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Abstract

In this expository article, we write down the admissible, unitary,
and tempered duals on SL(2), using the explicit parameterization of
Gelfand-Graev (and results of Sally-Shalika). This allows us to deter-
mine the Tadi¢ decompositions and natural Borel structures on the
dual spaces. Then we classify the image of the Schwartz space (resp.,
the Hecke algebra) under the Fourier transform and define the Fourier
transform of any tempered (resp., admissible) distribution on SL(2).
The Fourier transform of a tempered distribution can be made con-
siderable more explicit than that of an admissible distribution. In any
case, these results are then applied to an understanding of supertem-
pered distributions on SL(2).
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1 Introduction

This paper is a essentially an expository article. It is not by any means a
complete survey nor a guide to the literature. It is written to work out the
ideas in [J] in a special case. Proofs and pointers to the literature are often
omitted, although everything should be in one of the references listed at the
end of the paper. In order to make this paper appeal to a broader audience
(and to make it a more useful reference for myself and hopefully others),
lots of definitions are included and I've tried my best to (a) be precise, (b)
be as non-technical as possible, and (c) preserve the intrinsic beauty of the
subject (which is largely due to Harish-Chandra). To be honest, some of
the definitions and examples in §§7-9 seem to be unpublished, so this article
is not entirely expository. I hope what little new there is in those sections
does not remind anyone of the old joke about the PhD thesis (it was both
interesting and new, but the interesting parts where not new and the original
parts were not interesting). Questions, comments or constructive flames may
be sent to wdj@usna.navy.mil

1.1 Basic notation

Let G = SL(2, F), where F is a p-adic field with uniformizer 7 = 7p, ring
of integers Op, residual characteristic p = char(Op/7OF), ¢ = #(Or/7OF),
and normalized valuation |...| = |...|p. We always assume p > 2. Let ¢ denote
a fixed non-square unit so that 1,e, 7, em form a complete set of representa-
tives of F'*/(F*)2. The subgroups

U():O;v, U,=14+7"0Op, n>0,

form a basis of open neighborhoods of the identity in F'*, generating the
topology on F*. The subgroups

Ky = SL(2,0pr), K”:{[Z Z] | a,d € 1+7"0Op, b,cEW”OF}, n >0,

form a basis of open neighborhoods of the identity in (G, generating the
topology on (G. A character or representation of F'* or of G will always
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mean a continuous multiplicative (not necessarily unitary) homomorphism
into the automorphisms of a complex vector space, where the domain gets
the “compact-open” topology above and the range gets the discrete topology.

Occasionally we use Vinogradov’s notation: given two functions f(x),
complex-valued and perhaps depending on some parameter A, and g(z) > 0,
we write

f(z) <<x g(z),

if there is a constant ¢ > 0, which may implicitly depend on A, such that
|f(z)| < cg(z) for all z in some range which depends on the context.

2 Background on the unitary dual and the
admissible dual

2.1 Definitions

Let V denote a complex vector space. A representation 7 : G — Aut(V) is
called admissible if

(1) every v € V belongs to VX = staby(K), for some compact open
K CC G, (i.e., 7 is smooth),

(2) for every compact open K CC G, dim(VE) < cc.

Let V' denote the dual space of all complex-valued linear functionals
on V and let < v,v" >= v'(v) denote the evaluation pairing on V x V.
Let V denote the subspace of V' of vectors fixed by some compact open
subgroup. Define the contragredient representation of a smooth 7 : G —
End(V') to be the representation 7’ : G — Aut(V,) satisfying < v,v". =<
w(g)v, 7' (g)v" >, for all v € Vo' € V|, and g € G. It is known that
if a representation 7 : G — Aut(V) is admissible then its contragredient
representation 7’ : G — Aut(V],)) is admissible. A matrix coefficient of
a representation 7 : G — Aut(V) is a function on G of the form g —<
7(g)v,v" >, for some v € V,v' € V.. The space of matrix coefficients of
7 is denoted by A(7).

An admissible representation 7 : G — Aut(V) is called square-integrable
or in the discrete series if A(7) C L?(G). It is called cuspidal if every
function f € A(w) has compact support modulo the center and satisfies, for
each nilpotent radical N of a proper parabolic subgroup of G, [y f(zn)dn =



0, for all z € G. Clearly, a cuspidal representation is square-integrable. A
representation 7 : G — End(V) is called unitarizable if V' has a positive-
definite G-invariant inner product (x,*) (that is, (7(g)v, 7(g)v') = (v,v") for
all v,v" € V). The completion of V' with respect to this inner product is of
course a G-invariant Hilbert space H. Any representation 7 : G — Aut(H),
for some Hilbert space H whose inner product is G-invariant, is called uni-
tary. It is known that every square-integrable representation is unitarizable.

The following theorem was proven by Harish-Chandra subject one of two
statements, one of which was later proven by Bernstein, and the other was
later proven by Clozel.

Theorem (Harish-Chandra, Bernstein, Clozel) Any unitary representa-
tion m : G — Aut(H), has the property that there is a dense G-invariant
subspace V- = Hy, such that (7, V') is admissible.

We say that a representation m; : G — Aut(V7) is equivalent to a rep-
resentation mp : G — Aut(V3) if there is a non-zero linear transformation
A : Vi — V; such that Am(g)v = me(g)Av for all g € G, v € Vi. The map
A is called an intertwining map. The unitary dual of G is the set G,
of all equivalence classes of irreducible unitary representations of G and the
admissible dual of G is the set éad of all equivalence classes of irreducible
admissible representations of G. The only finite dimensional irreducible ad-
missible representation of G is the trivial representation. As a corollary to
the above theorem, we have a natural inclusion Gy C Gaa.

Each admissible representation 7 : G — Aut(V') gives rise to a represen-
tation representation 7 : C°(G) — End(V) of the Hecke algebra C2°(G) of
all locally constant functions with compact support on G:

n(f= [ fomlgvdg, veV, feCx@),

where dg denotes a Haar measure on G. The linear transformation «(f) is
sometimes called the operator-valued Fourier transform of f at 7. For
admissible 7 it is known that 7(f) is finite rank as an element of End(V).
Let ||7(f)|| denote its operator norm and let

11+ = sup [[x(f)I]

TEG,

The completion of C2°(G) with respect to this norm |[|...||, is a C*— algebra
denoted by C*(G).



Let A denote a C*-algebra. A primitive ideal of A is the kernel of an
irreducible representation of A. Put the Jacobson topology on the set Pr(A)
of all primitive ideals of A. Let A" denote the set of equivalence classes of
irreducible representations of A on the bounded operators on a Hilbert space.
There is a canonical surjection A® — Pr(A) induced by 7 — ker(w). Give
A" the smallest topology such that this surjection is continuous. Call this
the Jacobson topology. This topology is Tj.

We define a topology on G,, using the following

Theorem (Dixmier): There is a canonical bijection between the set G
and the set C*(G)" of equivalence classes of irreducible representations of
C*(G).

We give G, the smallest topology such that this bijection is continuous.
Call this the Jacobson topology on G

A CCR algebra is a C*—algebra A such that every irreducible repre-
sentation 7 : A — End(H) is completely continuous (i.e., compact). It is
known, by a result of Fell, that if A is a CCR algebra and if we topologize
A" using the Jacobson topology as above then the dual space A" is a T}
topological space.

