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Abstract: This paper describes the 5 Character relations 10
genuine irreducible unitary representations 5.1 Character calculations for principal se-
of the n-fold metaplectic cover SL(2, F), F' g 11
p-adic, with the exception of the reducible 5.2 Matching principal series characters . 11
principal series. The image of the metaplec-
tic Harish-Chandra transform is determined
and then a transfer of smooth (resp., spher- .
ical) genuine functions on SL(2,F) with Introduction

their analogs on SL(2, F') is given such that
their associated orbital integrals are equal.
Finally, it is noted that the corresponding
principal series representations on SL(2, F')
and on SL(2, F) satisfy a simple character
relation.
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Some of the results found in this paper:

e Using the theory of germs of orbital integrals

on a metaplectic group [V], one can classify the
image of the metaplectic Harish-Chandra trans-
form (see Proposition 6 and Corollary 7). More-
over, it is not hard to describe a transfer (or
“matching”) of smooth (resp., spherical) gen-
uine functions on SL(2,F) with their analogs
on SL(2,F) such that the associated orbital in-
tegrals are equal.

Based on the work of Moen [Mol], [Mo2], Arit-
urk [Ar], Kazhdan-Patterson [KP], and Flicker-
Kazhdan [FK], one can describe the genuine ir-
reducible unitary representations of the n-fold
metaplectic cover SL(2, F'), with the exception
of the reducible principal series, where F' is a p-
adic field (see for example Propositions 19 and
24). In particular, some of the main results of
Moen and Ariturk can be extended to the case
where n > 1 is arbitrary. We describe the special
representation of SL(2,F) in §4.6. The super-
cuspidal representations have already been de-
scribed - see, for example, [J3] (also [M1], [M2],
[72)).

e Finally, assuming gcd(p,n) = 1, we note that



the corresponding principal series representa-
tions on SL(2, F) and its n-fold cover (see The-
orems 30 and 31) satisfy simple character rela-
tions of the usual sort. Under this correspon-
dence, unitary (resp., spherical) representations
match with unitary (resp., spherical) represen-
tations.

Y. Flicker [F] described a comparison of smooth
functions on G = GL(2, F) and an n-fold metaplec-
tic cover G by matching orbital integrals. Flicker-
Kazhdan [FK] (resp., the author [J1]) determined a
comparison of smooth functions on G = GL(n, F)
and on G (resp., on Cartans T of SL(n,F) and on
SL(n, F) itself) using the matching of orbital inte-
grals. In each of these papers, the authors then ob-
tained an analogous correspondence of certain rep-
resentations using character theory. The idea here
is similar but to instead compare orbital integrals,
and principal series representations, on G = SL(2, F)
with those on G.

These results, in the case n = 2, form a necessary
step in what will hopefully be a proof of Labesse’s
multiplicity one conjecture for SL(2,A) (in prepara-
tion).

Acknowledgements: I am grateful to Courtney
Moen for his helpful criticisms on this paper. Also,
I thank an anonymous referee for several useful sug-
gestions and corrections.

2 Background notation

Let F be a p-adic field of characteristic 0, with uni-
formizer 7, ring of integers O = OF, and let ¢ denote
the cardinality of the residue field. Let C denote
the field of complex numbers and Z the ring of in-
tegers. Let p,(F) denote the group of nt® roots of
unity in F' and assume |u,, (F)| = n. We will identify
un(F) with a subgroup of C* (via some fixed isomor-
phism 6 : p,(F) = pn(C)). Write p, = pn(F). Let
G = SL(2,F). Let G = SL(2,F) denote the n-fold
metaplectic cover defined by the cocycle
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for g1,92 € G, where

a b c,
2, d)={d

and where (, ) = (, ) is the n'® power Hilbert
symbol. By §1 of Kubota [K], fp is a 2-cocycle (called
a “factor set” in [K]) which is trivial near the identity
in G x G, so G is a topological covering group of G.
We denote elements of G by & = (z,(), z € G, ( €
In, and multiplication by

if ¢ #0,
otherwise,

7172 = (1, 1) (22, (2) = (2172, Bo(1,72)(1(2)-

Let p : G — G denote the natural surjection. If H
is any subset of G then we define H = p~!(H). Let
Ko = SL(2,0). If p is relatively prime to 2n then it
is known (see [K]) that Kj splits, i.e., that there is an
isomorphism Ky = Ky X p,, which we fix once and
for all. In this case, we sometimes identify K, with
a subgroup of K via this isomorphism.

