdx = —(sdx at
Py. Therefore, this Csy action is generated by the map which sends

dx — d(y/x) = dx + ngy, dy — d(1/z) = —(3dx,

and hence
dy —(3dx

3z2y+1  3(y/z)2(1/z) +1 - C33x2y +1
The ramification module is determined as follows. By definition,

ep—1

g = Z Z Indgp(; p),

O PeO
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where the outer sum runs over all G-orbits® O, ep denotes the inertia degree®,
and p denotes the character of Gp acting on the cotangent space. Let us
denote by 17 the identity character on Gp = C; and similarly for 13 on
Gp = Cs. On the G-orbit of P =(1:0:0), we have

S peo IndS (35E T eph) = IndS, (1r + 2492 + ... + 69%)+
Indg (2 + 247 + ... + 601%) + Indg, (17 + 247 + ... + 6¢2%)
= (14 2+ 4)Indg (Y7 + V2 + %) + (3+5 + 6)IndZ, (V3 + ¥2 + y8).

On the G-orbit of P = (1: (3 : (3), we have

ep—1
3" 1ndS, (37 epth) = IndS, (7(vs + 202)),
PeO =1

and on the G-orbit of P = (1: (3: (3), we have

ep—1
D Indg, (Y ) = Indg, (7(45 + 2¢3)).
PcO =1

Putting these together, we have

TG = TIndg, (Y7 + ¢7 +¥7) + 14Ind¢, (V7 + %7 + ¥7) + 21Indg, (s + ¥5).

The character table of G can be used to determine the decomposition of this
representation into irreducibles. We have

L' = 21xy + 21x3 + 63x4 + 84xs,

where x; (1 =1,2,...,5) denote the irreducible representation, as ordered by
GAP (or MAGMA) in the table above. This gives

. 1
e = @PG = X2 + X3+ 3Xxa + 4x5-

Under the action of the Galois group C generated by o and T, where o :
(s 1/13_3 and T : Y7 — b7t we have T(Dg) = X2 + x3 + 4x4 + 3x5 and
O'(Fc;) = Fg.

®Namely, the G-orbit of (1 : 0 : 0) with inertia group C7, the G-orbit of (1 : (3 : (3)
with inertia group C3, and the G-orbit of (1 : (3 : (3) with inertia group Cj.
6That is, the size of the inertia group, ep = |Gp|.
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Next, we compute the equivariant degree of the G-equivariant divisors
D, =r(P,+ P, + P3), forr = 2,3. Recall that P, + P+ Py is the G-orbit of
Ps. Using the ramification character 17 of Gp, = Cr, we have

degeq(D2) = Indg, (7' + 7% = Indg, (¥3 + ¢9),
and
degeq(D3) = Indg, (7' + 7 2 + ;%) = Ind@, (¢7 + ¢35 + 9%).

Using the character table of G, we find

e

X55 r=1,

2xs, r=2,

X4 + 2X5; r= 3)

degeq(Dr) = 9 X4+ 3X5a r= 4)

2X4 + 3X57 r= 5)
3X4 + 3X57 r= 67
\ 3X1+3X4+3X5a T:77

and degeq(Dri7) = degeq(Dy) + degeq(D7). Now we use Borne’s formula to
compute the class of the Riemann-Roch space of D,, r = 1,2. We have,

[L(D5)] = k[G] + degeq(Ds) — T
=(x1+x2+x3+3xa+3x5) +2x5 — (X1 + X2+ x3+ 3xa + 4x5)
= X1 + X5

and

[L(D3)] = k[G] + degeq(Ds) — T
=(x1+x2+ X3+ 3xa+3x5) + (xa +2x5) — (xa +x2 + x5+ 3xsa + 4x5)
=X1+ X4+ Xs5-

This is enough data to use our formula to compute the Galois orbit of the
class of the ramification module for G. We have

dim(xi +x2)® =0,  dim(x1+ x2)" =2,
dim(x4 + ){5)03 =2, dim(X4 + X5)C7 =0.

18



We have already computed Rg, = 2, Rg, = 2, so our formula computes
I'g+ 710G to be

2x1 + 2x2 + Txa + 7xs,

which agrees with our direct computation above.

Acknowledgements: We thank Bernard Koch for his comments.
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