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Abstract

We study the action of a finite group on the Riemann-Roch space
of a toric variety. Our main result is the following: if G is a finite sub-
group of the automorphism group of a complete, smooth toric variety
X and if D is a divisor on X fixed by G then we write the natural
representation of G on L(D) is a direct sum of explicitly described
(permutation) representations.
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Let X be a smooth projective variety over an algebraically closed field
F of characteristic 0 and let G’ be a finite subgroup of automorphisms of X
over F. We often identify X with its set of F-rational points X (F). If D
is a divisor ! of X which G leaves fixed then G acts on the Riemann-Roch
space L(D). We ask: which (modular) representations arise in this way?

This question was discussed in [JT] in the case when X is a curve. Here
we discuss the simpler case of a (not necessarily smooth) toric variety.

1Since X is smooth, we need not distinguish between Weil divisors and Cartier divisors
(Hartshorne [H], Prop. 11.6.11, and Remark I1.6.11.1A).



1 The action of G on L(D)

Let X be a smooth projective variety over an algebraically closed field F'.
Let F(X) denote the function field of X (the field of rational functions on
X) and, if D is any divisor on X, let

L(D)={fe F(X)* | (f)+ D = 0}u{0},

and let (D) denote its dimension. This definition makes sense even if X is
merely normal and D is a Weil divisor.
The action of Aut(X) on F(X) is defined by

p: Aut(X) —  Aut(F(X)),
g — (f'_>fg)

where f9(z) = (p(9)(f))(x) = f(g7"(z)).

Of course, Aut(X) also acts on the group Div(X) of divisors of X, de-
noted g : D — ¢g(D) = > 5 dpg(P), for g € Aut(X) and D = ) ,dpP €
Div(X). It is easy to show that (f9) = g(f), where (f) denotes the (princi-
pal) divisor of the function f € F(X). Because of this, if (f) + D > 0 then
(f9) + g(D) >0, for all g € Aut(X).

If G C Aut(X) leaves D € Div(X) fixed then we denote the induced
representation of G in L(D) again by p:

p:G — Aut(L(D)).

2 Examples

Let A be a fan in a lattice L. Denote by 7, ..., 7, the edges or rays of the
fan and let v; denote the first (smallest) lattice point along the ray 7;. Let
D; denote the Weil divisor

D; = Hom(7;" N L+, C*),
which maybe regarded as the closure of the orbit of 7" acting on the edge ;.
Example 1 Let A be the fan generated by
v = 2e; — ey, Vg = —ey + 2ey, U3 = —e; — es.
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In the notation above, the divisor D = di Dy + dyDy + d3 D3 is a Cartier
divisor ? if and only if d; = dy = d3 (mod 3).
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Let G denote the automorphism group of A generated by the map g send-
ing (z,y) to (y,x), swapping v and ve and leaving vs fized. By Theorem 1.13
in Oda [O], this corresponds to a T-equivariant automorphism of X (A).

Let

PD = {(l‘,y) ‘ <($)y)avi> > _di) VZ}
= {(x’y) ‘ Qx_y Z _dla_$+2y Z _d27_x_y Z _d3}

denote the polytope associated to the Weil divisor D = dy D1 + dy Dy + d3Ds,
where D; s as above.

Let di = dy = 6 and d3 = 0. Then Pp is a triangle in the plane with
vertices at (—6,—6), (—2,2), and (2,—2). Note that it remains invariant
under the action of G. Moreover, the G action on Pp N LY has 7 singleton
orbits (the lattice points (—1i,—1), where 0 < i < 6) and 12 orbits of size 2.

2This is an Exercise on page 65 of [F], the solution of which is an easy calculation using
the Exercise on page 62, which is in turn, basically solved in the back of the book.