We choose a Haar measure on G, to be normalized
below, and a Haar measure on y,, normalized so that
vol(p,) = 1. Let the Haar measure on G be the
product measure.

For any subset H C G, let H,.4 denote the collec-
tion of elements of H which have distinct eigenvalues
(in some algebraic extension of F).

Let Ag denote the diagonal subgroup of G, let W =
Ng(Ag)/Aop denote the Weyl group, represented by

the matrices
_ 0 1
o W= 1 0 )

f=<

Here Ng denotes the normalizer in G as usual.

Let No denote the subgroup of G consisting of
upper triangular unipotent matrices and let B =
AoNg = NyAg denote the upper triangular (stan-
dard) Borel subgroup. It is easy to verify that
Ny splits. We often identify Ny with the subgroup
(N(), ].) of FO

1 0
01

Definition 1 Recall that a complex representation of
G on a vector space V., T : G — Aut(V), is called
genuine if 7(g,¢) = ()7 (g,1), for g € G and ¢ €

fin-



__Recall that a complez-valued function on G f:
G — C, is called genuine if f(g,() = 0(¢()~1f(g,1),
for g € G and € py,.

We shall omit the use of 8 and simply identify u,
with p,(C).

Here we call an irreducible admissible represention
of G (or G supercuspidal if all its matrix coefficients
are compactly supported.

3 Orbital integrals

Let C°(G)gen denote the algebra of compactly sup-
ported locally constant genuine (i.e., “smooth”) func-
tions on G and let H(G//Ky)gen denote the algebra
of compactly supported locally constant genuine bi-
Ko-invariant (i.e., “spherical”) functions on G. Let
M denote a Levi subgroup of a parabolic subgroup
P =DMN, let

A(m) = Ay (M) = |det(Adn(m) — 1,)|,
and let
d(m) = dp(m) = | det Adn(m)|,

where m € M, m = (m, (), and where n denotes the

Lie algebra of N. If m = ( 8 a91 ) and M is the
diagonal subgroup of G then A(m) = |1 — a 2| and

5(m) = |a?|.

Let A = Ag from this point on, unless stated oth-
erwise. Let S4 denote the orbital integral (restricted
to a certain subset of A),

SAf(m) = A(m)d(m) '/ fo 5 flgmg ™) dg
= 5m)" [ f(m) din,

provided Cent(m,G) = A. We will show that S de-
fines algebra homomorphisms
G (@)gen — C(A™)pin

and

H(G/]Ko)gen — HA™ || Koy AW

gen*

Here, and throughout the rest of this paper, let
ng = n/ged(n, 2).

Moreover, the subalgebra of W-invariants,

C&A)gin = {f € CZ (A" )gen | f(w, 1) a(w, 1)) = f(a), Ya € A

is well-defined and non-zero by a cocycle calculation
(and similarly for H(4"°//Ko N Ar)lW ).
Define D = Dg 4 on A by

a 0 a O
Dl § [ =dei-aac| g 0

=1-a*’)(1-a?)=—(a—a')?

e

?

for a € F*. Here g,a denote the Lie algebras of
G, A. This may be pulled back to A and we have
D(a) = A(@)d(@)~'/2, for regular @ € A. Define the
orbital integral of f € C°(G)en, on A,ey by

AnQ d
Fi @) = D@ [ fa e @
A0\G da
if @ € A is regular. The Haar measure da on Amo
will be choosen later. Define the orbital integral
of f € C®(G)yen on Ao, by

reg

dx

Za =n a)|'/? z laz)—
@ =nolp@|” [ e o

for a € A" N Grey. Since Cent(a,G) = A, this is
well-defined. Here da is the usual product measure
on A = A X p,. (The ng factor is to make Definitions
8 and (6) below consistent.)

