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Abstract

The result here answers the following questions in the affirmative:
Can the Galois action on all abelian (Galois) fields K/Q be realized
explicitly via an action on characters of some finite group? Are all
subfields of a cyclotomic field of the form Q(x), for some irreducible
character x of a finite group G7 In particular, we explicitly deter-
mine the Galois action on all irreducible characters of the generalized
symmetric groups. We also determine the “smallest” extension of Q
required to realize (using matrices) a given irreducible representation
of a generalized symmetric group.

1 Introduction

We show that the Galois action on all abelian (Galois) fields K/Q can be
realized explicitly via an action on characters of a finite group. Moreover, that
all subfields of a cyclotomic field are of the form Q(x), for some irreducible
character y of a finite group G.

Let us note that not much better can be expected. Since G is a finite
group, if ¢ € G’ and 7 is any finite dimensional complex representation of G
then 7(g) is of finite order. This forces the character value x(g) = trm(g)
to be a sum of roots of unity. Therefore Q(x) must be a subfield of some
cyclotomic field, hence abelian.
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The main result of this paper is to explicitly determine the splitting field of
any irreducible character x of a generalized symmetric group GG. Generalized
symmetric groups occur in diverse parts of mathematics - in classifying linear
codes up to isometry in the Hamming metric [2] and in the mathematics of
the Rubik’s cube [4], to mention a few.

We shall also be able to answer the following question: What is the “small-
est” extension of Q required to realize (using matrices) a given irreducible
representation of a generalized symmetric group? This is closely related to
the problem of the Schur index, which was basically solved by M. Benard
[1], who showed that the splitting field is equal to the field Q(x) generated
by the character values (i.e., that the Schur index equals 1; in fact he proved
this for a wider class of groups that we consider here). Here we answer the
question “what is this field?” by effectively computing its Galois group (see
Theorem 1.1 below). Benard’s result is sufficient if you know the character
table of the representation. However, if the group is large then this is, in
general, not computationally feasible, in which case more explicit results are
useful.

The following theorem is our main result.

Theorem 1.1. If K/Q is any abelian extension then there is a generalized
symmetric group G and an irreducible character x of G for which K = Q(x).
Moreover the Galois action on K s given by Lemma 5.1.

This will be proven in the last section. Unexplained notation and defini-
tions shall be given below.
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2 Background

The character theory of generalized symmetric groups is presented, for ex-
ample, in [5] and in [6], so we shall be brief. We shall use the notation of [6]
below.



2.1 The generalized symmetric group

Let C; = {0,1,...,£ — 1} denote the (additive) cyclic group of order £ > 1
(addition is modulo ¢, let S,, denote the symmetric group of degree n > 1,
and let G' denote the semi-direct product G = C} x S,,. We think of this as
the set of pairs (v, p), with v = (vy, ..., v, ), where each v; € Cy, p € S,,, where
Sn acts on CF by p(v) = (Vp), Up(2)s ---» Up(n)), and multiplication given by
(v,p) * (V',p') = (v+ p(v), pp), for (v,p), (v',p') € G. A group of this form,
also written S, wr Cy, will be called a generalized symmetric group.

For any finite group G, let G* denote the set of equivalence classes of
irreducible representations of G. If GG is abelian then G* is a group under
ordinary multiplication.

2.2 Representations of some semi-direct products

The representations of a semi-direct product of a group H by an abelian
group A, G = A x H (so A is normal in G) can be described explicitly in
terms of the representations of A and H. The purpose of this section is to
recall briefly how this is done.

Let A, H be subgroups of G = A x H, with A C G normal and abelian ®.
Let f € R(H) be a class function on H. Extend f to G trivially as follows:
f%9) = f(g), for g € H, and = 0, for ¢ € G — H. Define the function
¢ =1ind%(f) induced by f to be

ind% (f)(g) |H| Zfo T lgr) Z Pz tgz). (1)

zeG z€G/H

Since A is normal in GG, G acts on the vector space of formal complex
linear combinations of elements of A* C[A*] = span{u | p € A*}, by
(gp)(a) = u(g~tag), for all g € G, a € A, pu € A*. We may restrict this
action to H, giving us a homomorphism H — S+, where S4- denotes the
symmetric group of all permutations of the set A*. This restricted action is
an equivalence relation on A* which we refer to below as the H-equivalence
relation. Let [A*] denote the set of equivalence classes of this equivalence
relation. If u, 1’ belong to the same equivalence class then we write in this
section 4’ ~ p (in the next section, ~ will be used for a different equivalence

!Think of G as having the multiplication rule (a1, hi)(az, hs) = (alagl,hlhz), where
a" denotes conjugation.



relation). When there is no harm, we identify each element of [A*] with a
character of A.