Theorem (Bernstein) C*(G) is a CCR algebra.

Following Mackey, we say that the dual space A" is smooth if there is a
Borel structure on it which is Borel isomorphic to the Borel structure on the
real line.

Theorem (Fell, Mackey) If A is a separable CCR algebra then A" has a
smooth dual. Moreover, the Borel structure may be taken to be that generated
by the Jacobson topology on A".

QUESTION: Is there a natural topology on G 4q which generates a smooth
Borel structure and which, in turn, induces the Borel structure on G, via
the inclusion Gu C @ad?

We shall see that the answer is yes for SL(2).

2.2 The Tadi¢ decomposition

Let A denote the diagonal subgroup of G, and let £(G) denote the set
of all standard Levi’s (with respect to A), up to associates. Therefore,
L(G) ={A,G}. For M € L(G), we call a representation o : M — Aut(V') for
which A(o) C C®(M) a cuspidal representation of M. For M € L(G), let
M denote the set of equivalence classes of cuspidal representations o : M —
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Aut(V), and let Mé\,c denote the set of equivalence classes of cuspidal rep-
resentations o : M — Aut(W) which has unitary central character w, (i.e.,
lwy(2)| = 1 for all z belonging to the center of M). For example, if M = A
then

X(§ 1) =xX(a), where X'(a) = xo() - |,

Xo €
(

A ={x:A—-0Cx|
P i <0< g}

a 0
:{X:A—>CX|X(0 a”!
Xo €

(O
F*)u,
= X'(a), where X'(a) = xo(j5) - la|"**,
Op) tER, —pg <0< iy}

= (F)%,
where, for any commutative topological group H, H”" denotes the set of
continuous complex-valued (not necessarily unitary) characters of H.

Let X,n(M) denote the group of all unramified characters of M. For
example, if M = A then we may either write x € X,,(A) as

~~

‘t—f—ia

X(z) = m(%nx

e = 0 <

with xo € (Op)", t € R, X|1470, =1, and — or as

x() = 27,

where z € C* and vr denotes the usual valuation map (i.e., for all z € F*,
lz| = ¢7¥F®). Therefore, we may either identify X,,(A) as a countable
union of cylinders O/ 7% oras C.

Let (o,W) € M/ and let Ip/(0) : G — Aut(V) denote the unitarily
induced representation: the representation of G' by right translation on

(1) f(mg) = dm(m)'Pa(m)f(g),
Vge G, me M
(2) for some open subgp K CC G, f(gk) = f(9),

T
log(q)’

V={f:G->W| }.

Vke K, ge G
Here pr(m) = | det(Ad(m),)| where n denotes the Lie algebra of
{1}, M =G,
N= {lé ‘1”] lzeF}, M=A
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0

s0 64( 2 e ) = |a|?. Following Tadié, we let

0

G, = {all inequivalent irreducible unitarizable
constituents of Iny(xo) | x € Xun(M)},

G = {all inequivalent irreducible constituents
of Inr(xo) | X € Xun(M)}.

Theorem (Tadic¢) (a) G = Uper(a) Useny, Gl o
(b) Each G, , is both open and closed in G).

Each “component” G , is not necessarily connected. We can choose a
)

subset M of M, such that we have a disjoint union:
Go= 11 I
MeL(G) ce MGy, ,,

We shall see that for the admissible dual there is an analogous “decompo-
sition” (this is due to several people, Jacquet in particular [C], and pre-dates
the decomposition above)

Gh,= U U G

MeL(G) oeMP

We will see that we may impose a Borel structure on the admissible dual as
well.

3 Borel structure on the Tadi¢ components

Let V = C(F)« denote the vector space of locally constant complex-valued
functions on F'which are bi-K-invariant for some compact open subgroup
K cc F~*.

3.1 Principal series, reducible principal series
For x € (F*)",define T}, : G — Aut(V) by

dr +b
cr +a

(Tx(9))(x) = f(

Yx(cx +a)lcx +al™", g= [



Note that this representation is smooth.

Lemma (Gelfand-Graev): Let x, x1, x2 € (F*)"

(1) If x1 # x5, X2 then Ty, is not equivalent to T,,,

(2) T, = Ty

(3) Ty is unitary if x is,

(4) T is irreducible if and only if x # sign,, for each T = e,m,em,
where sign, denotes the non-trivial quadratic character on F* for which
sign, (1) = 1.

(5) if x = sign,, for some T =¢,m,em, then T\ decomposes into a direct
sum of two irreducible inequivalent unitary subrepresentations T; , Ty

The irreducible representations in (4) are called principal series rep-
resentations. The irreducible representations in (5) are called reducible
principal series representations. They, along with the special represen-
tation, are called limits of discrete series.

For x € (F*)} ramified, let

Gh = { Ty, if X' # sign,, foreach T =7, em
wx T U{TE, Ty}, if X' = sign,, for someT =m,em
| X(2) = x(2)27@), |z| =1, 2€ C*/},

where z; ~ 2z if and only if X(x)sz(z) = X(x)_le_UF(m) , Vz € F*. This is
either isomorphic to a half-circle union two doubleton sets (if the ramified
characters of order two occur in the orbit of x under X,,(A)) or to a circle
(if the ramified characters of order two don’t occur in the orbit of x under
Xun(A)), where {1} acts via the inversion map. All the T}, occurring in the
above set are irreducible and inequivalent For example, if x = sign, (resp.,
X = Sign.;) then x' = sign,. (resp., x' = sign,) is also in it’s orbit under
the action of the unramified characters of A.

Note that the set G/\X and the set G/\ 1 contain equivalent representa-
tions. We write (F ) / for the set of unltary characters modulo the equiva-
lence relation: x ~ ' if and only if ¥’ = xy~!.

For x € (F*)" ramified, let

— ¢ Ty, if X #szgnT, for each T =m,em
“d’X { , Ty b,oif X = szgnT, for some T =m em

| X’(»’G) = x(2)27) z € C*/},

where the equivalence action is as above. We can also write this as
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Gho = { Ty, if X' # sign,, for each T =m,em
wbx = U{TE, Ta}, if X' = sign., for someT =m,em
| X() :X(x)Xo(ﬁ)\x\t“a, some )

(00,1:0) € (O o R X [t M

where (xo,t,0) ~ (x4, t',0') if and only if xj = xp', ¢’ = —t, and ¢ = —0.
All the T, occurring in the above set are irreducible and inequivalent. This is
either isomorphic to C*/{%1} with two double points (if the ramified char-
acters of order two occur in the orbit of x under X,,(A)) or to {C*}/{£1}
(if the ramified characters of order two don’t occur in the orbit of x under
Xun(A)), where {£1} acts via the inversion map.

Note that the set Gj;, and the set G;\d’x,l contain equivalent represen-
tations. We write (F*)"/ for the set of characters modulo the equivalence
relation: x ~ X' if and only if ¥’ = x~ 1.

The unramified case contains the complementary series and special rep-
resentation as well, so will be handled later.