We will show that f — FJ{‘TO defines a surjection

Ce(@)gen — CZ (A7)0

gen-”

3.1 Dependence on the cocycle

Let B be a cocycle of G' having values in p, and
let G = G denote the associated covering group.

Note that the metaplectic algebras C°(G)gen and
H(G//Ko)gen depend on the cocycle 3 so let us de-

note this dependence temporarily by C°(G) gen,s and



H(G//Ko)gen,p, resp.. If the cocycle is changed to an
equivalent one, say to 3', where

B(g,h) = B'(g,h)s(g)s(h)s(gh) ™!

is the cocycle modified by s and s : G — py, is any
function satisfying s(1) = 1 (for example, the Kubota
splitting [KP]), then the two algebras are isomorphic.

Lemma 2 Let B,ﬂ’_be as above, let R denote one
of the algebras C°(G)gen or H(G//Ko)gen, and let
s : G = py, satisfy s(1) = 1. There is a canonical
isomorphism

¢:Rg= Rg,

as algebras, defined by sending f(g,¢) = (f(g,1) to
&(f)(g,¢) = Cs(9)f(g,1). In other words, under this
mapping, we have

where xg denotes the convolution with respect to the
B cocycle

(10562)(9:C) = /G 61(2, 1)o((z g, 1))B(z, 2 g)

and, similarly, xg denotes the convolution with re-
spect to the 8’ cocycle.

proof: The verification of this is straightforward.

#

3.2 The Harish-Chandra transform of
a smooth function

The verification of the following lemma, another co-
cycle calculation, is left to the reader.

Lemma 3 The centralizer C5(A) of A in G is A,
where ng = n/ged(2,n).

Lemma 4 (Weyl integration formula [S], p. 198)

For each f € C(QG)

/Gf(g)dg =Y

1 / 1/2 T
—— [ |ID®)['?Ff (t)dt,
TES (Wl Jr d

where
dx

(z7 M tzr)—

T4\ _ 1/2
FJ () = D() =

TG

and where D(t) = Dg,r(t) = det(1— Ad(t))g/¢. Here
g, t denote the Lie algebras of G, T, resp..

The following result might be compared with
Flicker’s Lemma 1.1 in [F].

Lemma 5 (“Vanishing lemma”) For f €
C(G)gen, @ € Apeg — A™, we have FA™ (a) = 0.

proof: Since dr is a Haar measure, we may replace
ty O — .

(( 0 1! ) ,61) € A in the

integral (2) defining FfA"O(a) without changing its

value. Let a = (( (t) t91 ),g). Then

z by aiz, where a; =

FA™(a) = (t,11)? - F{™(a).

n

It follows that F/*"°(a) = 0 or (t,t1)7 = 1. By the

71pJ0perties of the Hilbert symbol [N], if (¢,¢1)2 =1

for all ¢, then t € (FX)m. #

Proposition 6 The map f — FfATO defines a sur-

jection C°(Q) gen, = C° (Z"")ggn.

Remark 1 e There’s an analogous result for the
Schwartz space C of “rapidly decreasing” func-
tions: The map f — Ff‘"o defines a continu-
ous surjection C(G) — C(Am0)W . Since it shall
not be needed, we omit the proof.

e The map f —> Ff”o is a priori only defined as
a map to functions on A,.,. The proposition as-
serts (as we shall prove below) that this function
extends uniquely to a smooth function on A.

proof: We shall merely sketch the idea.

Define the map ® by &(f) = F]{‘"O.

We first verify surjectivity.

Let H = L2(A™)W and let V denote the closure in
the L*-topology of H of the image of ® : f — F/™
in H.




Claim: If ® is not surjective then V # H.
The proof of claim is straightforward and left to

the reader.
IfV # H, we let

{¢€H|/ p(a)g(x)dz = 0,Yg € V}.

Claim: H=V o V-+.

The proof of claim is straightforward and left to
the reader.

Now we complete the proof of surjectivity. Let ¢ €
V<. We must show that ¢ = 0. For any F € V, we

have
/ (a)F(a)da = 0.
Z‘”O
Let
= _ [ ¢a), ifg"=a€c4d,, somez€QC,
9(9) = { 0, otherwise.

