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Abstract

This is an expository account of certain aspects of non-abelian
harmonic analysis on n-fold metaplectic covers of SL(2) over a p-adic
field. Here we allow n to be any number greater than 1 and p to be
any prime. We will conjecturally describe the admissible, tempered,
and unitary duals of the n-fold metaplectic cover of SL(2). Then we
will give the Paley-Weiner theorems on these dual spaces based on
these conjectural descriptions.
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1 Introduction

This paper would be essentially an expository article if it weren’t for all
the conjectures. As it stands, it is a survey of what isn’t known about the
representations theory of central covering groups of p-adic reductive groups
in the case of SL(2). It is not by any means complete (I don’t know all that
isn’t known, ...) nor is it a guide to the literature. Proofs and pointers to the
literature are often omitted, although everything which is a theorem should
be in one of the references listed at the end of the paper. We will follow
the pattern of the expository paper [J1] which deals with the same topics (in
more detail) in the case n =1 and p > 2.

Although this paper will concern itself only with certain issues in har-
monic analysis on groups over a p-adic field F', some applications will be to
harmonic analysis on groups over a global field, so our set-up will partially



reflect the specific applications which need not concern us here. Our moti-
vation is to verify the analogs of the local assumptions in [A] needed for the
validity of Arthur’s invariant trace formula for the n-fold metaplectic cover
of SL(2,A;). We have merely succeeded in reducing the local assumptions of
[A] down to a list of specific conjectures regarding irreducible representations
of the n-fold covering group of SL(2, F). The readers will have to decide for
themselves whether or not I'’ve made already muddy waters even worst. In
any case, for this reason sometimes we will be working with SL(2, F') and
sometimes with a group G defined over Q as in [A].

1.1 Basic notation

Let F be a p-adic field with uniformizer 7 = 7, ring of integers Op, residual
characteristic p = char(Op/7nOF), ¢ = #(Or/7OF), and normalized valua-
tion |...| = |...|p. Suppose that £/Q is a number field containing the n — th
roots of unity p,. (If n > 2 then this implies F' has no real places, i.e, k, = C
for all v € X¢°.) For F = k, p-adic, let O = Or = O, denote the ring of
integers of F', m = mp = 7, a local uniformizer, ¢ = ¢, the cardinality of the
residue field, and v = vp = v, : F* — Z the normalized valuation, so that
v(r) =qt.

Let G denote the reductive group over Q defined from Gy = SL(2)/k
via restriction of scalars k/Q, so for example G(Q) =SL(2,k). Let Ay C Gy
denote the diagonal subgroup and let A = Res;/q(Ao/k).

The subgroups

UOZO;, U,=1+7"Op, n >0,

form a basis of open neighborhoods of the identity in F'*, generating the
topology on F*. The subgroups

a b

K():SL(2,OF), Kn:{[c d:| | a,d€1+7T"OF, b,CE’ﬂ'noF}, n >0,

form a basis of open neighborhoods of the identity in SL(2, F), generat-
ing its compact-open topology. A character or representation of F'* or
of SL(2,F) will always mean a continuous multiplicative (not necessarily
unitary) homomorphism into the automorphisms of a complex vector space,



where the domain gets the “compact-open” topology above and the range
gets the discrete topology.

Occasionally we use Vinogradov’s notation: given two functions f(x),
complex-valued and perhaps depending on some parameter A, and g(x) > 0,
we write

fr) <<y g(x),

if there is a constant ¢ > 0, which may implicitly depend on A, such that
|f(z)| < cg(z) for all z in some range which depends on the context.

2 Background

2.1 Local covers of SL(2)
2.1.1 Over F

Let F' = k,, where v € ¥;. By our assumptions, u, C F*. If p < oo then
FX :7TZ',LLq_1'U1,

a direct product. If (p,2n) = 1 then u,, C F* implies ¢ = 1 (mod n). Let

n, mn odd,
N= { n/2, neven. (1)

For g = (CCL 2) € SLy(F), let

c, c#0,
z(9) = { d ci 0
and let 8 = B, : SLy(F) X SLy(F) — py, be defined by

Bl91,92) = (x(91),2(g2))n - (—2(g1) " 2(g2), 2(9192))n (2)
z(9192) x(glgz))
z(91) ’ z(g2) i

where (..., ...)n = (coey oo )nw ¢ F¥ X F* — p,, denotes the Hilbert symbol [W].
Note that this is trivial if /' = C.




Lemma 2.1 (Kubota [K], Moore [M]) The map § defines a continuous Borel
2-cocycle (giving u, the discrete topology of course). Its cohomology class in
the continuous cohomology group H?(SLy(F), pn) corresponds to an n-fold
topological central extension SLy(F) which fits into the short exact sequence

1= pip — SLy(F) B SLy(F) — 1.

If H < SLy(F) is a subgroup then we define H = p~'(H) C SLy(F).

Elements of SLy(F) will be denoted by (g,<), where g € SLy(F), ¢ € puy.
Multiplication on SLy(F) is given by

(91,§1) : (92, §2) = (9192; 5(91,92)§1§2)- (3)

So inverses are given by
(9:9) =g Blg,g ) ) (4)
and conjugation is given by
(9:6) - (h,<") - (g,5) " = (ghg™", B(gh, g )B(g, h)Bg,97 ") '<).  (5)

3 : } C SL, denote the standard Borel, Ny its unipo-

tent radical, and A, its Levi component.

We let By = {

Lemma 2.2 For all g € A(F),

_f{a O
g_ 0 afl )

S € Uy, we have (g,C)_1 = (9_1, (a, a)nC_l)-

proof: This follows from the general properties: for g;, gs € Ao(F),

_ 3] 0 _ a9 0
g1 = 0 a1—1 v 2= ¢ a2_1 )
we have (g1, 92) = (a5 ', 0 )n,
(a) (a1, a2), = 1, provided a; € Ag(F)" or as € Ag(F)" (the set of n-th

powers),
(b) (a1, a2)n = (a2,a1);",
(c) (afla az)n = (a1, CLQ);I. O



Lemma 2.3 (a) Ny(F) = No(F) X p, (direct product),
(b) if p is relatively prime to n then SLy(O) = SLy(O) % py, (direct

product),
(c¢) if Ko = SLy(0) and

Km:{(i Z) € SLy(0) |a—1,d—1,b,c € 7O}, m > 0,

then K., = K, X py (direct product) for all m > n,
(d)ifn=2F=k,=R, and K, = SO(2,R) then K, # K, X i,

(e) The center of SLyo(F) is Z(SLo(F)) = {£1a2} X pn,

(f) For a; = (78 t01> € Ao(F), i = 1,2, and §; € py,, we have

(a1,61) - (ag,52) - (a1,61) 7" = (az, (t1,12),%52),

(g) the largest abelian subgroup of Ao(F') contains

cr={(§ ) lae @,

where N is as in (2.1). (In particular, Ao(F) is abelian if n = 1,2.)

Remark 2.4 In contrast to GL(r), for Gy = SL(2) the centralizer in Go(F)
of a regular element of the largest abelian subgroup of Ao(F) is not equal to
Ao(F).

proof: These are consegences of the well-known properties of the Hilbert
symbol [W].