3.1.1 Borel structure on G, , x € Ay ramified

The Borel structure on GQ,X, when x does not belong to the orbit of some
sign, under X,,(A) is Borel isomorphic to the Borel structure on the circle.
The Borel structure on Gﬁ,x, when x does belong to the orbit of some sign,
under X,,(A) is Borel isomorphic to the Borel structure on the half-circle
union that on the set consisting of two (closed) points.
X € A" ramified

3.1.2 Borel structure on Gy, ,,

The Borel structure on Gj; , when x does not belong to the orbit of some
sign, under X, (A) is Borel isomorphic to the Borel structure on {C*} /{%1}.
The Borel structure on Gé\d’x, when y does belong to the orbit of some sign.,
under X,,(A) is Borel isomorphic to the Borel structure on C*/{+1} with
two double points.
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3.2 Complementary series

This is sometimes called the supplementary series. For V as above, —1 <
p<1, p#0,define T, : G — End(V) by T, = T,, where x(z) = |z|*, for
x € F*.

Lemma (Gelfand-Graev): Let —1 < p <1, p#0.

(1) If p1 # £po then T, is not equivalent to T,,,

(2) TP = T—,Dv

(3) T, is unitary,

(4) for 0 < p <1, T, is irreducible.

The irreducible representations in (4) are called complementary series
representations. We shall see later that these representations are “non-
tempered”.

3.3 The special representation and the trivial repre-
sentation

For V' and T, as above, we have

Lemma (Gelfand-Graev): Let x(z) = |z|™, for z € F*.

(1) Ty, is reducible,

(2) there is an irreducible, infinite-dimensional, unitary, square-integrable
subrepresentation T, of T,

(3) The quotient of T} by Ty, is 1-dimensional and unitary.

The representation in (2) is called the special representation. The
representation in (3) is called the trivial representation. We will see later
that the special representation is “tempered” but the trivial representation
is not.

3.4 The G) in the unramified case
We define

X' (x) = 277,
Toon s 1, Ty z=¢€% 0<0<m },

GT/A\,X = {TP’ TX" T+ signe )
0<p<l,

Stgne?
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if y is an unramified unitary character of A, and, if x is unramified on A

"(z) = 2vF(2) # |...|7Y, sign,,

A ) + - X
Gad,x - {TX ) Ts T, 17Tsp ‘ 2 € CX/{:i:l}, }a

igne? T Stgne?

where {£1} acts on C* by means of inversion. Note that the set G, and
the set G, - (resp., the sets G, , and G, ) contain equivalent represen-
tations.

3.4.1 Borel structure on G, x € A} unramified

This part of the dual consists of a circle, with opposing points identified (ex-
cept the point z = 1 is not identified with z = —1, since z = —1 corresponds
to the double point) , union a set of four points, union the line segment (0, 1).
On each connected component, the Borel structure can be taken to be that
inherited from the half-circle, the segment (0, 1), or the singleton set.

3.4.2 Borel structure on G X € A" unramified

A
ad,x’

This part of the dual consists of the C* /"with one double point, union a set
of two (closed) points. On each connected component, the Borel structure
can be taken to be that inherited from C'*/{£1} or the singleton set.

3.5 Cuspidal representations

For each quadratic extension E/F there is an infinite series of irreducible
cuspidal representations.

Let x € (E*Y)", where EX! denotes the kernel of the norm map, and
define T, : G — L*(G) by

(T (9)f)@) = [ Kilg |2.9)fW)dy,

where K, (g | z,y) is a certain distribution-valued kernel function [GG]. Let
Xo denote the unique character of E*! of order 2.

Lemma (Gelfand-Graev,Sally-Shalika) Let x, x1, X2 € (E*)".

(1) For x # xo, Ty, decomposes into a direct sum of 2 irreducible, inequiv-
alent subrepresentations T; , Iy,
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(2) For x = xo, T\, decomposes into a direct sum of 4 irreducible, inequiv-
alent subrepresentations T, TZ, T3, Ty,

(3) For x # Xo, we have Ty =T.",, T, =T,

(4) If X # xo and x1 # X2, X2 - then T, is not equivalent to T}, and T},
is not equivalent to T,

(5) If X1, X2 # Xo then T, is not equivalent to T,

(6) For each cuspidal representation o of G,there is a quadratic exten-
sion E/F and a character x € (E*")" such that o = T2, for some o €
{+,—,1,2,3,4}.

The treatment of the subrepresentations Ty, T2, T2, Ty given in [GG]
was not correct but was rectified in [SS1].

If o € G} =Gy, then G}, , = G, = {0}. The set of course gets the

ad,o
discrete topology.

3.6 Summary

The admissible dual G2, is a countable union of copies of C*/{+£1}, union a
C*/{£1} with two double points, union a C*/{+1} with one double point
and two (closed) points, union a countable number of singleton sets.

The unitary dual GJ) is a countable union of circles, union a “half-circle”
with two double points, union a “half-circle” with one double point and two
(closed) points, union the line segment (0, 1) mod 27/ In(g), union a countable
number of singleton sets.

4 The Fourier transform

For f € C*(G) and w € II € G4, we define the operator-valued Fourier
transform of f at m by

w(f) = [ f@)n(e) dz, feC2(O).
Lemma: If f,g € C°(G) then n(f xg) = 7(f)7(g)-
Let G' = {g € G | g has distinct eigenvalues}, called the regular set

of G. In particular, every element in the regular set is semi-simple (i.e.,
diagonalizable).
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Harish-Chandra showed that there exists a locally constant function, de-
noted O, and called the character of 7, on the regular set G’ which repre-
sents the trace of 7 :

trace(r(])) = [ Ox(z)f(2)dr,

for all f € C2°(@G). This trace, which we sometimes denote simply by ©,(f),
is called the Fourier transform of f at 7.

4.1 The Schwartz space and the tempered dual

b
d
log ||g||. For each compact open subgroup K CC G, let

Lot Jg] = max(lal. 5l [, where g = | ¢ | € G, and lot o(o) =

Cx(G) ={f e C(G//K) | |f(z)] << %, Vz € G,

foreachr >0

}7

where C.(G//K) denotes the space of compacty supported functions which
are bi- K-invariant,

=(z) = /K RACONEE

Here, for z € G', we have dp(z) = | det(Ad(z4))n|, where x4 denotes a diago-
nalization of z in SL(2, F), where F denotes a separable algebraic closure of
F and the valuation |...| has been extended to F. It’s known that there are
constants ¢; > 0, cg > 0, N > 0 such that

¢ < E(a) € (1 +0(a)”,

um” 0

+ _
foralla € AV = {a€ A|a= 0 u-lp—m

],uEO}i,nZO}.We

topologize Cx (@) via the semi-norms

Let



where K runs over all compact open subgroups of G. This is the Schwartz
space of G. Let S denote the collection of all seminorms on C(G) whose
restriction to each Ck(G) is continuous. In the semi-norm topology induced
by S, the Schwartz space is a complete locally convex topological vector
space.

Lemma (1) C(G) C L?(QG),

(2) C(G) is an algebra under convolution.

We call a distribution D on C2°(G) tempered if it extends continuously
to C(G). We call an admissible representation = tempered if the distribution
f — O,(f) extends continuously to C(G). Let G} denote the set of equiv-
alence classes of irreducible tempered representations of G, the tempered
dual.

Theorem (Harish-Chandra): Gy C GJ.