Since ¢ is W-invariant, ¢ is well-defined. Pick € >0
and approximate F' by FA™, for some f € Cg°(G)
such that

[ @@ - @< @

By Lemma 4 and (4), we have

| oo

Since f € C°(G) and € > 0 were choosen arbitrarily,
we have that ¢ = 0 a.e. on G. Thus ¢ = 0 a.e. on
A. This proves that V+ =0, hence V = H, hence &
is surjective.

For f € C(GQ)gen and a € A0, = A" N G ey,
the function x — f(z laz) is compactly supported
on A\G and

9)dg| < €/2.

1/2 dz

A"O (a) = fA\Gf i am)
= 4(a) 1/2 fN fK f(kank=')dkdn
=6(a)'"” [ fKO(an)dn,

where

Ydk.

fRe@) = | flkak™

Ko

From the claim it follows that F;‘To(a) is com-
pactly supported on A,,.

Moreover, since f is locally constant so is fXo.
Since f¥o is compactly supported, [y f5°(an)dn is
a locally constant function on A,..

It remains to show that F]{‘"O (a) extends to a lo-

cally constant function on all of A. This follows from
the Shalika germ expansion for covering groups [V].

#

The Proposition above implies the following result.

Corollary 7 Assume that the cocycle B is trivial on
Ko. The map S defines an algebra homomorphism

H(G//Ko)gen = H(Ano//K n Ano)yen

Definition 8 Define N : A — A by N(a) = (a™,1).
We say that f € C%(G)sen transfers' to f €
C*(G) if they satisfy

FA(N(a))

A(N(@) = FA(@),

for all a € A such that N(a) € Arey, where the mea-
sures have been normalized as above.

A similar definition, for f € H(G//Ko)gen and
f € H(G//Ky), is left to the reader.

4 Representations

The goal of this section is to describe the unitary
dual of G. The general idea in the case of the non-
algebraic group G is basically the same as for the
group G: using Jacquet functors, one may show that
an irreducible admissible representation is either a
constituent of some representation induced from (a
supercuspidal representation of a Levi component of)
a proper parabolic subgroup or else is supercuspidal.
As indicted above, the supercuspidal representations
have been described elsewhere. To capture those irre-
ducible representations which are unitary, one using
results in [FK] (for GL(2, F')), [Mol], [Mo2], and [Ar].

Tn other words, the Harish-Chandra transform of f corre-
sponds with that of f.



The only cases not falling into this net are the non-
tempered representations and, if any, the reducible
principal series.

For a reductive p-adic group H, let II(H) denote
the set of equivalence classes of irreducible admissi-
ble representations of H and let IL,(H) denote the
unitary ones. If H C G is a subgroup, let Il ., (H)
denote the set of equivalence classes of irreducible
admissible genuine representations H.

Let M = Ag and N = Ny. Each (o, W) € II(M)
expends trivially to a representation of B = MN.
Let I7(0) : G — Aut(V) denote the unitarily in-
duced representation: the representation of G by
right translation on

V = {f:G— W smooth, genuine |

(}))f(bg) = 6m(b)/20(b) f(9),
2
f(gk) = f(g), Vke K, g€ G }.

Of course, if o is genuine, so is I (o).

4.1 Maximal abelian subgroups of A

For the purposes of explicitly computing the repre-
sentations of A, we want to determine, as best as we
can, a maximal abelian subgroup of the n-fold cover
of A. This turns out to be hard if p|n. Since the
(incomplete) results in the case pjn will not needed
for our final results, we merely state the result in the
case p and n are relatively prime.

Let
T 0
0 z!

Lemma 9 A subgroup C C A is abelian if and only
if (a,a')2 =1 for all h(a),h(a') € C.

h(z) = ), x € F*.

The (easy) proof of this is omitted.
For any p-adic field, we have

FX=7TZ'/Jq_1'U1,

a direct product (as abelian groups - see for example
[N], Proposition 1.1). Here

Uy ={z € Op | z=1 (mod 7¥)}.

If ged(p,2n) = C F* implies ¢ =

1 (mod n).