For each p € [A*],let H, = {h € H | hu = p} denote the stabilizer of
pin H. Let G, = A x H,, for each p € [A*]. There is a natural projection
map p, : G, — H, given by (a, h) — h, i.e., by p,(a,h) = a. Extend each
character p € [A*] from A to G, trivially by defining p(a, h) = p(a), for all
a € Aand h € H,. This defines a character u € G},. For each p € Hj, say
p: H, — Aut(V), define p = pop,. For each u € [A*] and p € H}; as above,
let

Oup = indg“ (- p) (2)

Finally, we can completely describe all the irreducible representations of

G.

Lemma 2.1. (Proposition 25 in [6], chapter 8)

(a) For each p € A* and p € H;; as above, 0, is an irreducible represen-
tation of G.

(b) Suppose 1, us € A*, p1 € H: , py € HY . If 0, 50 = O,y p, then py ~ pio
and p1 = po.

(c) If m € G* then m = 0,,,, for some p € A* and p € H}; as above.

2.3 Characters of generalized symmetric groups

Let G = C} xS, A= Cy. Write u € [A*] as p = (pt1, ..., itn), Where p; € C;.
Let p, ..., u;. denote all the distinct characters which occur “in p”. Let n
denote the number of i}’s “in p”, ny denote the number of uf’s “in p”, ...,
n, denote the number of y!’s “in p”. Then n = ny + ... + n,. Call this the
partition associated to p. It is well-known (and easy to prove) that

(Sn)y = Sny X oo X Sy,

The Frobenius formula for the character of an induced representation
specializes to the following formula.



Lemma 2.2. Let G = C} % Sy, let x, denote the character of p, and let x
denote the character of 0, ,. Then

Xw,p)= D xolgpg " (v),

9ESn/(Sn)u

for allve C} and p € S,. In particular, if p =1 then

x(v,1) = (dim p) D p(v).

9ESn/(Sn)u

2.4 The Frobenius-Schur indicator

Let G be any finite group. In general, there are three “types” of representa-
tions of a finite group:

Definition 2.3. Let p : H — Aut(W) be an n-dimensional irreducible rep-
resentation of a finite group H on a complex vector space W. Let x denote
the character of p.

Ezactly one of the following possibilities must hold:

1. One of the values of the character x is not real. Such representations
will be called complex (or type 1 or unitary).

2. All the values of x are real and p is realizable by a representation over
a real vector space. Such representations will be called real (or type 2
or orthogonal ).

3. All the values of x are real but p is not realizable by a representation
over a real vector space. Such representations will be called quater-
nionic (or type 3 or symplectic).

Let v(x) = ﬁ Y nen X(h?). The quantity v(x) is called the Frobenius-
Schur indicator of p.

We denote the contragredient of a representation 7w by 7*.

~s *

Lemma 2.4. Let m denote an irreducible representation of G. If m 2«
then m is real. If m =0, , then m is real if and only if p is self-dual.



proof: This lemma is proven by calculating the Frobenius-Schur indicator
of a representation of a generalized symmetric group.
Let G = C} x S,. Note that if = (¢,¢),y = (h, (') € G then

v =(g",C+g(Q), vy =(T=h({))

The trace of 6),,(2%) is 5~ times
>opea Xoy™ ey pe(y~"a%y)
= > hes, 2ogecy Xo(h g h)p(h(C) + hg(C) + ¢' = g°h(C"))  (3)
s, B PRYAC) + a(C) Secy HC — a?h(C)).