In fact, for our case of SL(2), we have

Gy =G, —{1,T,|]0< p< 1}.
Let

G1, = {all irreducible inequivalent tempered
constituents of In(xo) | x € Xun(M)},

We shall see that the following holds
Theorem: G} = Uyer(e) Usemy, GP,,

We will see that G}, = G}, if 0 € A, is ramified. If o is unramified then
G}, is the same as G7,, except that it doesn’t contain the 7}, or the trivial
representation. In other words, the only non-tempered unitary representa-
tions are the trivial representation and the complementary series. This will

follow from the character identities discussed next.

4.2 Character calculations

Let S denote a complete set of representatives of conjugacy classes of Cartan
subgroups of G. We may and do assume that A € S. For each T € S, let
Wy = Ng(T)/T denote the Weyl group of 7.

We begin with the

Lemma (Weyl integration formula [S, p. 198]) For each f € C*°(G),

[ 4@ = ¥ i [ 100 F @,

TesS
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where

FF () =D [ f )

and where D(t) = Dg/r(t) = det(1—-Ad(t))g/. Here g, t denote the Lie algebras of G, T.
Note that Ff (t) = Ff ("), where w € Wy, so that Ff'(a) = Ff(a™),

0 -1
; w _— ,—1 —
since a¥ = a ,Wherew—l1 O]'

4.2.1 Principal series

Note that

Lemma (1) The map f — F7* defines a surjection CZ°(G) — C(A).

(2) The map f — F}* defines a continuous surjection C(G) — C(A).

proof: (1) For f € C®(G) and a € A" = AN G, the function z —
f(z taz) is compactly supported on A\G and

Ff(a) = |D(a)["? fa\q f(z " az) G
= 0p(a)'? [y [i, f (kank=")dkdn
= dp(a)'"? [y f(an)dn,

where

F(z) = /K (kak ™

Since the function  — f(z7'az) is compactly supported on A\G the
function z — f(2z~'az) is compactly supported on A\G/K,. We claim that
given any compact set C CC G, there is an a € A with sufficiently large o(a)
such that an ¢ C, for all n € N. Indeed, we may map C onto C C G/Kj via
G — G/K, and aN onto aN. Since G/Kj is non-compact but C is compact
in G/K,, the ITwasawa decomposition implies that we may find an a € A
such that aN N C = ). From the claim it follows that F!(a) is compactly
supported on A’ = ANG'.

Moreover, since f is locally constant so is f. Since f is compactly sup-

ported, [y f(an)dn is a locally constant function on A’.
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It remains to show that F' fA(a) extends to a locally constant function on
all of A. This follows from either the Shalika germ expansion. It is also an
immediate corollary of part (2), which we turn to next.

(2) The existence of the orbital integral F!(a) follows from Clozel. By
Harish-Chandra, the map f — f? defines a continuous map C(G) — C(A4),
where

fP(a) = 5B(a)1/2/Nf(an)dn

Note that both = and o are bi- K-invariant, so the map f — f defines a
continuous map C(G) — C(G). Consequently, the composition f —s f
FTA defines a continuous map C(G) — C(A). This completes the proof.

Let x € (F*)" and suppose that x # x~!.

Theorem (Gelfand-Graev) The character of the irreducible representa-
tion

m =T, is given on the reqular set by

g
x@ix@= . _a 0
O.(z) = la—a-1] > T [ 0 a-l ] , for some g € G, a # %1,

0, if €@ — A%,

where A = {a? |a € A, g € G}.
This and the Weyl integration formula imply that

Or(f) = Jo Ox(z) f(z)dz
= L@ +x(@) DFACY L )
= (F)"(0),
where
PNw) = [px w(@)p(z)d*x
=20 o w(m)" fo,x w(u)p(r™u)du, w € (FX)N

denotes the Fourier transform on F'*. Note that this formula for the character
extends to the Schwartz space provided x is unitary. In fact, we have
Lemma: A principal series representation T, is tempered if and only x
18 unitary.
The above formulas allows us to classify the image of the Fourier trans-
forms of a unitary principal series representation on either C2°(G) or the
Schwartz space.
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First, suppose f € C2°(G), so Fj' € C°(A).
Lemma: For ¢ € CX(F*), the image C°(F*)" of the Fourier transform
o — " (w) is given by

h is a trig polynomial on }

o0 XA\A X\A
CEF)" = {h € Ce((F7)) | each circle in (F*)h

We omit the proof. (This lemma, and its Schwartz space analog below, is
proven using the inverse Fourier transform and the inversion formula, which
may be found in [Ta, pp. 43-44], [Ba, ch 12].) As a consequence of the above
lemma, since the map C°(G) — C°(A) is surjective, it follows that the same
description holds for the space of all functions of x of the form (F/*)"(x) :

Lemma: For f € C*(G), the image CP(G),), of the Fourier transform
f—0.(f), n=1T,, x € A} is given by

his a trig polynomial on )

o] AN A
C&(Gps = th € CelAy,) | each circle in A},

Next, suppose f € C(G), so Ff* € C(A).
Lemma: For ¢ € C(F*), the image C(F*)" of the Fourier transform
o — " (w) is given by

his a trig series on each circle

C(F*)" ={h € C.((F)M) | in (F*)) which converges absolutely }.
along with all of its derivatives

Consequently, since the map C(G) — C(A) is surjective, it follows that
the same description holds for the space of all functions of x of the form
(FA ()

Lemma: For f € C(G), the image C(G),; of the Fourier transform f ——
O©.(f), m =1, is given by

his a trig series on each circle
C(Q)y, ={h € C.(A},) | in A} which converges absolutely }.
along with all of its derivatives
4.2.2 Reducible principal series
Let x € (F*)" and suppose that x = sign,, for some 7 = ¢, 7, em. Let

m =T} orm =T, . Following [SS] or [Fr] (see also [A]), the character ©, of
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a reducible principal series representation is given on the regular set by

g
‘T;gf;_(sf‘), T = l g a(’)l ] , for some g € G, a # +1,
O,(z) = .
(=) exr(O)|Dr(t)|"Y2,  x conjugatetot € (T, UT#)NG',
0, otherwise,

where T, T# are two non-split Cartans (which are not conjugate if —1 €
(F*)? or if 7 = €) and where e, ,(t) is a bounded locally constant function
on G' — AY. Using this, the Weyl integration formula, and the reasoning
above, it can be shown that

Lemma If 7 = T; orm="1T, then  is tempered.

4.2.3 Complementary series

Let x = |...|7” for some 0 < p < 1. As in the case of the principal series, we
see that 7T, is not tempered because x is not a unitary character.

Lemma If m =T, then 7 is non-tempered.

The character ©, of a reducible principal series representation is given
by the same formula as in the case of the principal series. This and the Weyl
integration formula imply that

@W(f) = Jg GW(m)f(m)dx
_ a O
= 3 fplla[ 4 [al)FACS D
= M(F7)(p),
where M denotes the Mellin transform

Mo(p) = [px |z Po(x)d*x
=20l 0 0" Jopx p(m"u)du.

Lemma: For ¢ € C°(F*), the image MCX®(F*) of the Fourier trans-
form ¢ — O(f), m =T, is given by

L )d*a

MCX(G) ={h € C*(0,1) | his a finite Laurant series in ¢” }.

Consequently, since the map C°(G) — C*(A) is surjective, it follows
that the same description holds for the space of all functions of x of the form

M(Ff)(p) :
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Lemma: For f € CP(Q), the image MC(G) of the Mellin transform
f— M(Ff)(p) is given by

CX(F*)* ={h € C>(0,1) | his a finite Laurant series in ¢° }.