1 then u,

Lemma 10 (a) If ged(p,ng) = 1 then C =
h(r2OF™) = h(?TZ/,LZEI(l + 70F)) and C =
h(7™ZOF) are mazimal subgroups of F* for
which C C A is abelian.

(b) If gcd(p,n) = 1 then C = h(n%(1 + TOF) g 1)
(resp. C = h(7™Z0})) has index ng in F*.

Remark 2 If n =
C=A.

1 orn = 2 then ng = 1 and

The proofs are omitted.

V9€G, bER o9 Trreducible representations of A
for some compact open subgroup K C G,

We assume ged(p, 2n) = 1 throughout this subsection
unless otherwise stated.

Let C = h(7™Z0}) and A, = h(z"20}). We
know that A,, splits, so we may identify A,, with A,, x
pn- Moreover, Clifford-Mackey theory implies that

I(C)yen — II(A)gen

X — Indg(x)

is a surjection [Mol]. The conjugates x?, for g €
A/C, are distinct, and A/C is order no, so the di-
mension of each I nd%(x) is ng.

Lemma 11 ([Mo2], §1.2) There is a 2-1 correspon-
dence

T(A,) = TI(A) gen

given by n; = M(A,) = T(C)gen, ¢ - I(C)gen —
II(A)gen, where
o) = Ind3(x),
and
CX(G/), a € An,

m00ao = {

z, 71—)20 (71—7 W)ZOOZJ'X(G),

2
n,
where ay,ay are the two roots of a® = (m,m)n°.

a=h(z) e C—-A, "’



Lemma 12 Let p € I(C)gen and let x = X, =
Indg,u. Then

trx(a) = Ehez/a ph(a)
_ nOX(a)a ac Ano,
- 0 a€A— Ano,

(5)

proof: The first part of this lemma is a special
case of the more general Frobenius formula for the
trace of an induced representation. The second part
is true, by the orthogonality of characters, since the
character + — (a,x)? is non-trivial if and only if
a € F* — Fxm_ 4

4.2.1 Corresponding functions on Zreg

Define the Fourier transform on A by

& () = /_ trx@)é@)ds  x € IA), ¢ € C(A).

A
If H is an abelian subgroup of G' or of G then we
define the Fourier transform by

(1) = /H w@)d@)de e T(H), ¢ € C2(H).

We investigate the conditions on ¢ € C$°(A), ¢ €
C°(A)gen under which

c
A

¢"(x) =4 (X,

if x € II(A) and X are corresponding representations
(in a sense made precise below).

Definition 13 We say that ¢ € Cg°(A) corre-
sponds to ¢ € C°(A)gen if
A

¢"(x) =¢ (%)

for all x € TI(A,), regarded as an element of TI(A)
trivial on A/A,, where X = v(n;(x)), for some j =
1,2.

Definition 14 We say that f € C*(G) corre-
sponds on the hyperbolic set to f € C(G)gen
if FA € C®(A) corresponds to F?Z € CX(A™) gen in
the sense above.

4.3 Jacquet functors

It is remarked in [BD], §2.2 that the arguments of
[BZ1], chapter 2 carry over to finite central exten-
sions of reductive groups over a p-adic field (see also
[KP], §1.2). The arguments of [BZ2], section 2 and
the corresponding sections of [Ca] also carry over to
finite central extensions of split reductive groups over
a p-adic field. Such results reduce the determination
of the unitary dual of G down to classifying the su-
percuspidal representations (done in [M1], [M2], [J3]
when ged(p,n) = 1 and [J2] for any p, n) and the con-
stituents of the induced representations (see below).

If (m,V) denotes a G-module and if P = M N de-
notes a standard parabolic of G, let V4 denote the
Jacquet module

Vy =V/{r(n)v—v |veV, neN}.

This sends admissible representations to admissible
representations (this is due to Jacquet, see [BZ1], sec-
tions 3.16-3.17 for the GL(r) case).

Lemma 15 (Jacquet [Ca], Theorem 5.2.1) If V& =
0 for all proper standard parabolics P of G then (7,V)
s supercuspidal.

Let £(G) denote the set of all standard Levi’s (with
respect to A), up to associates. Therefore, L(G) =
{4,G}.