For (d) see, for example, [Ge] or [Sa].

For (f), we have

(a1,6)7 " - (a9, %) - (a1,51) = (a1 h, (t1, 1)y 1) - (a2, ) - (@1, 1)
= (a'27 (tla tl)nCQﬁ(affl, agal)ﬁ(ag, CLl)).

Now we compute

Blas, ar) = (831,47 ) - (—taty L85 4 )
= (t3 "t )n - (=t 1y ) - (=t t
= (t3 8 Y - (=toy 8y ) - (B85 ) - (=t 67 ) - (8,80 )
= (—to t3 )n+ (—tost7 )n + (t1s 1)
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and 1 1,-1 1,-2 4,1
Blay s aga1) = (t1, 8y 6y )n - (=g 7875 85 )
= (bt - (1,8 ) (15 Do (8565 )
= (1,8 o (—ty 5t ) (t 85 n
The result follows since (a1, a1)n, = (—a1,01)5 - (=1,01)n = (=1, 01),.0
Corollary 2.5 Ifn = 2 then the 2-fold metaplectic cover Ao(F) of Ao(F) is
abelian.

For the purposes of the next section, we want to determine the maximal
abelian subgroup of the n-fold cover of Ay(F), where F' = k,, for some
1 <17 < m. We may assume that F'is non-archimedian since

(a) if n = 2 then Ay(F) is abelian,

(b) if n > 2 and if F' is archimedian then Ay(F') is abelian (in fact,
Ag(F) = C* Xy, splits).

Lemma 2.6 A subgroup C C Ay(F) is abelian if and only if (a,a’)? =1 for
all a,a’ € Ao(F).

proof: This is an immediate consequence of Lemma 2.3(f) above. O

Note that if C C Ay(F') is the maximal subgroup of Ay(F') for which
C C Ay(F) is abelian then F*Y C C, so F*/C is finite. We may assume
that C = 7%2U, for some open U C Op. If 2 = ¥y and y = ntv, for
k.t € Z, u,v € U then

(@,9)n = (m,m)p (/0" 7)a(u, v)n. (6)

If (p, N) = 1 then 1 + wOp is N-divisible in the sense that 1 + 70p =
(14+7Op)N. Identify p,—1 with OF/(1+7OF). From this, the above equation,
and Lemma 2.4, we have proven

Lemma 2.7 (a) If (p, N) =1 then C = 7?03~ = 7%u) (1 4+ nOp) is the
mazimal subgroup of F* for which C C Ay(F) is abelian.

(b) If N = p"d, where (d,p) = 1, and if e > 0 is defined by pOp = 1O,
then C = 720N = w%pud_ (1 + 7" Op) is a subgroup of Ay(F) for which

C C Ay(F) is abelian.




Remark 2.8 The determination of C should in principle follow from known
explicit reciprocity laws. Unfortunately, they become rather cumbersome when
p = 2 (which is the case we need them). See for example, [Sen].

The order of F*/7%(1 4+ nOp) is ¢ — 1, since
F*/n?(1+70p) 2 03 /(1 + 70F) = (Op/TOF)*. (7)

The order of 11 | is (¢—1)/(¢—1, N). Therefore, the order of F*/uY n*(1+
mOF) is (¢ — 1, N). The fact that F' contains the n-th roots of unity implies
that N|(¢ — 1). This proves part (a) of the following

Lemma 2.9 (a) If (p,n) = 1 then C = 7n*(1 4+ 70p)p) | has index N in
Fx.

(b) In general, the index of C = nOp" = 72pl_ (1 + 7" 0p) in F* is
(¢—1,d)-¢~

proof: (b) The map
z— 1+ 7z +7°0p
induces an isomorphism
Op /7" 0r — (1 +70r)/(1 + 7" OF).
Therefore, we have

#[(1+70p) /(1 + 7" Or)]g"™,
#lg1/pg] = (¢ —1,d).

The lemma follows. O

2.1.2 Over Q,

There is an « € FE be such that £ = Q(«) and let
minimal polynomial of a. If f factors as f(x ) = fi(z
fi € Q,[z] is irreducible then

k@@ = @ Qp (ai),

1<i<m

f € Q[z]| denote the
). fm (), where each
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where «; is a root of f;, 1 < i < m. The prime ideal (p) of Z when extended
to the ring of integers of k£, O, factors into a product

POy = Plel...P;Lm

Moreover, after a possible reindexing, for each place v; € 3 (corresponding
to the prime ideal P;) over p there is a field isomorphism 6; : Q,(c;) — ky,,
1 <4 < m. It follows that

1<i<m
where G; = Resy, /g, (SL(2)/ky,). In particular,
G@)= ][ K (9)

1<i<m

Note that G(Q,) = I1,, SL2(ky). Define 8, : G(Q,) x G(Q,) — pin by

Bp(g1, 92) = H B (91,05 G2,0)-
vlp

This is a 2-cocycle by Lemma 2.1 above. Define G(Q,) to be the n-fold

covering of G(Q,) associated to this 2-cocycle. We may identify G(Q,) with
a subgroup of [[, , SLa (k).

Let B = {( ; : } C G denote the standard Borel (defined over Q),

N its unipotent radical, and A its Levi component.

Lemma 2.10 (a) N(Q,) = N(Qp) X p, (direct product),
(b) if p is relatively prime to n then G(Z,) = G(Zy) X , (direct product),
(¢) if Ky = G(Z,) and

b
Km:H{<z d) € SLy(ky) |a—1,d—1,b,c € 'Oy}, m > 0,
vlp

then K,, = K, X pi, (direct product) for all m > n,
(d) The center of G(Q,) is Z(G(Qy)) = {£1a2} X pin.

9



t; O
(e) For a; = 0

(a1,61) 7" - (a2, 2) - (a1, 1) = (a2, [T, (B, t2)7 o52),
(f) the largest abelian subgroup of A(Q,) contains

Co, ={(§ 1 ) lee TT G0,

1<i<m

€ A(Q), i = 1,2, and g; € p,, we have

where N is as in (2.1). (In particular, A(Q,) is abelian if n =1,2.)

proof: These are all immediate conseqences of the previous lemmas. O

2.1.3 NAK decompositions

By the above lemma, we may identify N(Q,) with a subgroup of G(Q,)
via n — (n,1). We may identify Ky = K, with a subset of G(Q,) via
k —— (k,1). If p|n then this image is a subgroup.

Lemma 2.11 We have

G(Qp) = N(Qp) ’ A(Qp) : Kp'

Furthermore, if (g,5) = (n,1) - (a,¢') - (k,1) then the map (g,5) —>
a (mod Z(G(Qy)) is well-defined.

We call a function f of A(F') genuine if it satisfies

flg,) =<7 flg,1). (10)
Let C°(Gy(F)) denote the space of locally constant compactly supported

genuine functions on Go(F'). We call a representation 7 of Go(F’) (resp., of
any subgroup H of Go(F')) genuine if it satisfies

m(9,¢) = ¢-m(g,1). (11)
Let II(Go(F)) (resp., II(H)) denote the set of equivalence classes of genuine
(continuous, not necessarily unitary, complex) irreducible representations of
Go(F) (resp., H). Let IL,(Go(F)) denote the set of equivalence classes of

genuine (continuous, complex) irreducible unitary representations of Go(F)
(resp., I1,(H)).