4.2.4 The special representation

Let m = T,. Then

M—l, T = la 91 r, for some g € G, a # +£1,
-1, z € G' — A%,
It follows from this and the Weyl integration formula that
O (f) = Jg Ox(2) f(2)dz
= 4 fpellal o[ — o —a DEACE D
— Yres—{ay 3 Jo [D@)|V2FF (t)dt.

This converges even for f in the Schwartz space, so we have
Lemma: If 7 =T, then 7 is tempered.

1 )d%a

4.2.5 The trivial representation

Let m=1so
O.(z) = 1.
To see that

O,(f) = [ f@)ds

diverges in general on the Schwartz space, we use [S, Lemma 4.2.5] to compute

e %dm = 2 acA+ /A0 “(KOGKO)%

d5(a)~1/2Z(a
R Y geat a0 (KoaKo)dp(a)' 21—3((110((1))7"( :

~ Yaeat /a0 08(0)' " rrsayr=a

for some constant 7y and all » > 0. (Here p denotes the volume.) This
diverges for all 7, so the trivial representation is not tempered. (Here f(a) ~

g(a) means f(a) << g(a) << f(a).)
Lemma If 7 =1 then w is non-tempered.
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4.2.6 The cuspidal representations

The characters of the cuspidal representations will not be given here - we
refer to [SS2]. They are all of the form

oz(x)—i—%, r e G — AC,

O,(x) =

(@) { 0, r¢ G — AY,

where «, 3 are uniformly bounded locally constant functions on G’ — A,

From this and our previous estimates, it is not hard to see that the cuspidal

representations are tempered (see also [S, Theorem 4.5.1, Theorem 4.5.10]).
Lemma: If 7 € G} then 7 is tempered.

5 The image of the Fourier transform

5.1 Admissible Paley-Wiener Theorem for smooth func-
tions

The following result classifies the image of C2°(G) under the Fourier trans-
form:

Theorem (Bernstein-Deligne-Kazhdan) The image of the Fourier trans-
form m— ©,(f), for f € C=(G) and 7 € 11l € G, consists of the space of
functions h on G%, such that

(1) h is supported on finitely many connected components of G2,

(2) h is regular on C*/{£1} in G2, , regarded as a complex algebraic
variety.

Let C°(G)n; denote the space of functions described in the above theo-
rem. We call it the admissible Paley-Wiener space.

5.2 Unitary Paley-Wiener Theorem for smooth func-
tions

We use the information above to prove the following

Theorem The image of the Fourier transform m —— ©,(f), for f €
C>®(G) and m € 11 € G2, consists of the space of functions h on Gl such
that

(1) h is supported on finitely many connected components of G2,
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(2) h is a trigonometric polynomial on each circle (or half-circle) in G.
which it is supported on,

(8) if h is supported on the complementary series then h is a finite Laurant
series in T = q°.

proof: (1) follows from the admissible Paley-Wiener theorem.

(2) follows from the section on characters of principal series representa-
tions.

(3) follows from the section on characters of complementary series repre-
sentations.

This completes the proof since h can be arbitrary on the discrete part of
the unitary dual.

Let C°(G). denote the space of functions described in the above theorem.
We call it the unitary Paley-Wiener space.

5.3 Tempered Paley-Wiener Theorem for Schwartz func-
tions

We also have the following

Theorem The image of the Fourier transform m — ©.(f), for f € C(G)
and m € 11 € G}, consists of the space of functions h on G} such that

(1) h is supported on finitely many connected components of Gy,

(2) h is a trigonometric series on each circle (or half-circle, ignoring the
double point if it occurs) in G} which it is supported on, converging absolutely
along with all of its derivatives.

proof: (1) follows from the admissible Paley-Wiener theorem.

(2) follows from the section on characters of principal series representa-
tions.

This completes the proof since h can be arbitrary on the discrete part of
the tempered dual.

Let C(G)" denote the space of functions described in the above theorem.
We call it the tempered Paley-Wiener space.
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6 Linear functionals on the tempered Paley-
Wiener space

6.1 A result of L. Schwartz

The space of linear functionals on the tempered Paley-Wiener space can be
successfully described using the theory of distributions on the real line:

Theorem (L. Schwartz [Sch, ch. IIT, Théoréeme XXI]) Let S denote the
unit circle. If T € C*®(S")' then there is a continuous function u on S' and
an integer n > 0 such that T = S-u (as distributions).

As a corollary of this and the above Paley-Wiener theorem, we have the
following

Proposition: The dual space of the tempered Paley- Wiener space C(G)"
18 1somorphic to the direct product

D Ucs)"®d @ o,

demo(Af o) n>0 oemo(Gh,)

where my(X) denotes the set of connected components of a topological space
X, where G}, denotes the union of the reducible principal series, the special
representation, and the cuspidal representations, and where 6, denotes the
evaluation functional on the space of (constant) functions on the (singleton)
elements of mo(Gly,), and, if we write the unitary dual Ay = Aj . as a union
of circles Sq = R/ 7~ 27{ 74, where

C(Sy)™ = { ~u | u continuous on Sy},

6.2 The Fourier transform of a tempered distribution

As a consequence of this, we can “completely describe” the Fourier transform
of a tempered distribution:
Theorem: If T is a tempered distribution on G then there is a

e @ UMS)"® @ o,

demo(A],;) n>0 cemo(Glh,)

such that
T(f)=T"f"),
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for all f € C(GQ), where f*(7) = O,(f) denotes the Fourier transform of f
atmell € GY.

7 Linear functionals on the admissible Paley-
Wiener space

7.1 Analytic functionals

A large part of the space of linear functionals on the admissible Paley-
Wiener space can be described using the theory of analytic functionals (see
Hérmander [H1, ch. IV], [H2, ch. IX]). Our description of the Fourier trans-
form of an admissible distribution is unfortunately much less explicit than in
the tempered case treated in the previous section. However, if the admissi-
ble distribution has “exponential growth” then, as we will see, more precise
results can be given.

In spite of what we have seen already in the previous section, the following
may still be of interest

QUESTION Is there is an analogous description for the linear functionals
on the unitary Paley-Wiener space using the theory of (Sato) hyperfunctions?

(This question is inspired by the relationship between analytic functionals
and hyperfunctions discussed in [H2, §9.2].)

We begin with some definitions:

Let Q C G) — Xu(M) = (C)", 0 € M/, some n > 1, denote a
connected component of G, which we may regard as an complex algebraic
variety or as a complex analytic manifold. Let R(X,,(M)) denote the space
of regular functions on X, (M), regarded as a variety, and A(X,,(M)) denote
the space of analytic functions on X,,(M), regarded as a manifold. We
give A(X,,(M)) the topology of uniform convergence on compacta, so that
R(Xyn(M)) C A(Xyn(M)) is dense. Following Hérmander ([H1, ch. IV]),
an analytic functional on X, (M) is an element of the topological dual of
A(Xyn(M)), denoted A(Xyn(M))', where A(X,,(M)) is given the topology
of uniform convergence. We say that an analytic functional A is carried on
a compact set K CC Xy,(M) if for every neighborhood U D K, there is a
constant Cy > 0 such that

AP < Cosup|£(2)|.
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It follows from the definitions that for any A € A(f2)’, there exists a com-
pact K such that A is carried on K. The analytic functionals carried on
K are in one-to-one correspondence, via the Laplace transform, with those
entire functions with exponential growth (a result due to Pélya- Ehrenpreis-
Martineau, see [H1, Theorem 4.5.3]).