Proposition 16 (Jacquet [BZ1], section 3.19) If

w € II(G) then there is a Levi M € L(G) and a

supercuspidal o € II(M) such that 7 is a constituent
of Iz (o).

In particular, every 7 € II(G) which is not a con-
stituent of an induced representation of a supercusp-
idal representation of a proper Levi occurs discretely
in the decomposition of the right regular representa-
tion of G on L%(G).

4.4 Principal series

We can investigate whether or not two induced repre-
sentations are equivalent by using the Jacquet func-
tor.



Let x,x' € II(A) and let w = (w, 1), forw € W. If
XY # x for all w € W — {1} then we call x regular.
We say that x,x' are W-conjugate if x' = x¥ for
some w € W. The following two results were proven
for metaplectic covers of GL(r, F) in [KP], however
they hold in the present case as well.

Lemma 17 (/BZ2],
2.9(b))

(a) Let x € II(A). The Jordan-Holder series of
Iz(X)7, has as its composition factors

Corollary 2.13, Theorem

Ind%(xm %), wew.
If x is regular then

()%, = ®wewIndi(x” - 65?).

(b) Let x,x' € I(A). If x is regular then
dim Homgz(Iz(x), Iz(X)) < 1,
with equality if and only if X', x are W -conjugate.

In other words, distinct W-conjugacy classes of x €
II(A) yield inequivalent representations.

Suppose that 7 € II,(G). We call 7 a (unitary)
principal series representation if 7 = Iz(x) for
some x € II,(A). These representations are tem-
pered. In case I;(x) is reducible and x € II,(A), we
call the irreducible constituents reducible princi-
pal series (or, more precisely, reducible principal
series constituents).

Let x € II(4). The induced representation I7(x)
is in general not irreducible. However, we do have

the following

Proposition 18 (Moen [Mo2])

(a) If n is even and gcd(p,n) = 1 then Ix(x) is ir-

reducible and unitary for all x € I, (A).
(b) If n is odd and gcd(p,n) =1 then Iz(x) is irre-

ducible and unitary for all x € I, (A) such that
(a) x =1 or (b) x¥° # x where Wy = (wg,1). If
X" = x and x # 1 then I;(x) is reducible and
has two irreducible constituents.

In fact, C. Moen [Mol] explicitly computes the in-
tertwining operators as matrices using the Kirillov
model when ged(p,n) = 1.

Proposition 19 I4(x) is irreducible and unitary for

all x € I, (A) such that X # x where wg = (wp, 1).

The above result has a direct proof, based on
Bruhat theory, but the following argument deduces
the this result from results in [FK].

proof: The “irreducibility if and only if ¥ # x”
follows from the above Lemma 17(b).

We claim that each representation Ig(p) as in
the proposition extends to a representation I (u)

of GL(2,F) (where GL(2,F) is defined by any co-
cycle of GL(2, F) extending that of SL(2,F) used
above). This claim follows from “Clifford-Mackey
theory” and its proof is omitted (but see Schultz [Sch]
and Gelbart and Piatetski-Shapiro [GPS] for a special
case).

We claim that each such representation I’(u) of

GL(2,F) is unitary. This claim follows from [FK],
§626-27 (which does not assume that p and n are
relatively prime). Let V), denote the vector space
(having a positive-definite Hermitian inner product)
on which the representation I’:(u) of GL(2, F) acts.

It follows from these claims that I5(u) acts on a
vector space (namely, V,,) having a positive-definite
Hermitian inner product on it. #

4.5 Complementary series

In this subsection, we shall briefly review some of the
results of Ariturk [Ar] and use some results of Flicker
and Kazhdan [FK] to generalize them to the n-fold
cover ([Ar] assumed n = 3 and p > 3).

We call an irreducible unitary representation 7 a
complementary series representation if 7 = I(x)
for some x € I(A) — IT,(4). These representations
are not tempered.