By orthogonality, the last sum is zero unless u = u9°", where p°" is the
character one obtains by composing p with the permutation g?h : C3 — CJ.
If g = 1 then the inner sum in (3) above is only non-zero in case h € (S,),.
If, in addition, h € (S,), then the inner sum in the last term of (3) is equal
to " = |C}|.
Now let us sum (3) over all z € G. First, note that

> w(h(Q) + k() =0

¢ecy

unless p¢ = L. If p9 = pt and p = po" then p = p.

Therefore, either the sum of (3) is zero or there is an element gy € S,
such that p% = p~' = 1. In particular, 6, , is not complex if and only if u
is self-dual.

By Benard’s result [1], G has no quaternionic representations.

The result now follows from [6], Proposition 39 in §13.2. O

3 Splitting fields

Let x denote an irreducible character of a finite group G. Since the Schur
index over Q of x is equal to 1 [1], each such character is associated to a
representation 7 all of whose matrix coefficients belong to Q(x).

It is known that if F' is a field of characteristic p > 0 then mp(x) = 1
(see Theorem 9.21(b) in [3]). Consequently, the results of this section may
have analogs over a field of prime characteristic as well.



3.1 Key lemma

Let 6, , € G* be the represention defined in (2), where p € ((Sn)u)*.

Let K C Q(¢¢) be a subfield which contains the field generated by the
values of the character of 6, ,, where (; is a primitive ¢ root of unity. Let
I'x = Gal(Q(¢r)/K). Note if we regard Cy as a subset of Q((;) then there is
an induced action of ', on CY,

o:pu— p’, pe (Co)*, o€lk,

where u?(2) = u(o7%(z)), z € Cp. This action extends to an action on
(CF) = (C7)™.

The following result may be called our “key lemma”.

Lemma 3.1. In the notation above, o € 'k induces an action o* on charac-
o~/

ters given by 0™ : 0, , — 0 , = 40 ,. In particular, 0, = 07 , if and only
if p is equivalent to u® under the action of S, on (C})* described in §2.2.

proof: This follows immediately from Lemma 2.1. [
Let
nN(T) = ‘{Z | 1<:< T, Mg :T}‘a

where p = (uy, ..., tn) € (C})* and 7 € Cj.

Theorem 3.2. The character of 0, , € G* has values in K if and only if
nu(7) = nu(7%), for all o € T'x and all T € Cj.

proof: We can extend the action of I'x on (C})* to ((Sn), x C7)* =
((Sn)u)* x (C7)* by making it act trivially on the (S,),)* component. Since
G* is a union of such sets (by the construction in Lemma 2.1), we may extend
this action to obtain an action of I'x on G*.

To determine the circumstances under which (the equivalence class of)
0, is invariant under each o € 'k, we use the “key” Lemma 3.1. Since p is
equivalent to p7 if and only if n,(x) = n,(x?), forall 0 € 'k and all x € C},
the theorem follows. [J

3.2 The main result

Let I' = Gal(Q({r)/Q), so I' 2 (Z/¢Z)*. Let G = S,, wr Cy and identify the
set G* with the set of irreducible complex characters of G. As was explained
above, I' acts on the set G*. Indeed, let v € I' be given by v = 0g,, in the
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notation of §3.3 above, where a € (Z/(Z)*, and let © = (Ney, Neys s Ney ) s
in the notation of §2.2 above. In this notation, vy sends x = tr(6,,) to
X" = tr(0,,~), where

N7 = (naelanaega ---a"?aen)-
Let x = tr(f,,,) and let

Stabr(x) ={v €T | x=Xx"} (4)

denote the stabilizer of x in I'. We conclude the following result.

Lemma 3.3. Let x =tr(0,,). We have

Stabr(x) = {0a € ' | (Maer> Naess -+ Naen) ~ (Mers Neas -+ New ) }4

where two n-tuples v, w satisfy v ~ w if and only if they belong to the same
S,,-orbit.

We now “determine” the splitting field of any irreducible character of a
generalized symmetric group.

Theorem 3.4. Let x =tr(8,,) be an irreducible character of G = S,, wr C,
as in §2.2. We have

Gal(Q(¢r)/Q(x)) = Stabr(x).

proof: If v € Gal(Q({)/Q(x)) then v(z) = x for all z € Q(x). In
particular, v(x(g)) = x(g) for all g € G. Thus, v € Stabr(x). Conversely, if

v € Stabr(x) then v must fix all elements in Q(x). O

Theorem 3.5. If K/Q is any abelian extension then there is a generalized
symmetric group G and an irreducible character x of G for which K = Q(x).
Moreover the Galois action on K is given by Lemma 35.1.

proof: From the theorem above and the Kronecker-Weber theorem, it
suffices to show that each subgroup of I' = (Z/¢Z)* occurs as a Stabr(x),
for some irreducible character x of some generalized symmetric group G.

Let H C T be a subgroup and let {ey,...,e,} denote integer represen-
tatives for the elements of H. Let f : (Z/¢Z)* — (C;)" denote the map
defined by

F(@)((Mers s Men)) = (Naers -5 Taen)-
Since, for all a € (Z/{Z)*, aH = H if and only if a € H, we have
F(@)((Meys--sMe,)) ~ (Meys--sMe,) if and only if a € (Z/¢Z)*. This proves
that for this choice of G and x (both depending on H), Stabr(x) = H. O
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Example 3.6. Let G = Sy, wr Cs, let p = 1 and let p = (p1, pz, 3, fa) €
(Cg)* be given by
3

pa) =a, pp(a) =d®,  pala) =a’,  pa(a) =a’, a € Cs.

Let x denote the character of 0y ,. A calculation using a program written in
the MAPLE computer algebra package gives Q(iv/2) C Q(x).
Let (g = €*™/8. The Galois group

Gal(Q(¢s)/Q) = (2/82) = {1,—-1,3, -3},
is order ¢(8) = 4 and is given by Gal(Q((s)/Q) = {1, 7,0,07}, where T(a) =
a=a""', o0(a) =a* fora€ Cs. If you think of (Z/8Z)* as a group of integers
mod 8 then, under the above indicated isomorphism, T corresponds to —1 and
o to 3. Note Gal(Q(iv2)/Q) = {1,7} and Gal(Q(¢)/Q(iv?2)) = {1,0}.
Since o (p1, o, s, ) = (U3, fa, 1, pt2), Theorem 3.2 implies that 6, , may
be realized over Q(iv/2). Thus mg(x) = 1.

3.3 Galois action on subfields of cyclotomic fields

In this section, we make explicit the Galois action on the cyclotomic fields.
Though it seems certain this material is known, I know of no reference.

Let n denote a positive integer divisible by 4, let r = cos(27/n), s =
sin(27/n), and let d = n/4. If
Ti(z) =z, Ty(x) =22"—1, Ty(x)=42® -3z, Ty(w)=8z"—-8z"+1, ..,
denote the Tchebysheff polynomials, defined by cos(nf) = T),(cos(f)), then
Td(T‘) =0.

If 0; € Gal(Q(¢,)/Q) is defined by 0;(¢,) = ¢ then Gal(Q((,)/Q) =
(Z/nZ)*,, where o; — j.
Lemma 3.7. Assume n is divisible by 4.

e Q(r) is the mazimal real subfield of Q((,) with

Gal(Q(Gn)/Q(r)) ={1,7},

where T denotes complex conjugation. Under the canonical isomor-
phism

Gal(Q(¢n)/Q) = (Z/nZ)*,
we have

Gal(Q(r)/Q) = (Z/nZ)*/{+1}.



e Ifn is divisible by 8 then r and s are conjugate roots of Ty. In particular,
s € Q(r) and Ty(s) = 0.

o We have o;(r) = T;(r)

e Ifn > 4 is a power of 2 then Ty is the minimal polynomial of Q(r).
Furthermore, in this case r and s can be explicitly computed using the
following formulas:

cos(m/4) = v/2/2, cos(n/8) = \/2+V2/2, cos(n/16) = \V2+y2+ V2/2, ..

The proof of this lemma is left to the reader.
Subfields of Q(r) may be obtained by replacing r = cos(27/n) by ry =

cos(2md/n), where d|n (note cos(d%0) = Ty, a(cos(dh))).
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