Let PW(G) = C*(G)5, denote the Paley-Wiener space and let PW (G)’
denote its algebraic dual space (as a vector space). From the bijection f —
", C*(G) - PW(G), we define the Fourier transform of an invariant
distribution D on C®(G) to be the linear functional D* € PW(G)' such

that
D(f) = D"(f"),

for all f € C°(G). We say that the distribution D is analytic if the linear
functional D" restricted to R(X,,(M)) C PW(G) extends continuously an
analytic functional on A(Q).

Lemma: If D is analytic then there is a compact K CC Q such that D"
15 carried on K.

Define a function Ep, on X, (M), by Eno(In(xo)) = x(a) for each
X € Xun(M), a € Ay, where Ay, denotes the split component of the center
of M (in M). Let

Hy (a) = mazyex log(||a][F€ex)), Va € Ay

where s, € C™ is an element representing x € X,,(M).

Lemma The vector space span of all linear combinations of the functions
Era, a € Ay, is dense in A(Xy,(M)).

proof The only cases we need to prove this are M = G and M = A. The
statement is trivial if M = G so assume M = A.

The trace Paley-Wiener theorem of Bernstein-Deligne-Kazhdan mentioned
above implies that each regular function h on X,,,,(A) may be realized as the
trace: there is an f € C°(G) such that h(x) = Oy, (f) for all x € X,,(A)
such that the induced representation I4(x) is irreducible. In this case, the
character formulas in the principal series case imply that

h(x) = Jo Orio(9)f(9)dg = (FF)"(x)
= [y Ff(a)x(a)da=Ya€ A
finitec,x(a),
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for all x € Xun(A), where the sum over a € A runs over a finite set (since
F{(a) is compactly supported). From this the result easily follows.

Therefore to verify that an analytic functional carried on K CC X, (M)
it suffices to check that the condition |A(f)| < Cysup,cy |f(2)] holds for all
f belonging to this span. Since

| Eaa(X)] < [la]|F),

this implies the following
Proposition: If D is analytic and D" is carried on a compact K CC
Xun(M) then for each ¢ > 0 there is a constant C. > 0 such that

‘D/\(EM,a)‘ < CE exp((l + €)HK(CL)), Va € AM

7.2 The Fourier transform of an analytic distribution

The result below describes the Fourier transform of an analytic distribution
on G.

Theorem: If D is an analytic distribution then there is a linear func-
tional D™ € PW(G)' such that D(f) = D"(f"),for all f € C*(G), and, for
each Levi M of G, and each € > 0 there are constants C. > 0, Cy > 0, such
that

|D"(Ewna)| < Ceexp((1+¢)o(a)™), Va € Apy.

Conversely, let D be an invariant distribution such that its Fourier transform
DM € PW(Q)' satisfies the following property: for each Levi M of G, and
each € > 0 there are constants C; > 0, Cpr > 0, such that

DM Epa)| < C.exp((1+¢)o(a)™), Va € Ay

Then D 1s analytic.

7.3 “Nice” admissible distributions are analytic

We shall define admissible distributions, which appear in the result below, in
the next section. Roughly speaking, the theorem below says that admissible
distributions of “exponential growth” on SL(2), which are very common but
not well classified, are analytic.
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Theorem: If D is admissible and if there is a constant C > 0 such that
|D(a)|*?Fp(a) << ||a]|®, for all a € A then D is analytic.

proof: We need only check the condition of analyticity for the Levi com-
ponent M = A since the case M = G is essentially trivial due to the fact
that Ay, = {£1} in that case. Furthermore, we need only prove the estimate

DMN(Baa)| < Coexp(1+€)o(a)),  Vae A,

for “sufficiently large” a € A (that is, a € A for which o(a) is sufficiently
large).

Fix an a € A and pick f = f, € C>(G) such that

(1) f is supported in a neighborhood of the conjugacy class of a in G,
and

(2) Ff* € C°(A) is supported in a neighborhood U of a in A such that

(FM"(x) = x(a) + x(a)™*
[Fi(z)] << la| +|a]!, VzeUl.

Since D is admissible there is (by a result of Harish-Chandra stated above)
a function F'p such that

D(f) = [ Folo)f(g)dy.

Therefore, by definition of f = f, , the definition of E4,, and the Weyl
integration formula, we have the estimate

D™Eaa)| = 2|D"(f")] = 2|D(f)]

<2 [g|Fp(9)f(9)ldg
<<XYTeS

T # Aggyy Jr IDOP[Fp () Ff (8)|dt + [4|D(a)|'?|Fp(a)Ff'(a)|da
<< 14+ [, |D(a)|1/2\FD(a)FJz4(a)|da
<< 1+ |D(a)['?(la| + |a|™") maxyep | Fp(z)| << ||al[**€.

(The fact that

1
TeszT:;éA #[WT]

[ 1D Fp(0)F (1) de << 1
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follows from the fact that the 7" # A are compact, bounded in number, and
f is supported in a neighborhood of the conjugacy class of a in G. If we take
a “sufficiently large” in the sense above then this estimate follows easily.)

This implies that D is analytic by the previous theorem.

Corollary: The space of all analytic distributions on G includes the char-
acters O, form € Gad.

proof: There is a result of Harish-Chandra and Howe which implies that
the character of every irreducible admissible representation is an admissible
distribution. The bound |D(a)|*/?|Fp(a)| << ||a||, for some C' = C (D) > 0,
follows from the explicit character formulas above.

8 Admissible distributions

8.1 Definitions

Let K CC G be a compact open subgroup and for each irreducible represen-
tation o of K, let x, denote its character.

An invariant distribution D on G (not to be confused with the Weyl
discriminant function D(z) on G) is called (G, K)-admissible at v € G if for
any compact open subgroup K’ C K and any irreducible representation o of
K', we have Dx* Y, = 0 on 7K unless G intertwines the trivial representation
on K with o. In other words, for each f € C®(G) with supp(f) C 7K, we
have D(f*x%) = 0 on vK, unless G intertwines the trivial representation on
K with o. Here x%(z) denotes the extended character of o : x2(z) = x,(z)
if r € K" and x%(z) = 0if z € G — K'. If U is a G-invariant open set in G
then we say that D is admissible on U if it is (G, K)-admissible at each
v € U in G for some sufficiently small K (which may depend on 7). Note
that it suffices to verify this for each regular v € U N G'.

According to Harish-Chandra, if D is admissible then there is a function
Fp on G which is locally constant on the regular set G’ such that

(1) |D(z)|'?Fp is locally bounded,

(2) for each f € C>(G),

D(f) = [ Fo@)f (x)da.

In general, if D is a distribution on G which is given by an integral as
above, we say that D is representable. For representable distributions,
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the (G, K)-admissibility condition at 7 becomes: for each f € C°(G) with
supp(f) C vK, we have

Ja Fp(2)(f * xo)(x)dx = fiy Fp(2) [ f(xk™")xo (k)dkdz
= Jo(Fp * x5)(z) f(z)dz = 0,

unless GG intertwines the trivial representation on K with o. Therefore, the
(G, K)-admissibility condition for represented distributionsis: (Fpxx2)(z) =
0 on vK, unless G intertwines the trivial representation on K with o.