In this example, the patch U,, is an affine variety with coordinates x1, To, x3
given by x® — xox3 = 0. The automorphism g acts on U,, sending (x1, T2, T3)
to (z1,x3,22). The torus embedding T — U,, is given by sending (t1,t3) to
(.Tl, T, .’L‘3) = (tltg, tltg, t%tg)

The patch U,, is an affine variety with coordinates y1,ys, y3 given by y* —
11ys = 0. The automorphism g does not act on U,,. The torus embedding
T < U,, is given by sending (t1,t5) to (y1,y2,ys) = (t, %ty ', 11t o).

The patch Uy, is an affine variety with coordinates zy, 23, z3 given by z* —
z1z3 = 0. The automorphism g does not act on U,,. The torus embedding
T — U,, is given by sending (t1,t2) to (21,20, 23) = (171152, 151, 1ty "), The
automorphism g sends U, to U,, by sending (y1,y2,y3) to (21, 22, 23).

Example 2 Let X = P" with homogeneous coordinates x, ..., x,, and let H
denote the hyperplane divisor xo = 0. In §II1.1.5 of [Sh], we see that L(dH)
is isomorphic to the space of all (inhomogeneous) polynomials in X1 = 1 /xo,
ooy X = xn /o of degree less than or equal to d. Of course, X is a toric
variety associated to the lattice

L={aeZ"" | a;+ ..+ ay1 =0},
and the fan A constructed from the cones
0 = Rzo[el — €5,y Engp1 — Ej],

for1 <j <n+1. Of course, the automorphism group of X (as a projective
variety) is PGL(n+1). (The toric automorphism group of X is the subgroup
of PGL(n + 1,Z) preserving this fan and the form x1 + ... + 41 (up to a
scalar) - namely the symmetric group Sp11.) If G is any subgroup of PGL(n+
1) which leaves xq fized then G also acts on L(dH). Clearly,

CCL(H)CL(2H) C ... C L(dH)
1S a sequence of invariant subspaces. Assume
G={g€Aut(X)=PGL(n+1) | gler) = X-e1}

so does not fix any other x;, i # 0, but G fizes H. The space L(H) is
(n+1)-dimensional, so L(H)/C is n-dimensional. It is clearly an irreducible
representation of G. Indeed, each quotient L((k+1)H)/L(kH) is irreducible,
so L(dH) is a direct sum of these irreducibles.



3 The main result

The following is our main result. Let A be a fan associated to an integral
lattice L in R". Let Pp denote the polytope associated to the Weil divisor
Don X = X(A).

Theorem 3 Let X = X(A) be a complete toric variety defined over an
algebraically closed field F of characteristic 0. Suppose G C Aut(X) is a
finite subgroup and that the T-invariant Weil divisor D on X 1is fized by G.
Let Pp denote the polytope associated to D and let S = Pp N L*. Let

S=5USU..USk

denote the decomposition of S into disjoint primitive G-orbits. For each
m > 1, the natural representation m of G on L(D) decomposes into a direct
sum of k irreducible permutation representations

_ k
= D;_1 T,

where ; is |S;|-dimensional.

proof: All T-equivariant automorphisms of X correspond to automor-
phisms of L preserving A (see Theorem 1.13 in Oda [O]). So g € G acts on
L(D) via its action on S.

Note that there is a natural isomorphism L(D) = I'(X, O(D)) (see for
example Griffiths and Harris [GH], page 136). We use this map to pull back
the action of G on I'(X, O(D)) to an action on L(D). By Fulton [F], page
66, we have

L(D) = @yesC - ¥,

where x = (z1,...,2,) and x* is the associated monomial in multi-index
notation. This shows that 7 acting on L(D) has an |S;|-dimensional subrep-
resentation m; acting on @,¢cg,C- x*. Every finite dimensional representation
of G is semi-simple (Mascke’s Theorem, Thrm 3.14, [CR], or [Se], §15.7).
. From these, the theorem follows. [

Question: Given G, X, and D as above. Do the (equivalence classes of)
representations of G occurring in L(D) determine D up to linear equivalence?

Corollary 4 In the notation of the theorem above, the trace of w(g) is the
number of fixed points of g on S.
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