10



2.2 Irreducible representations of Ay(F)

We use Clifford-Mackey theory to determine the genuine irreducible repre-
sentations of the local covers Ay(F). We assume that all representations are
smooth (the definition of smooth is recalled in the next section).

Let x denote a genuine (smooth, one-dimensional) character of C', where
C is a maximal abelian subgroup of Ay(F) as in the previous subsection.
Define x*2(a;) = x(azaia;"), for a; € C, ay € Ay(F). The conjugates x*
are of the form

X2(a1) = (t1,t2)2 - x(a1) (= x(a), if a; €C, i=1,2)
ar = (( t& t?l ) ,61) 65, ay = (< 7502 tgl ) ,S2) € Ao(F).(12)

In particular, there are no genuine 1-dimensioanl representations of Ay(F')
unless n =1, 2.

By Pontryagin duality, the characters of Ay(F)/C are in 1-1 correspon-
dence with Ay(F')/C itself. Explicitly, the correspondence is given by z —
Xz> Where x.(y) = (x,y)2. Therefore, there are #[A(F)/C | distinct char-
acters of Ag(F') which are trivial on C. The number of distinct characters
of C of the form x, (x € A¢(F)) is therefore #[A(F')/C ]. This proves the
following

Lemma 2.12 Let x denote a genuine character of C, where C is as in the
previous subsection. The number of distinct conjugates X" of x is #[Ao(F)/C].

Let C;, C A(Q,) denote a maximal subgroup such that C, C A(Q,) is
abelian.

Lemma 2.13 (Clifford-Mackey) If x € 11(C,) then x" # x for all h €

A(Q)/C, and

Ind (% (x) = d® ("), he AQ,),

18 both irreducible and genuine.

proof: This follows from (2.13) and an irreducibility criterion of Mackey
(see [Se] for the statement of the criterion for finite groups, the proof and
statement of which extends to the case considered here). O

11



To state more complete results, we state the extensions of some results of
Clifford to the case of totally disconnected groups (see Gelbart-Knapp [GK],
[BZ1, ch. I, section 2]):

Lemma 2.14 Let N denote an open normal subgroup of a totally discon-
nected group H for which H/N is finite abelian and let m denote an irreducible
admissible representation of H. Then

(a) there are finitely many irreducible inequivalent admissible representa-
tions m;, 1 <1 < M, such that

M
TN = @ miT,
i=1

(b) in the decomposition above, all the multipicities m; are equal,
(c) the subgroup
Hi={he H|r'=m}

has the property that H/H; acts transitively on the set of equivalence
classes
{m |1 <i< M} CII(H).

Lemma 2.15 Let N denote an open normal subgroup of a totally discon-
nected group H for which H/N is finite abelian and let w denote an irreducible
admissible representation of N. Then

(a) there is an irreducible admissible representation 11 of H such that
is a constituent of 11|y,

(b) if ILIT" are two irreducible admissible representations of H such that
(i) 7 is a constituent of 1|y and II'|x and (ii) |y and IT'|y are multiplicity-
free then

Iy 21y

and
I'=21I®v, somev e Hom(H,C*), v|y =1.

(¢) Each irreducible admissible representation I1 of H (is equivalent to a
representation of H which) occurs as a subrepresentation of Indim, for some
irreducible admissible representation of N.

12



Remark 2.16 Part (c) is a corollary of the proof of [GK, Lemma 2.3], the
other parts are as in [GK]. To be precise, part (c) is, when H/N is cyclic
of prime order, an immediate corollary of the proof of [GK, Lemma 2.3].
In general, one must verfify that the properties of induction of representa-
tions (such as inducing “in stages”, induction commutes with direct sums)
1s compatible with the process of mathematical induction used in the above-
mentioned proof. This is left to the reader.

We apply this lemma with

H = Ay(F), N=C,

to obtain

Lemma 2.17 Let x € [I(Ao(F)). Then

(a)
m
Xle = @ mipw
=1

for some distinct characters p; of C and some integers m; > 0.
(b) If x, X' € II(Ao(F)) satisfy

m m’
Xe=Pm Xle=EPu
i=1 i=1

and p; = w; for some i, j thenm =m', {p; | 1 <1 <m}p={p; |1 <i <m'},

and X' = 1 ® x for some character p of Ag(F) which is trivial on C.

(c) x is a subrepresentation of Ind%O(F),u for some character i of C.

Corollary 2.18 If x = Ind2>*" y € TI(Ay(F)) then

2.3 The dual spaces

In this subsection let G denote an ¢-group in the sense of [BZ1].
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2.3.1 General definitions

Let V denote a complex vector space and let 7 : G — Aut(V) denote an
admissible representation in the sense of [BZ1]. Let V' denote the dual space
of all complex-valued linear functionals on V, let V. denote the subspace
of vectors fixed by some compact open subgroup, and let < v,v" >= v'(v)
denote the evaluation pairing on V x V’. Recall the contragredient rep-
resentation of an algebraic (i.e., smooth) 7 : G — Aut(V) is the rep-
resentation 7’ : G — Aut(V]) satisfying < v,v" >=< w(g)v,7'(g)v" >,
for all v € V,v' € V., and ¢ € G. It is known that if a representa-
tion 7 : G — End(V) is admissible then its contragredient representation
' G — Aut(V]%) is admissible. A matrix coefficient of a representation
m: G — Aut(V) is a function on G of the form g —< 7(g)v, v’ >, for some
v € V,v' € V.. The space of matrix coefficients of 7 is denoted by A(7).

An admissible representation 7 : G — End(V) is called square-integrable
or in the discrete series if A(w) C L?(G). It is called cuspidal if every
function f € A(w) has compact support modulo the center and satisfies, for
each nilpotent radical N of a proper parabolic subgroup of G, [ N f(zn)dn =
0, for all z € G. Clearly, a cuspidal representation is square-integrable. A
representation 7 : G — Aut(V) is called unitarizable if V' has a positive-
definite G-invariant inner product (x,*) (that is, (7(g)v,7(g)v") = (v,v") for
all v,v" € V). The completion of V' with respect to this inner product is of
course a G-invariant Hilbert space H. Any representation 7 : G — Aut(H),
for some Hilbert space H whose inner product is G-invariant, is called uni-
tary. It is known and easy to check even at this level of generality that every
square-integrable representation is unitarizable.

We say that a representation = : G — Aut(V) is equivalent to a rep-
resentation 7' : G — Aut(V’) if there is a non-zero linear transformation
A:V — V' such that Ar(g)v = 7n'(g)Av for all g € G, v € V. The map A is
called an intertwining map. The unitary dual of G is the set II,(G) of
all equivalence classes of irreducible unitary representations of G and the ad-
missible dual of G is the set I1,4(G) of all equivalence classes of irreducible
admissible representations of G. For the group G of all F-rational points of
a reductive group over a p-adic field, it is known that IT,(G) C II4(G) [S].