Let p € TI(C), x = xu = IndZp € TI(A). Tf p(z) =
o (z)|z|?, for some character uo of finite order and
some s € C then we write s = s(u) = s(x)-

Let K (u1) denote the space of locally constant func-
tions f : F x A — C such that



(1) f(ﬂ]',al(lz) = M(al)f(wJG’Q)a a1 € 67 az € Za
) folx| § 2

0 -1 ,1)f(z,a) is constant for |z|

large.
Let R C A denote a complete set of representatives
of A/C, and let r denote the cardinality of R. The
elements f € K(u) may be identified with the r-tuple
(f(2,a))ack-

Let V(u) denote the space of all locally constant
functions ¢ : G x A = C such that

(1) QO(g,alaQ) = M(al)@(gaa’?); a; € C; az € A; -

(ii) p(aing,as) = 6(a1)p(g,aza1), where a1 € A,
as € A, n € Ny. Here § denotes the usual modulus
function (extended to A via the obvious pull-back).
For ¢ € V(u), define the map T by

Tolg.a) = [ wtw| o 7 |igwaw s, Re(st) > 0.

Lemma 20 (Ariturk) T intertwines Iz(u)
Iy(u®).

This lemma does not require us to assume

ged(p,n) =1
Let L(G, B) denote the space of all locally constant
functions ¢ on G such that

and

90(([ 0 ] :6) - 9) = lal*¢(g) -

For p1 € V(u), pa € V(u®), the function

g'—>/77<p1(g,a)¢z(g,a)da
A/C

belongs to L(G, B). Therefore,

< 9017902> / /7

B\G JA/

Jo Lo |
FJA/C

gives a non-degenerate bilinear form on V(u) X
V(")

Lemma 21 (Ariturk) Iz(p
of Iz(p)-

v1(g,a)p2(g,a)dadg

o»—\Q\

W) is the contragredient

o (3 1

This lemma does not require us to assume

ged(p,m) = 1.
For f € K(u), define the Fourier transform of f by

"o = [ S

where 9 is a fixed additive character of F'.

zy)dy,

Lemma 22 (Ariturk) Assume gcd(p, For

¢1, p2 € V(u), p(x) = |z|°, we have

n) = 1.

<1, Ty >= / [ fe, )T (@, a)dade,
FJA/C

where J = J, is a linear transformation on K (u)"
and

fi(z,a) = pi(w™" - [ (1)

We may identify the map J = J, defined in the
above lemma with an r x r matrix which we still
denote by J.

Lemma 23 (Langlands, Ariturk) Assume
ged(p,2n) = 1. If 0 < Re(s(p)) < 1/n and
[Im(s(w))| < n/nln(q) then the image of J, is an
irreducible representation of G.

Proposition 24 (Flicker-Kazhdan) If 0 < s(u) <
1/n then Ix(p) is a unitarizable representation of G.

proof: Each such representation I'y(4) extends to
a representation I’(u) of GL(2, F) (where GL(2, F)
is defined by any cocycle of GL(2, F) extending that
of SL(2,F) used above). We claim that each such
representation I°:(u) of GL(2, F) is unitary. This
laim follows from [FK], §§26-27 (which does not as-
fHat’p and n are relatively prime). Let V,, de-
note the vector space (having a positive-definite Her-
mitian inner product) on which the representation
Ii(p) of GL(2, F) acts.

It follows from these claims that I'4(u) acts on a
vector space (namely, V,,) having a positive-definite
Hermitian inner product on it. #



Corollary 25 If0 < s < 1/n and p(z) = |z|* then
< ¢1,Tps > is a positive definite form. In partic-
ular, Iz(p) is unitary in this range. If, in addition,
gcd(p,2n) =1 then J,, is a positive definite matriz.

Remark 3 In the case n = 2, this follows from [GS],
Proposition 1 following the argument of [Ar]. See
also [Mo1] if p > 2 and [G], §5.4. In the case n =3,
p > 3, this was proven in [Ar].

Though this corollary is not needed for the charac-
ter relations in §5, it does indicate that some of the
results of Ariturk [Ar] generalize to the n-fold cover
case without any condition on the prime p.

proof: First, recall the following form due to
Jacquet, but see [C], page 118) of Schur’s lemma
holds: If (m,V) is an irreducible smooth represen-
tation of G then every intertwining map T : V — V
is a scalar.