8.2 A descent to the Levis

By the Weyl integration formula, we may write

D(f)=>"

TeS

\WT|/ D)2 Ep(t)FFT (¢ )dt:%DM(F;\P/{/T)

Moreover, here

Dar(h) = S TM — ellipticml/ﬂ [ 1D Foe)h(ryar,

for all h € C°(M), where the sum runs over all Cartans T in G which are
G-conjugate to a Cartan of M but not to any smaller M’ € L(G).
In the case of SL(2) this amounts to saying that

/FD z)chg_ a6 (7)dz,

and

£) = [ Fo(@)f(@)ehse(2)dz = 5 [ ID@)?Fp(a) Ff (a)d,

where chg denotes the characteristic function of the set S C G.

Lemma: If D is G-admissible and if M € L(G),M # G, then Dy, is
M -admissible.

REMARK: Dyg is admissible at v provided

(chg_ac - Fp x x2)(z) =0, on vK unless G intertwines
the trivial representation on K with o.
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In this case, since G — A% is open in G, we see that for each v € G — AY there
is a compact open K CC G such that YK C G — A%. Since chg_4¢ =1 on
~vK, this condition is a consequence of the condition for D itself. It follows
that D¢ is admissible on G — A%.

proof: The result follows for D, provided for each a € A and for some
sufficiently small compact open subgroup U,, CC A, and each non-trivial
character y of U,,, we have

Ju, D)2 Fp (k)X (k)dk
=q " Jo, ID((1 + 7™ u)a)|'"? Fp((1 + 7™u)a)x(1 + 7"u)du
= Ynom dng " fo; Fp((1 4+ 7"u)a)x (1 + 7™u)du = 0,
where d,, denotes the common value of |D((1 + 7™u)a)|*/2. (These integrals
exists since | D(k)|*/?Fp (k) is locally constant on the regular set and bounded
on Up,.) If a # £1 then this follows from the fact that Fp is locally constant
on the regular set.
This completes the proof.

8.3 Questions and an example

QUESTION: Isis possible to classify the admissible representations D in terms
of the functions Fp? In other words, what conditions on F, guarantee that
D is admissible?

This question is related to the characterization of the algebraic dual of
the admissible Paley-Wiener space so would appear to be rather difficult.

QUESTION: Is is possible to classify which representable tempered dis-
tributions are admissible? In other words, what conditions on the tempered
functions Fp guarantee that D is admissible?

This question is related to the characterization of the algebraic dual of
the tempered Paley-Wiener space and so seems to be more tractable. In fact,
we will explore this question further in the case of SL(2) below. As a start,
we prove the following

Lemma Let C C G} C G} denote a compact Borel measurable set, where
o € M} and M is a Levi component of G, and let d\ denote a bounded Borel
measure on C. The distribution defined by

D(f) = [ 0x(paxm),  feC(@),
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exists and s admissible.
proof: By Harish-Chandra, each distribution f — ©.(f) is admissible.
This implies that

(0.%x2)(x) = 0, on U unless G intertwines the trivial representation on K with o,

for o, K, U as above. Since C' is compact we may apply Fubini’s theorem
to verify this admissibility condition for

Fp(z) = /C O, (z)dA ().

This completes the proof.

8.4 Distributions on the tempered Paley-Wiener space,
revisited

Let du denote the Plancherel measure on the tempered dual G} and let
m(m)du(m) denote a distribution on the tempered Paley-Wiener space C(G)"
such that

(1) m(x) is supported on finitely many components of G},

(2) there is a continuous function h on G} such that on each component
G/, with 0 € M being a cuspidal representation of some Levi M of G, there
is a function h, on X,,(M) such that h(Iy(wo)) is the restriction of h,(w)
on the set

{we Xyn(M) | Iny(wo) € G},

such that, as distributions on {w € Xy, (M) | Iy (wo) € G}, we have

I
m(Iy(wo)) = %ha(w),
where I = (i1, ...,4,) denotes a multi-index, r being the real dimension of
Xun(M), and 3‘?5, denotes partial differentiation on the real manifold X, (M).
Note that by (1) the function A in (2) is compactly supported. We call such a
distribution a distribution of finite type on G}. A distribution satisfying
(2) but not (1) will be called a distribution of quasi-finite type on G7.
The maximum of the integers |I| = i; + ... + ¢, where I runs over all multi-

indices occurring in (2), is called the order of the distribution.
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The theorem of section 6 implies the following
Theorem: If D is a tempered distribution on G then there is a distri-

bution of quasi-finite type m(mw)du(m) on the tempered Paley-Wiener space
C(G)" such that

D(f) = [, Oc(fymmdu(r),  f€c(G).

QUESTION: Is any such distribution is admissible?
By the previous lemma, the answer is yes for distributions of order 0.

8.5 Quasi-finite distributions and the Schwartz space

We shall end this section with a proof, using a completely different argument,
of a similar statement for H = GL(2, F'). (We use GL(2) rather than SL(2)
since the presence of a non-compact center introduces a key idea which will
be expanded on and generalized in [J].) Let Z denote the center of H for the
remainder of this section.

Theorem: If D is a tempered distribution on the space C(H) then there

is a distribution of quasi-finite type m(m)du(mw) on tempered Paley- Wiener
space C(H)" such that

D(f) = [, Ox(Hmim)du(x), e CH).

proof (Really, more of a sketch since some details are left out.): For each
character w € Z/, consider the map C(H) — C.(H,w) defined by f — f,,
where

ful@) = [ fe2)w(z) 2,

and where
C.H,w)={f€C.(H) | f(zz) =w(2)f(z), z€H, z€Z}.
We have C(H) = [,z C+(H,w), so D has a Fourier expansion
D)= [ Dulfu)de,
weZ

each D, being a distribution on C,(H,w). Following Kazhdan, let W (w)
denote the space of all invariant tempered distributions on C,(H,w) and, for
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each compact open subgroup K CC H, let C,(H,w)x denote the space of all

linear combinations of translates of bi- K-invariant functions in C,(H// K, w),
and let

C.(H,w)k = {f € C.(H.w) | [ flhkikk)dk =0, ki ks € K},

By analogy with [K, section 4] (where it is assumed that the center is com-
pact), we have a direct sum decomposition C,(H,w) = C.(H,w)x @ C.(H,w)k
and a corresponding decomposition of the space of invariant distributions:
W(w) = W(w)x @ W (w)x. We claim that W(w) = Ug W(w)xk, but we shall
not prove this here. (Argue by contradiction ... ) By analogy with [K, section
4, Lemma 5|, there is a decomposition

D, = / O mg(m)dp,(7) + D2,
Gé\,w

where D¢ is supported off the elliptic set, the distribution mg is a finite
linear combination of Dirac delta functions, and the dual Gé\,w is the set of
equivalence classes of cuspidal representations with unitary central character
w. By the Weyl integration formula, D? must be supported on A7 where A
denotes the diagonal subgroup of H. In the decomposition

Du(f) = (Du)u(f) + (Du) a(F}),

discussed in the Lemma of section 8.2 above (where B here denoted the
upper triangular subgroup of H), we may identify D}(f) with (Dy,)a(F7).
The distribution (D,) 4 is (tempered and) admissible on A by (analogy with)
the Lemma in section 8.2. By the Plancherel formula in the abelian case,
(D,)a may be represented by a distribution of finite type on the tempered
dual of A:

DY(f) = (Da)a(F}) = [, (F) (0maw(x)da(x)-

On the other hand, by the character formulas for the principal series, (F;“)’\(X) =
GIA(X) (f)) 50

DY(f) = (Du)a(Fi) = | Ory(fIma()dialx)-

AP
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Therefore,
_D = Dw :/ @71' w d w / @ w d ,
ez wezp Jon, MG () dpte () + wezp Jap Ia(x)MA, (x)dpa(x)

as desired.
This finishes the proof/sketch.