If G = Go(F) then we will modify this definition slightly: the unitary
dual of Gy(F) is the set I, (Go(F')) of all equivalence classes of genuine
irreducible unitary admissible representations of G(F') and the admissible

14



dual of Go(F) is the set II,4(Go(F)) of all equivalence classes of genuine
irreducible admissible representations of G. Let II.(Go(F)) C IL,(Go(F))
denote the subset of cuspidals.

Each admissible representation 7 : G — Aut(V) gives rise to a repre-
sentation 7 : C°(G) — End(V) of the Hecke algebra C°(G) of all locally
constant functions with compact support on G:

w(f)v = /G f@)n(glvdg, veV, feCe(G),

where dg denotes a Haar measure on G. The linear transformation «(f) is
sometimes called the operator-valued Fourier transform of f at 7. For
admissible 7 it is known that 7(f) is finite rank as an element of End(V),
so the trace of 7(f) exists. Let ||7(f)|| denote its operator norm and let

[f1ls = sup [[x(f)I]

TEG,

The completion of C°(G) with respect to this norm |[|...||. is a C*— algebra
denoted by C*(G).

Let A denote a C*-algebra. A primitive ideal of A is the kernel of an
irreducible representation of A. Put the Jacobson topology on the set Pr(A)
of all primitive ideals of A. Let A" denote the set of equivalence classes of
irreducible representations of A on the bounded operators on a Hilbert space.
There is a canonical surjection A" — Pr(A) induced by 7 — ker(w). Give
A" the smallest topology such that this surjection is continuous. Call this
the Jacobson topology. This topology is Tj.

We define a topology on II,(G) using the following

Lemma 2.19 (Special case of a theorem of Dizmier): Let G denote a finite
central covering group of a reductive p-adic group. There is a canonical
bijection between the set I1,(G) and the set C*(G)" of equivalence classes of
irreducible representations of C*(QG).

We give I1,(G) the smallest topology such that this bijection is continu-
ous. Call this the Jacobson topology on II,(G).

A CCR algebra is a C*—algebra A such that every irreducible repre-
sentation 7 : A — End(H) is completely continuous (i.e., compact). It is
known, by a result of Fell, that if A is a CCR algebra and if we topologize
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A" using the Jacobson topology as above then the dual space A" is a T
topological space. (The converse is also true, by a result of Dixmier.)

Conjecture 2.20 (Analog of a theorem of Bernstein) Let G denote a finite
topological covering group of a reductive p-adic group. Then C*(G) is a CCR
algebra.

Remark 2.21 Can one prove that C*(Go(F))" is Ty by redefining the topol-
ogy on the dual using limits of matriz coefficients ([T])?

Following Mackey, we say that the dual space A" is smooth if there is a
Borel structure on it which is Borel isomorphic to the Borel structure on the
real line.

Lemma 2.22 (Fell, Mackey) If A is a separable CCR algebra then A" has a
smooth dual. Moreover, the Borel structure may be taken to be that generated
by the Jacobson topology on A™.

2.3.2 Jacquet functors

Let £(G) denote the set of all standard Levi’s (with respect to A), up to
associates. Therefore, L(G) = {A, G}. L

Let (o,W) € II.(M(F)) and let Iy/(0) : G(F) — Aut(V) denote the
unitarily induced representation: the representation of G(F') by right
translation on

V = {f:G(F)— W genuine |
(1) f(mg) = du(m)"a(m)f(g),

Vg € G(F), m € M(F) )
(2) for some open subgp K CC G(F), f(gk) = f(g),

Vk e K, g€ G(F)

Here 6y;(m) = | det(Ad(m)y)].

It is remarked in [BD, §2.2] that the arguments of [BZ1, chapter 2| carry
over to finite central extensions of reductive groups over a p-adic field (see
also [KP, §1.2]). I claim that the arguments of [BZ2, section 2], and the
corresponding sections of [Cal, carry over to finite central extensions of split
reductive groups over a p-adic field. Perhaps this should be regarded as a
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conjecture since they will not be repeated here and those parts which we do
need here can probably be proven directly with less effort. In any case, we
shall state such results as needed for Go(F') without proof, merely referencing
[BZ1], [BZ2] and [Ca].

If (m,V) denotes a Go(F)-module and if P = MN denotes a standard
parabolic of Gy, let VW denote the Jacquet module

Vi = VHr(mv —v v eV, ne N(F)}.

This sends admissible representations to admissible representations (this is
due to Jacquet, see [BZ1, sections 3.16-3.17] for the GL(r) case).

Lemma 2.23 (Jacquet [Ca, Theorem 5.2.1]) If Viy = O for all proper
standard parabolics P of Gy then (m, V) is cuspidal.

Proposition 2.24 (Jacquet [BZ1, section 3.19]) If 1 € I,q(Go(F)) then
there is a Levi M € L(Gy) and a cuspidal o € I1,q(M(F)) such that 7 is a
constituent of Iy (o).

In particular, every m € Il;4(Go(F)) which is not a constituent of an
induced representation of a cuspidal representation of a proper Levi occurs
discretely in the decomposition of the right regular representation of Go(F)

on L*(Gy(F)).
Let x,x' € II(Ag(F)). If x* # x for all w € W — {1} then we call x
regular. We say that y, x’ are W-conjugate if x' = x* for some w € W.

The following two results were proven for metaplectic covers of GL(r) in
[KP].

Lemma 2.25 (/BZ2, Corollary 2.13]) Let x € II(Ao(F)). The Jordan-
Holder series of 1y, (X)W has as its composition factors

Ind%O(F) (x” - 6;/02), w e W.

If x s reqular then

Ai w
Lo (O = Suew Indg? ("  637).
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Proposition 2.26 (/BZ2, Theorem 2.9(b)]) Let x,x' € I(Ao(F)). If x is
reqular then
dim Homg (14, (x), L4 (X)) < 1,

with equality if and only if X', x are W -conjugate.

In other words, distinct W-conjugacy classes of x € II(Ay(F)) yield in-
equivalent representations.

3 Description of the dual spaces

3.1 Principal series, reducible principal series

Let x € TI(Ao(F)). The induced representation I4,(x) is in general not
irreducible. However, we do have the following

Theorem 3.1 (Moen [Mo2]) If n is even and (p,n) = 1 then I4,(x) is
irreducible for all x € I, (Ao(F)).

In fact, C. Moen [Mol] explicitly computes the intertwining operators as
matrices using the Kirillov model. In the notation of the next section, we
have

Proposition 3.2 (Moen) If n is even and (p,n) =1 then
(1) if n =2 then J,J_, = AT (2u)T'(—2p),
(2) if n =2 then J,Jw = 16T (4p)0(—4p),
(8) if n >4 and n/2 is even then

det(J,) = n"/Q\y\_a”/zﬁq_a"/QF(na)%+1F(—na)%_11“7(—7 + 5),

(4) if n > 4 and n/2 is odd then
det(J,) = n"/2|y| "2~/ (na) T30 (—na) ¥ 3.
Conjecture 3.3 Ifn is even then I4,(x) is irreducible for all x € 1L, (Ao (F)).