Now we claim: If (w,V) is an irreducible smooth
representation of G then every there is at most one
G-invariant inner product on V. This is a well-
known (and not hard to prove) consequence of Schur’s
lemma.

The previous proposition says that the represen-
tation space of Ig(u) has a G-invariant, positive-
definite, Hermitian inner product. It follows <
p1,Tps > is positive-definite. This implies J, is
also positive-definite, as claimed 0 < s < 1/n and

w(x) = |z #

4.6 The special and the “trash” rep-
resentations

For the origin of the term “trash” representation, see
[G].

In the notation above, we have the following

Proposition 26 Let s = 1/n and p(z) = |z|°.

(a) The irreducible subrepresentation of Ig(u) (if
gcd(p,2n) = 1, the kernel of J,,) is “the special
representation” msp,. It is tempered and square-
integrable (hence unitary). If ged(p,n) = 1 then
it also contains an Iwahori fixed vector.

(b) If n > 1 then the irreducible quotient of Iz(u)
(if gcd(p,2n) = 1, image of J,) is an infinite-
dimensional, non-tempered representation ;.
If ged(p,n) = 1 then it is also spherical.

Remark 4 In the case n = 3 and p > 3, this propo-
sition follows from [Ar]. In case n = 2, most of the
statements are proven in [GS].

proof: These statements follow easily from results
of Flicker [F] and Flicker-Kazhdan [FK], using an in-
version formula relating the character of a represen-
tation of G to values of the character of GL(2, F)
which it extends to (see page 39 of [Sch]). #

Proposition 27 (Kazhdan-Patterson) mwp is uni-
tary.

Remark 5 This is true if n = 2 ([GS], Theorem 2)
orifn=3, p#3 ([Ar], Theorem 5.4).

proof?: This follows from Kazhdan-Patterson
[KP], Theorem II.2.1. #

5 Character relations

In this section, we use the above results to determine
a “natural” correspondence between the (unramified)
principal series of G and (unramified) principal se-
ries of G. We assume throughout this section that
ged(p,2n) = 1, since we shall require some of the
results in §4.1 above.

We show in this section that if

e the image of f under the Harish-Chandra trans-
form

— —n

O (G)gen = CZ(A™)gin

“matches up with” (in a way we will make ex-

plicit below) the image of f under the Harish-

Chandra transform
CZ(G) = C(A)Y,

and

2] thank the referee for this proof.
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e the principal series representation T = I4(x)
“corresponds with” (in a way we will make ex-
plicit below) the principal series representation
T = Ia(p),

then we have a character relation of the form

trw(f) = tr @ (f).
We also give an analog of this result for spherical
functions.

5.1 Character calculations for princi-

pal series

Let A denote the diagonal subgroup of G. Recall
W = Ng(A)/A denotes the Weyl group of A. If
x € @ is regular then let Gy = Cent(t,G).

Lemma 28 Let h denote an “anti-genuine” class
function on G and suppose that h satisfies the prop-

erty that, for all f € C°(G)gen, we have

proof: The proof, which follows Theorem 5.14 in
[G], is omitted. #
Proposition 29, Lemma 12, and Lemma 5 imply

that, for f € CSO(G)gena

trn(f) = f50n(@)f(@)de
= & [ano (b x(a 1) + tr (x(a, 1) ™)) FA(a, 1)da

5.2 Matching principal series charac-
ters

Note that since FfZ (for f € C°(G)gen) vanishes off

A™ | the last Fourier transform in (6), a priori an
integral over C, is in fact an integral over Ano. This,
with Definition 8, proves the following consequence
of the above proposition.

_ dg
- 1/2 AN
/a h(g)f(g)dg = c /Z A(a)*h(a) /@ a\@f(g 99) 3, %Theorem 30 Assume ged(p,2n) = 1. If x = X, =

for some constant c. Then the following holds:
_ 1
(1) ¢ = i,
(2) if g € G is regular then h(g) = 0 unless g is
conjugate to an element of A.

proof: First, note that the integral
Iz \éf(gflag)%da is zero unless a € A™, in

which case it is equal to fZ\é f(g tag) ