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Abstract

Let G be a connected reductive group defined over an algebraically
closed field k, T a fixed maximal torus in G, and B a fixed Borel
subgroup containing 7', W the Weyl group of G relative to T', and S
the set of simple reflections in W defined by (T, B). We denote by X
the projective variety of Borel subgroups of G. Let O(w), w € W, be
the orbit of (B, “B) € X x X under the left action of G. Now we define
O(s1,...,5,), 8; € S, to be the closed subvariety of X"*! whose points
are the sequences (By, B1, ..., B,), B; € X, where (B;_1,B;) € O(s;)

for i =1,...,n. In this paper, we prove that the canonical projections
7:0(81,...,8) = O(s1,...,5i_1)

are P1-bundles, which implies that the variety O(s1,...,s,) is smooth

over k.

All varieties or schemes and all morphisms are defined over a fixed alge-
braically closed field k. For the main part, the only points of a variety under
consideration are the points rational over k. The context makes it clear
when this is not the case. Let G be a connected reductive algebraic group
over k, T a fixed maximal torus, and B a fixed Borel subgroup containing 7',
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W = Ng(T)/T the Weyl group of G relative to T, and S the set of simple
reflections in W defined by (T, B). We denote by X the projective variety
of Borel subgroups of G. Its structure of algebraic variety is defined by the
canonical G-equivariant bijection B = gBg~' — ¢B of X onto G/B. Note
that if w € W, we can also define “B = wBw™! and wB in the usual way,
and they do not depend on the representative w of w chosen to define them.
Let O(w), w € W, be the orbit of (B, “B) € X x X under the left action of
G. The set O(w), being locally closed ([Bor], 1.8, Proposition, p.53), defines
a subvariety of X x X. Now we define O(s1, ..., s,), s; € S, to be the closed
subvariety (resp. O(si,...,s,), si € S, to be the subvariety) of X"*! whose
points are the sequences (By, By, ..., B,), B; € X, where (B;_1, B;) € O(s;)
fori=1,...,n (resp. (B;_1,B;) € O(s;) for i = 1,...,n). In particular, for
n=0,00)=0()=X.

Such varieties were first introduced by Deligne and Lusztig as a technical
tool in representation theory (See [D-L|, 9.1, p.147). Lately they have ap-
peared in other contexts (e.g. [Han], [Hanl], [Gau]). In this paper, we prove
that the canonical projections

7:0(s1,...,8) = O(s1,...,5i_1) (1)

are P1-bundles, which implies that the variety O(sy,...,s,) is smooth over
k. In a special case, this result seems to be implicit in [D-L], 9.2, p.148, but
a complete proof has not appeared in print. As a corollary, we obtain desin-
gularizations of O(w) and of the Schubert varieties considered by Demazure
([Dem], see also [Gaul).

We call a P™-bundle a morphism of schemes f : £ — Y such that for
an open covering U, of Y, E|U, = f1(U,) is Us-isomorphic to U, x P®,
i.e. there is an isomorphism of E|U, onto U, x P™ compatible with the
projections of these two schemes onto U,. As indicated at the beginning, all
schemes and morphisms are defined over k. This notion coincides with that
of a locally trivial fiber space with fiber P™ and structure group PGL, 1,
the full group of automorphisms of P™ ([Gro], ch.IV, 4.7).

Before proceeding, note that the projections 7 in (1) are G-equivariant
with respect to the left action of G.

Lemma 1. The morphism 7 : O(s) — X, s € S, is a P -bundle.

To avoid introducing additional notation, in the course of this proof we

will view X as G/B with the pertinent changes for O(s) and 7. Since 7 is



G-equivariant, it will be enough to find a nonempty open subset V' of G/B
such that O(s)|V is V-isomorphic to V x P. The family {gV | g € G} gives
the required covering of G/ B because each g € G induces isomorphisms V' —
gV, O0(s)[V — gO(s)|gV, and V xP* — gV x P! that allow us to transport
the given V-isomorphism O(s)|V — V x P! to a gV-isomorphism gO(s)|gV
— gV x Pl Let U be the unipotent part of B, B’ the Borel subgroup
opposite to B, and U’ its unipotent part. We have UN B’ =U'N B = {e}.

1. The set U'B, the big cell, is open in G ([Hum], 28.5, Proposition,
p.174); since it is also saturated with respect to the equivalence relation
defined by B (i.e. it is a union of B-equivalence classes), the quotient U’'B/B
is open in G/B. We set V = U’'B/B and observe that the canonical bijective
quotient morphism

7:U' -V =UB/B

is an isomorphism ([Bor], 6.1, Corollary, p.95).

2. Let P; = BsB U B be the minimal parabolic generated by B and s
([Hum], 29.3, Lemma B, p.178). Since dim(P;/B) = 1, it follows ([Hum],
25.3, Theorem p.154, or [Bor|, 13.13, Proposition, p.171) that P,/B = P

3. We need to show that

7Y V) ={(uB,upB) |ue U p€ P}.

The inclusion of the second set into the first is clear. To prove that the first
set is included in the second, pick an element (¢B, gsB), gB = uB, g € G
and u € U'. Then g = ub, and, setting p = bs with § a representative of s,
bsB = ubsB = upB.

4. Finally, the map

7 YV) = V x (P,/B)

(uB,upB) — (uB,pB)

is well-defined as a set-theoretic map given that the u € U’ is uniquely
determined by uB, and pB is obtained by multiplying upB by v ! on the
right. To prove that this map is a morphism, we first notice that

(V) CV x (G/B).

Call pr; and pry the projections of V' x G/B onto V and G/B, inv : U' — U’
the inverse, i.e. inv(u) = u™', and recall that 7 : U" — V was the canonical
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isomorphism. With these notations, our map becomes

1

(pry, (inv o 77" o pry) - pra)

with the domain restricted to 7 (V) and the codomain restricted to V' x
(G/B) if necessary. This proves that our map is a morphism. We leave to
the reader to define the inverse in the obvious way and to show that it is a
morphism. Clearly both morphisms are V-morphisms. 0

Remark 2. We mention that O(s) is also a PY-bundle with respect to the
second projection. This can be seen easily by starting with the new pair of
mazimal torus *~ T =T and Borel "' B instead of T and B.

In the future we want to identify

O(s1,--,8) = O(s1,...,81) xx O(s;)

as schemes, where the morphisms into X defining the right hand side are
respectively the last and the first projections. The reader can verify that the
canonical map (By, ..., B;) — ((Bo,-..,Bi-1), (Bi_1, B;)) is an isomorphism
on the level of varieties (=reduced schemes), and the only technical point left
to check is that O(sy,. .., s;_1) xx O(s;) is reduced. This is true because this
fiber product is a P!-bundle over O(sy,...,s; 1), being obtained from the

Pl-bundle O(s;) = O(s;) by extending the base from X to O(sy,...,8; 1)-
By induction, we can also get the identification

5(31,...,8i)=0(51) Xx -+ Xx O(s;)

with the appropriate projections. Now, combining these identifications with
1, we get the following theorem.

Theorem 3. The morphism
m:O0(s1,...,82) = O(81,...,80-1),
s; € S, is a Pl-bundle.
We call the sequence

O(s1y...,5,) = O(81,...,8p-1) = - —=0(51) = 0() = X

the iterated P*-bundle over X corresponding to (si, ..., 8p)-
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Corollary 4. The variety O(s1,...,5,), s; € S, is irreducible and smooth of
dimension dim(X) +n over k, and O(sq, ..., s,) is dense open in O(s1, . .., Sp).

We recall that, if E — Y is a P1-bundle, and Y is smooth over k (resp.
irreducible over k), then E is smooth over & (resp. irreducible over k). For the
irreducibility, see, for instance, [EGA], IV, 2.3.5 (iii). By considering the iter-
ated P!-bundle over X corresponding to
(S1y---,5n), the theorem reduces to the fact that X itself is irreducible and
smooth over k£, which follows from the connectedness of G and the transi-
tivity of the action of G on X. The assertion about the dimension is clear.
The fact that O(sy,...,s,) is open in O(sy, ..., s,) follows easily from the

definitions. Since O(si, ..., s,) is irreducible and O(sy, ..., s,) is nonempty
and open, it is also dense. O
Now let w =81...8,,8 € S,i=1,...,n, be a reduced decomposition of
w € W. We have a commutative diagram
_ ¢ -
O(Sla"'asn) O('LU)
w T

X (2)

where ¢ is the morphism defined by ¢(By,...,B,) = (B, B,) (See [D-L],
9.1, p.148 and [D-L], 1.2(a), p.106), and w and 7 are the first projections.
In the following corollary, by desingularization, we mean with Grothendieck
([EGA], IV, 7.9.1) a proper birational morphism (consequently surjective) of
a nonsingular variety into another, possibly singular, variety.

Corollary 5. With the notations above, always assuming that w = sy ...s,
1s a reduced decomposition, we have: L

(i) The morphism ¢ : O(sy, ..., 8,) — O(w) is a desingularization.

(ii) For any x € X, the restriction ¢, : w ' (z) — 7 1(x) of ¢ to the
fibers of w and m over x is a desingularization.

(i) This result is known and appears in a more precise form in [D-L], 9.1,
p.148. We sketch an argument in the present context. It is clear that the
morphism ¢ is proper, being a morphism of projective varieties. Moreover ¢
induces an isomorphism ¢° : O(sy, ..., s,) — O(w) since w = s1...5, is a
reduced decomposition ([D-L], p.106). The rest follows from Corollary 4.



(ii) As in (i), the morphism ¢, is proper, being a morphism of projective
varieties. The commutative diagram (2) restricts to

¢0
0(81,...,8n) ~

O(w)

" 0

X

In this situation, the restriction ¢2 : (@)t — (7%) ! of ¢° to the fibers over
x is also an isomorphism. On the other hand

(@®) " H=x) = @ (z) N O(so, ..., 5n)
is nonempty and open, and consequently dense in w *(x). Similarly
=1/ _ ——1
()" (z) =7~ (z) N O(w)
is nonempty and open, and consequently dense in 7 !(z). O

Remark 6. For w € W, let S(w) be the image of the Bruhat cell C(w) =
BwB under the morphism G — G/B — X, g — gB +— gBg'. The

closure S(w) is called the Schubert variety corresponding to w. Then S(w) =
{**B | b€ B} and, ifzg =B € X,

(n°) Hzp) ={(°B, *"B) | *B = B} = {B} x S(w).

Thus we can identify S(w) = 7~ *(zp) and we can regard the morphism ¢y,
as a desingularization of the Schubert variety S(w).
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