Theorem 3.4 (Moen [Mo2]) If n is odd and (p,2n) = 1 then I4,(x) is irre-
ducible for all x € 11,(Ao(F)) such that x* # x where w = (< _01 (1) ) 1).
If x* = x then La,(x) is reducible and has two irreducible constituents.
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Conjecture 3.5 Ifn is odd then I4,(x) is irreducible for all x € T1,(Ao(F))
such that x* # x where w = (< _01 (1] ),1). If x* = x then I (x) is
reducible and has two irreducible constituents.
Proposition 3.6 (Moen) If n is odd and (p,2n) =1 then

det(J,) = n"y| ®*q *"T'(ne)?+2T(—na)? .

We can investigate whether or not two induced representations are equiv-
alent by using the Jacquet functor. In general, we have the following corollary
to Proposition 2.22 above.

Lemma 3.7 If x,x' € II(Ao(F)) are not W-conjugate then I,,(x) is not
equivalent to Ta,(x’').

Suppose that 7 € II,(Go(F)). We call 7 a (unitary) principal se-
ries representation if 7 = I, (x) for some x € II,(Ag(F)). These repre-
sentations are tempered. (We define tempered in the next section.) We
call 7 a complementary series representation if m1 = I4 (x) for some
X € II(Ao(F)) — T1,(Ao(F)). These representations are not tempered.

3.2 Complementary series

In this subsection, we shall review the results of Ariturk [Ar], or at least
those which easily generalize to the n-fold cover.

Let p € II(C), x = Ind%O(F)u € II(Ao(F)). If u(z) = po(z)|z|®, for some
character g of finite order and some s € C then we write s = s(u) = s(x)-
Let K(u) denote the space of locally constant functions f : F' X Aq(F) —
C such that
(1) f(z,a1a2) = p(ar) f(x, a2), a1 € C, ag € Ao(F),

(ii) |=|x( g qu ,1)f(x,a) is constant for |z| large.

Let R C Ay(F) denote a complete set of representatives of A¢(F)/C, and
let r denote the cardinality of R. The elements f € K (u) may be identified
with the r-tuple (f(z, a))qcr-

Let

Fi={x € F|v(z) =i (modn)}

and let S(F') denote the Schwartz space of F.
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Lemma 3.8 ([Ar, Lemma 3.1]) For ¢ € S(F), ps(x) = |z|* and 0 <
Re(s) < 1,1 <j<n-—1, then

[ som@@ e =gr e [ b@me@ e D,

Fn_1yi—1

where |c;| =1 and ¢;...cp—1 = 1.

Lemma 3.9 ([Ar]) For ¢ € S(F), us(z) = |z|* and 0 < Re(s) < 1, then

[ e = [ o @@

where K s a locally constant function.

Let V(1) denote the space of all locally constant functions ¢ : Go(F) X
Ao(F) — C such that

(1) go(g,alaz) = /’l‘(al)(p(gaG‘?): a €C,a € AO(F):

(i1) p(a1g,a2) = §(a1)e(g, azaq), where a; € Ag(F), as € Ag(F).

Here § denotes the usual modulus function (extended to Ay(F') via the
obvious pull-back). For ¢ € V' (1), let

Felga) = [ ot | o 7 |- gowaw s, Re(s) >

Lemma 3.10 [ intertwines I4,(1) and I4,(u"*).

Let L(Go(F), Bo(F)) denote the space of all locally constant functions ¢
on Go(F) such that

a %
(| 5 )5 |00 = laPeto)
For ¢; € V (1), po € V(u™), the function
g— _¢1(g,a)pa(g,a)da
Ao(F)/C
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belongs to L(Go(F'), By(F')). Therefore,

< 1,09 >=/ / _p1(g,a)p2(g, a)dadg
Bo(F)\Go(F) / 40(F)/C

1 1 x :| -1 |: 1 z :| X
= o1 (w - ,a)po(w - ,a)dad™
/F/AO(F)/C ! [0 1 Jerl 01 )

gives a non-degenerate bilinear form on V' (u) x V(u®).

Lemma 3.11 4, (uY) is the contragredient of I,(1).

Lemma 3.12 For ¢, @2 € V(u), p(z) = ||, we have

< o1, Ty >= / / F @, ) TR (&, a)dad*,
F JAo(F)/C

where J = J,, is a linear transformation on K(u)" and

filz,a) = gi(w™" - Lo a), i=1,2.
0 1
We may identify J with an r X r matrix which we still denote by J.

Conjecture 3.13 If 0 < Re(s(p)) < 1 and |[Im(s(p))| < w/nln(q) then
det(J) = 0 if and only if p(z) = |z|* and s = 1/n.

Lemma 3.14 (Langlands, Ariturk) If 0 < Re(s(u)) < 1/n and [Im(s(u))| <

n/nln(q) then the image of J, is an irreducible representation of Go(F).

Conjecture 3.15 If 0 < s(u) < 1/n and p(x) = |z|® then J, is a positive
definite matriz and < @1, Ly > is a positive definite form. In particular,
I4(p) is unitary in this range.

3.3 Special representation, non-tempered representa-
tion

In the notation of the previous subsection, we have the following
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Conjecture 3.16 If s = 1/n and pu(z) = |z|® then the image of J, is “the
special representation” my,. It is elliptic, square-integrable and spherical. If
n > 1 then the kernel of J,, is an infinite-dimensional, elliptic, non-tempered,
non-spherical representation m,; which contains and Iwarort fixed vector.

It seems reasonable to expect that

(1) the representation g, is the only square-integrable representation in
I1,(Go(F)) which is not cuspidal.

(2) msp is tempered.

(3) The representation m,; and the complementary series comprise the
only non-tempered representations in IL,(Gy(F)).

3.4 Cuspidal representations

Thanks to ideas originally introduced by Weil and Shale, much is known
about the cuspidal representations in I, (Go(F)) in the case where n = 2
and p > 2. In the general case, a great deal of information can be obtained

from [F], [Bl], by restricting from an n-fold cover GLy(F) of GL(2, F') to the
n-fold cover of SL(2, F').

Lemma 3.17 IfII € I1,(GLy(F)) is cuspidal then there are finitely many

cuspidal representations m; € I1,(Go(F)), 1 <1i < M, such that

M
H|G0(F) - @ -
i=1

Remark 3.18 The number M 1is independent of Il if n > 1 but not if n = 1!/

We call the set {m; | 1 < i < M} a packet associated to II or a II-packet.

It is natural to ask if every cuspidal representation m € IL,(Go(F)) occurs
in some II-packet. In the case n = 2, p > 2, this question is investigated in

[GPS].

3.5 Summary

We sketch the conjectural structure of the dual spaces. For further details in
a special case, see [J1].
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The admissible dual may be regarded as a real manifold which consists of
an countably infinite number of disjoint non-compact “cylinders” each being
analytically isomorphic to C/Z (the principal series) disjoint union with an
countably infinite number of distinct points (the reducible unitary principal
series, the special representation, its non-tempered “complement”, and the
cuspidal representations).

The unitary dual may be regarded as a real manifold which consists of
an countably infinite number of disjoint compact “circles” each being iso-
morphic to R/Z (the unitary principal series and the complementary series)
disjoint union with an countably infinite number of distinct points (the re-
ducible unitary principal series, the special representation, its non-tempered
“complement”, and the cuspidal representations).

The tempered dual may be regarded as a real manifold which consists
of an countably infinite number of disjoint compact “circles” (the unitary
principal series) disjoint union with an countably infinite number of distinct
points (the reducible unitary principal series, the special representation, and
the cuspidal representations).

4 The Fourier Transform

For f € C*(Gy(F)) and 7 € II(Go(F)), we define the operator-valued
Fourier transform of f at 7 by

r(f) = / f@)n(@) dz, | e C2GolF)).

Go(F)

Lemma 4.1 If f,g € C®°(Gy(F)) then w(f x g) = w(f)7(g).

Let Go(F) = {(g,5) € Go(F) | g has distinct eigenvalues}, called the

regular set of Gy(F). In particular, every element in the regular set is semi-
simple (i.e., diagonalizable). The following result is a corollary of a result of

Howe and Harish-Chandra [S]:

Lemma 4.2 There exists a genuine locally constant function denoted ©, on

the regular set GO(F)I which represents the trace of 7 :

trace(r(f)) = / 0. (2)f (z)dz,

Go(F)
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for all f € CX(Go(F)).

This trace, which we sometimes denote simply by ©,.(f), is called the
Fourier transform of f at . The function ©,(x) is called the character
of 7.

Sketch of proof: We modify the proof of [S, Corollary 4.8.2].

By Lemma 2.3, over each sufficiently small compact open subgroup K of
Go(F), the cover Go(F) — Go(F) splits. For such a group, we may and will
identify the dual group £(K) (in the notation of [S]), with the subset of the
dual group £(K) consisting of representations which are trivial on p,,. This
allows us to extend the “intertwines” definition of [S, section 4.8] to Go(F).

The following result is a consequence of a theorem of Howe [S, Theorem
4.8.1]:

Lemma 4.3 Let T be a Cartan subgroup of Go(F) and letw C T' = Go(F)'N
T. There exists a compact open subgroup K; C Go(F) with the following
properties:

1. K splits,

2. Fiz a compact open subgroup Ko C Go(F) such that K, splits, and an
element dy € E(K,). Let F denote the set of all dy € E(K1) such that
(i) Go(F) intertwines dywith da,

(ii) w intertwines dywith itself.
Then F' 1is finite.

Replace the use of [S, Theorem 4.8.1] in the proof of [S, Corollary 4.8.2]
by the above lemma. This will yield the claimed result. O

4.1 The Schwartz space and the tempered dual

b
d

log||g||- For each compact open subgroup K CC Gy(F), let

Let [} = max(ial .l [d), where g = | &} | € G and let o) =

Ck(Go(F)) = {f € CGo(F)//K) |
- f genuine
(@) <<vy gty VE = (2,5) € Go(F), },
for each r > 0
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where C.(Go(F)//K) denotes the space of compacty supported functions
which are bi-K-invariant,

Ex)= [ Op(zk) Y?dk.

Ko

Here, for z € GO(F)I, we have 0p(T) = | det(Ad(zq))n|, where z, denotes
a diagonalization of z in SL(2, F), where F denotes a separable algebraic
closure of F' and the valuation |...| has been extended to F. It’s known that
there are constants ¢; > 0, ¢y > 0, N > 0 such that

a1 < E(@) < e(1+0(a)™, a=(a,9),

um” 0
0 wuln ™

topologize Cx(Go(F)) via the semi-norms

foralla€A+:{a€A|a:[ ],uEO;i,nZO}.We

Let

where K runs over all compact open subgroups of Go(F). This is the
Schwartz space of Go(F). Let S denote the collection of all seminorms
on C(Go(F)) whose restriction to each Cx(Go(F)) is continuous. In the
semi-norm topology induced by S, the Schwartz space is a complete locally
convex topological vector space.

Lemma 4.4 (1) C(Go(F)) C L*(Go(F)),
(2) C(Go(F)) is an algebra under convolution.

Let

Danl| § o [p=aert=aa § 2 [
oy

1—-ad)(1—a?)=—(a—a 12
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Here g, apdenote the Lie algebras of Gy, A;. For t € GO(F)I, let T =
Cent(t,Go(F)) = Go(F),, denote the centralizer. Note T need not be equal
to the metaplectic cover of a centralizer of Gy. In other words, if ¢t = (z,¢)
then in general Cent((x,1),Go(F)) # Cent(z,Go(F)). Define the orbital
integral of f € C°(Gy(F)) by

@)= D0 [ fa ) (13

T\Go(F)

(This exists as a simple consequence of a well-known result of Harish-Chandra
[HC].) We define D as above by identifying T with Ay over the algebraic

closure. If a € Ag(F), then define

¥ @) = D@l [ f ). (149)

Ao(F)N\Go(F)

Lemma 4.5 For f € C*(Go(F)), a € Ag(F) — Ag(F)N, we have Ff‘l’v(a) =
0.

proof: Since dx is a Haar measure, we may replace x by a;x, where

a; = (( tol t?l );ﬁ) € Ay(F), and the integral defining F}qév(a) must

remain invariant. Let a = (( (t) t91 ) ,5). Then

F{9(a) = ()2 - F{ (a).

It follows that F]’:“]’V(a) =0 or (t,t;)2 = 1. By the properties of the Hilbert
symbol, if (¢,¢;)? =1 for all ¢; then t € (F*)V. O
The following result will not be needed but is included for completeness.

Lemma 4.6 (1) The map f —> FAéV defines a surjection CX(Go(F')) —
f c

O (A(FT). )
2) The map f —> Fibo defines a continuous surjection C(Gy(F)) —
f

C(A(F)N).
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proof: Because of Lemma 4.5, we may write, for a € Ao(F)V N GO(F)I,

AN _
£ @ = D@ | flaan) 2 (15)
Ao(F)\Go(F) a

since Cent(a, Go(F)) = Ao(F). Here da is a suitably normalized Haar mea-
sure on Ag(F').

(1) For f € C®(Go(F)) and a € Ay(F)N = Ay(F)N N Go(F), the
function z — f(z7'az) is compactly supported on Ay(F)\Go(F') and

AN
Fy* (a) =|

= dp(a

()" [maor )f(fl““’”)z_ﬁ
VW2 [y [x, f(kank™")dkdn
5(Wwamm

where
A x)= [ flkxk)dk. (16)

Ko

Since the function z — f(z~'az) is compactly supported on Ay(F)\Go(F)
the function z — f%°(z~'ax) is compactly supported on Ay(F)\Go(F)/Kp.
We claim that given any compact set Y CC Go(F), there is an a € Ay(F)
with sufficiently large o(a) such that an ¢ Y, for all n € N. Indeed, we may
map Y onto Y C Go(F)/Kq via Go(F) — Go(F) /K, and aN onto aN. Since
Go(F)/K, is non-compact but Y is compact in Go(F)/Kp, the Iwasawa de-
composition implies that we may find an a € Ay(F) such that aN NY = 0.

N e
From the claim it follows that F }4 ® (@) is compactly supported on Ay(F ),.
Moreover, since f is locally constant so is fX°. Since fX° is compactly
!
supported, [, f%°(an)dn is a locally constant function on Aq(F).