9 Supertempered distributions

We close by discussing the supertempered distributions on SL(2). The def-
inition of a supercuspidal distribution requires some preliminaries which we
present first.

9.1 The constant term

Let P = MN denote the Levi decomposition and let P = M N denote the
Levi decomposition of the opposite parabolic. We shall consider the maps
A(G) — A(M),defined by f — fpr , »A(G) — A(M), defined by
f —w fp. We say that a locally constant function h on G satisfies the
weak inequality if

[h(z)] << B(z)(1 +o(2))",

for some r > 0. Here . A(G) denotes the space of matrix coefficients satisfying
the weak inequality.

For t > 0, define A*(t) = {a € A | |a(a)| > t}, where « < a 0

— 2
0 a*l =a,

and let AT = AT(1). Let S C G be a set such that S - AT (¢;) C S, for
some ty > 0, and let f : S — V be a vector-valued function, where V is
some complex vector space. We say that f is negligible along P, written
f =~p 0, if for every compact subset C' CC G there is a t > t; such that
f(za) =0forallz € CNS, a € AT(t). Given two vector-valued functions
fi: S—=V, 1=1,2, we write f; =p fo if fi — fo ~p 0. Let V be a normed

vector space with norm ||...||y. For a fixed x € S and L € V, we write
f(za) =p L, a -p oo, or ali)gloof(xa) =L,
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if for every € > 0 there is a t. > 0 such that || f(za) — L||y < e.

For each f € A(G), define f(p)(a) = dp(a)/?f(a), a € A.

Theorem (Harish-Chandra) For each f € A(G), there is a unique fg €
A(A), such that fg ~p fp) with S = A.

The function fg in this theorem is called the constant term of f along
B. The construction of the constant term is in [S, section 2.6].

Theorem (Harish-Chandra) For each f €, A(G), there is a unique
wfB € A(A), such that lim,, .o |wfa(aa’) — fipy(aa')| =0 for all o' € A.

Following [S, section 1.10], we call a function f (right) Hecke finite
if, for each compact open subgroup K CC G, the vector space spanned
by f xg, with g € C.(G//K) (i.e., g is compactly supported and bi-K-
invariant), is finite dimensional. We call an invariant distribution D on G
Hecke finite if, for each f € C(G), the function Ds(z) := D(r(z1)f) is
right Hecke finite as a function of x € GG. Here r denotes right translation:
(r(z)f)(g) = f(gz™"). Examples of Hecke finite distributions are characters
of admissible representations of finite length (this is implicit in [S, section
1.11]). In fact, a Hecke finite distribution is a virtual character ([J, section
3]), hence automatically admissible.

Lemma: If D is Hecke finite then Dy € A(G). If moreover D is tempered
then Dy € ,A(G).

For each f € C®(G), define hy € C°(M) by

hy(m) = 8p(m)"/? /N /W F(amn)ép(m) " dndn.

Proposition: (1) Let D be a Hecke finite distribution. For each parabolic
P, there is an admissible distribution Dp on M such that (Dy)p(l) =
Dp(hy), for all f € CX(GQ).

(2) Let D be a Hecke finite tempered distribution. For each parabolic P,
there is an admissible tempered distribution Dp on M such that ,,(Dy)p(1) =
Dp(hy), for all f € CX(G).

We will prove this in [J]. The distribution Dp on M will be called the
constant term of D along P. This is not to be confused with the Dy,
introduced in section 7 above.
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9.2 Definition of a supertempered distribution

Following Harish-Chandra in the real case, we say that a Hecke finite admis-
sible distribution D is supertempered if Dp = 0 for all proper parabolics
P of G. Examples of supertempered distributions are characters of square-
integrable representations (see [S, Corollary 4.4.7]). Let G, denote the set
of elliptic elements: elements which are not conjugate to an element in
some proper parabolic subgroup of G. Other examples of supertempered
distributions arise from the lemma below:

Lemma: If D is a Hecke finite distribution and supp(Fp) C G, then D
18 supertempered and tempered.

One proof of this, which is omitted, is to use the construction of the
constant term to verify directly that (D;)p(1) = 0, for all proper parabolics
P (see [J, section 2]). The temperedness is an immediate consequence of a
result of Kazhdan [K, section 5, Lemma 3].

QUESTION If D is supertempered and Fp|g, = 0 then does it necessarily
follow that D =07¢

QUESTION: Does supertempered imply tempered?

Lemma: If D is a Hecke finite distribution on G then D 1is a virtual
character.

This is not especially hard to prove (see [J, section 3]).

Corollary: If D is a supertempered distribution then D is a virtual char-
acter.

9.3 An example

Let x = sign,, for some 7 = ¢, 7, we, and let 7 = T;, 7w = T, .
Proposition: The distribution

D=06,—-0y

1s supertempered.
proof The character computation of section 4.2.2 above shows that D is
supported in the elliptic set, so by the above lemma it must be supertem-
pered. It is instructive to give a second proof directly from the definition.
Consider the matrix coefficients

h@) = [ O:(0)h(gz Mg, fo(w) = [ O()hlgz Mg, he OX(@),

9
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and let

frsy(a) = 65(a)' 2 fi(a) = 68(a)'”? [ Ox(9)h(ga ")dg,
faom)(a) = 65(a)'? fa(a) = 68(a)'”? [ O (9)h(ga™")dg.

The character formulas above imply that

frmy(a) — fomy(a) = 05(a)"? [4(Or(g) — Om(g))h(ga™")dg
=05(a) 2 Ty pa 5 o IDE)[V2(Or(t) — Op(t))h(ta)dt.

In fact, the sum over the non-split Cartans 7" runs only over one or two
Cartans. To finish the proof of this proposition, we use the following

Lemma: If h is supported on C CC G, there exists an 1 = r¢ > 0
such that, for all Cartans T in the above sum and all a € A (r), we have
Cnal = .

proof: To see this, note that there is an N > 0 such that o(z) < N for all
x € CU{T | T # A occurs in the sum above}. This is because C is compact
and each T is compact. On the other hand, for each Cartan T # A, from the
explicit description of T as a matrix group ([SS2]) and the definition of o(z),
it follows that there is an 7 > 0 (depending on N, T') such that o(ta) > N
for all a € A*(r), t € T. From this the lemma follows. (lemma)

From the lemma and the definition of negligible, it follows that f, gy(a)—
fo,B)(a) ~p 0 along A. This implies that Dp = 0. (proposition)

Combining a special case of a result in [H] along with the above corollary
in section 9.2, we find

Theorem: (Herb) A tempered, supertempered distribution of SL(2, F')
is a finite linear combination of discrete series characters and the distributions
in the previous proposition.
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