N
It remains to show that F;‘ % (a) extends to a locally constant function

on all of Ag(F). This follows from the Shalika germ expansion for covering
groups [V]. It is also an immediate corollary of part (2), which we turn to
next. v

(2) The existence of the orbital integral Ff ° (a) follows directly from
the corresponding result on Go(F") (which is a consequence of a more general
result of Clozel). As a consequence of a result of Harish-Chandra and Lemma
2.3(a), the map f — fZ defines a continuous map C(Go(F)) — C(Ao(F)),
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where
1% (a) = b5(a)"? /N f(an)dn (17)

Note that both = and o are bi-Kj-invariant, so the map f —— fXo
defines a continuous map C(G) — C(G). Consequently, the composition
f > [0 — F/ii defines a continuous map C(Go(F)) — C(Ao(F)). This
completes the proof. O

We call a distribution D on C°(Gy(F')) tempered if it extends contin-
uously to C(Go(F')). We call a genuine locally constant function h on Go(F)
tempered if the distribution

fr— f(@)h(z)dz

Go(F)

is tempered (here h(z) denotes the complex conjugate, so h(g,<) = <-h(g,1),
for all (g,¢) € Go(F')). We call an admissible representation 7 tempered if
each h € A(w) is tempered.

Lemma 4.7 (Analog of [S, Lemma 4.5.2]) Assume the conjectures of section
3. m € Iq(Go(F)) is tempered if and only if the distribution f — O, (f)
extends continuously to C(Gy(F)).

We will partially verify this below. It is clear from the definitions that if
7 € Maq(Go(F)) is square-integrable then 7 is tempered.
We will verify parts of the following statements below.

Conjecture 4.8 (a) A genuine tempered representation of Go(F') is unitary.
(b) A genuine square-integrable representation of Go(F') is tempered.

To determine which representations of the unitary dual are tempered,
we compute their characters and verify directly that they do not grow “too
rapidly” in a neighborhood of the singular set.

4.2 Character calculations

Let S denote a complete set of representatives of conjugacy classes of Cartan
subgroups of Gy(F'). We may and do assume that A € S. For each T € S,
let Wr = Ngor)(T)/T denote the Weyl group of T'. If ¢t € T is regular then

T C Gy(F): = Cent(t,Go(F))
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is finite index.
We begin with the

Lemma 4.9 (Weyl integration formula [S, p. 198]) For each f € C®(Gy(F)),

= ; 1/2 T
/(;O(F)f(g)dg—z#[WT]/T|D(t)| Ff(t)dt,

TeS

where
dz

F =100 [ pe)
T\Go(F)
and where D(t) = Dgyr(t) = det(l — Ad(t))g). Here g, t denote the Lie
algebras of Gy, T, resp., and S denotes a complete set of representatives of
Go(F)-conjugacy classes of Cartan subgroups of Gy defined over F.

Note that F}(t) = F} (t*), where w € Wy, so that Ff'(a) = F{'(a™'),
0 -1
1 0

1

since a¥ = a~ ", where w = [ ], in the non-metaplectic case.

4.2.1 Principal series

Lemma 4.10 Assume x = Indgo(F),u € II(Ao(F)) and suppose that x # x*.

The character of the irreducible representation m = I (x) is given on the
reqular set by

W, x = a?, for some g € Go(F), a € C — {£1},
Or(z) = . I —Go(F)
0, if ze€GyF) -C ,
where o
cor) {a |a € C, g€ Gy(F)}.

proof: We will identify K with the subset (K,1) C Go(F). Let V(x)
denote the space of m = I4,(x). We have, for k € K, p € V(x),

(m(N)) (k) = / f(@) (7 (z)e) (k)dz




- / J(k ' 2)p(a)da

_ / k= 1bk, ) o (bky ) dibddky

Bo(F
- // b) 2x(b) f (k™ 0ky)dib - (k) dky,
Bo(F

SO

tra(f) = / /B ()2t x (b) f (k~bk)dbdk (18)
= / / / (a)Y*trx(a) f(k~ank)dndadk.
Ao(F) J No(F
If ng = (( (1) alx ) 1), a= (( 3 t01 ) ,6) then we have

1
na-a-na=(<é oa(t 1t )),g):a-nl

-

if « =t/(t —t'). After a simple change-of-variables, we have

tro(f) = /AO //NO |t_|tT | (a)*trx(a) f (k~'n"tank)dndkda (19)

B / // =l 8(a)'*trx(a, 1) f (k™" - (n""an, 1) - k)dndkda.
Ao(F No(F

i

On the other hand, by the Weyl integration formula,

tra(f) = /mtwr(g)f(g)dg

- / trr(g,1)f (g, 1)dg
Go(F)

N _Z/At /T\GO(F

TeS

7w, 1)

L L e
Ag(F No(F)
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+%ZTES

AL
2 Jao(r) K J No(F)

xtrm(k™' - (n"tan, 1) - k)dndkdc

+%ZT€S

T 4 Ao(F) / A(t)? / Fatw, 1) trm ("t 1) ot
T T\Go(F) dt

T#AO(F)/A(t)zf f(z™ Mz, Dtra(z™ 'z, 1)d—xdt.
T T\Go(F) dt

The result claimed follows by comparing equations (4.7), (4.8), and Corol-
lary 2.15. O

Let x = Ind2" € TI(A(F)), m = Ls,(x) € (Go(F)). Then

ux(@= Y #e) (23)

heAo(F)/C

This lemma and the Weyl integration formula imply that, for f € C°(Gy(F)),

O(f) = Jgy Ox(2) f (x)dz
= 5 [y (trx(a, 1) + tr(x(a, 1) 1) F7* % (0, 1)da
= (F;*")(x)
Zher(F)/C(FAO(F)) (M )s

(24)

where
on trx(z)p(z)dz

€ 1A (F)) (25)

and
M) = Lo M@)o (2)dT
u T A(F)), (26)

w is irreducible then

) =Y, Z (th, 7" )n X (27)

heAo(F)/C M==00

If x = Ind®™
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()" / () i) ("), (28)

ho= ((tg t’?l),l)em/ﬁ

denotes the Fourier transform of ¢ € C.(A4o(F)). Note that this formula for
the character extends to the Schwartz space provided p (and hence ) is
unitary.

4.2.2 Reducible principal series

We shall not say much about this case, except to note that some information
about the characters can be obtained by global means [J2], [F].

4.2.3 Complementary series

The fact that these representations are not tempered follows directly from
the character formulas (Lemma 4.10) as in the non-metaplectic case [J1].

4.2.4 The non-tempered representation

This occurs as the “complement” of the special representation. Again, we
merely observe that some information about the characters can be obtained
by global means [J2], [F].

4.2.5 Square-integrable representations

These are all tempered and occur discretely. Since the characters are not
really needed we will not say more, except to remark that some information
about the characters can be obtained by global means [J2], [F].

5 The image of the Fourier transform

The above formulas allows us to classify (at least conjecturally) the image of
the Fourier transforms of a “generic” unitary principal series representation

m=1Is(x),x = Indgo(F),u € II(A¢(F)) on either C°(Gy(F)) or the Schwartz
space. Note that H = Ay(F)/C acts on C>®(C) and on C(C) by conjugation.
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Let C2(C)# (resp., C(C)H) denote the subspace of invariant functions. The
map

fo— f
@) = ) f(hah™),
heH

defines a surjection C>®(C) — C>*(C)H (resp., C(C) — C(C)™). Recall

PNw) = [px w(@)p(r)dz
w € TI(FX).

Lemma 5.1 Forp € CX(F*), the image C(F*)" of the Fourier transform
o — " (w) is given by

h is a trig polynomial on )

[ X\A x
CE(F)" ={h e C.(II,(F™)) | each circle in IT, (F*)

We omit the proof. (This lemma, and its Schwartz space analog below, is
proven using the inverse Fourier transform and the inversion formula, which
may be found in [Ta, pp. 43-44], [Ba, ch 12].) A similar lemma holds for A :

Lemma 5.2 For ¢ € C®(Ay(F)), the image CX(Ag(F))" of the Fourier
transform o — ©™(w) is given by

h is a trig polynomial on )

CZ(Ag(F))" = {h € Co(Tlu(Ao(F))) | each circle in IT, (Ao (F))

A similar lemma holds for C as well:

Lemma 5.3 For ¢ € C®(C), the image C(C)" of the Fourier transform
o — " (w) is given by
h is a trig polynomial on

Ce(0)" = {h € CILu(0)) | each circle in T, (C) g

As a consequence of the above lemma, since the map C®°(Go(F)) —
C>(C), given by f — Ff O(F), is surjective, it follows that the same descrip-

tion holds for the space of all functions of x of the form (F }4 0(F))/\(,u), p €
I(C) :
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Lemma 5.4 For f € C®(Go(F)), the image C®(Go(F))?, of the Fourier

0 ps
transform f +— O.(f), ™ = In,(x), x € (A(F)), x = Ind""p, is
given by

h is a trig polynomial on !

Cé’"(m)ﬁs = {h € C(IL(C)" | each circle in I, (C)

Next, suppose f € C(Go(F)), so FA0 e C(C).

Lemma 5.5 For ¢ € C(F*), the image C(F*)" of the Fourier transform
o — pw), w e IL,(F*), is given by

h is a trig series on each circle
C(F*)" ={h € C.(I1,(F*)) | in II,(F*) which converges absolutely }.
along with all of its derivatives

Similarly, we have

Lemma 5.6 For ¢ € C(C), the image C(C)" of the Fourier transform ¢ —
"), p € 1L,(C), is given by

h is a trig series on each circle
O)N ={h € C.(II,(C in II,(C) which converges absolutely }.
c(oy h e C.(1L,(C I1,(C) which bsolutel
along with all of its derivatives

Consequently, since the map C(Go(F)) — C(C) is surjective, it follows
that the same description holds for the space of all functions of x of the form
() (0

Lemma 5.7 For f € C(G(F)), the image C(Go(F)))
form f— ©.(f), m = La,(x) is given by

s 0f the Fourier trans-

h is a trig series on each circle
C(Go(F) ))ps = {h € C.(I, (C)HH | in II,(C) which converges absolutely 1.
along with all of its derivatives
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5.1 Admissible Paley-Wiener Theorem for smooth func-
tions

We verify an analog of a result of Bernstein-Deligne-Kazhdan [BDK] for

Go(F). The following result classifies the image of C°(Go(F')) under the
Fourier transform:

Theorem 5.8 (Assume the conjectures of section 8 above.) The image of

the Fourier transform m —— O, (f), for f € CX(Go(F)) and m € II €

oa(Go(F)), consists of the space of functions h on aq(Go(F)) such that
(1) h is supported on finitely many connected components of Iqa(Go(F)),
(2) h is reqular on I,4(Go(F)), regarded as a complex algebraic variety.

Let C®(Gy(F))~, denote the space of functions described in the above
theorem. We call it the admissible Paley-Wiener space.

sketch of proof: This follows from the (conjectural) classification above.
O

5.2 Unitary Paley-Wiener Theorem for smooth func-
tions

We use the information above to prove the following

Theorem 5.9 (Assume the conjectures of section 8 above.) The image of
the Fourier transform = —— O, (f), for f € CX(Gy(F)) and m € II €

I, (Go(F)), consists of the space of functions h on IL,(Go(F)) such that

(1) h is supported on finitely many connected components of I1,(Go(F)),

(2) h is a trigonometric polynomial on each circle in I1,(Go(F')) which it
18 supported on,

(8) if h is supported on the complementary series then h is a finite Laurant
series in T = g°.

proof: (1) follows from the admissible Paley-Wiener theorem.

(2) follows from the section on characters of principal series representa-
tions.

(3) follows from the section on characters of complementary series repre-
sentations.
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This completes the proof since h can be arbitrary on the discrete part of
the unitary dual. O

Let C°(Go(F))2 denote the space of functions described in the above
theorem. We call it the unitary Paley-Wiener space.

5.3 Tempered Paley-Wiener Theorem for Schwartz func-
tions

We also have the following

Theorem 5.10 (Assume the conjectures of section 3 above.) The image
of the Fourier transform m —— ©O(f), for f € C(Gy(F)) and 7 € II €
I1;(Go(F)), consists of the space of functions h on I1;(Go(F)) such that
(1) h is supported on finitely many connected components of I1;(Gy(F)),
(2) h is a trigonometric series on each circle in II(Go(F')) which it is
supported on, converging absolutely along with all of its derivatives.

proof: (1) follows from the admissible Paley-Wiener theorem.

(2) follows from the section on characters of principal series representa-
tions.

This completes the proof since h can be arbitrary on the discrete part of
the tempered dual. O

Let C(Go(F'))" denote the space of functions described in the above the-
orem. We call it the tempered Paley-Wiener space.

6 Linear functionals on the tempered Paley-
Wiener space

6.1 A result of L. Schwartz

The space of linear functionals on the tempered Paley-Wiener space can be
successfully described using the theory of distributions on the real line:

Proposition 6.1 (L. Schwartz [Sch, ch. III, Théoréme XXI]) Let S* denote

the unit circle. If T € C*®(S")" then there is a continuous function u on S*
and an integer m > 0 such that T = $2u (as distributions).
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As a corollary of this and the above Paley-Wiener theorem, we have the
following

Proposition 6.2 The dual space of the tempered Paley- Wiener space C(Go(F))"
1s 1somorphic to the direct product

& Ucs)™d D ¢

demo(Tly (Ag(F))) M0 o€mo(lgs(Go(F)))

where wo(X) denotes the set of connected components of a topological space X,
where [45(Go(F)) denotes the union of the reducible principal series, the spe-
cial representation, and the cuspidal representations, and where d, denotes
the evaluation functional on the space of (constant) functions on the (single-
ton) elements of mo(IL14s(Go(F))), and, if we write the unitary dual A as a

union of circles Sq = R/bz?q)z, where

dm
C(Sq)™ = {dO—mu | u continuous on Sy},

6.2 The Fourier transform of a tempered distribution

As a consequence of this, we can “completely describe” the Fourier transform
of a tempered distribution:

Theorem 6.3 If T is a tempered distribution on Go(F') then there is a

T" € b U cs)™ P P Cd,

demo(Ily (Ao (F))) m20 oemo(Iigs(Go(F)))

such that
T(f)=T"(f"),

for all f € C(Go(F)), where f*(m) = O,(f) denotes the Fourier transform
of f at m eIl € Ii(Go(F)).
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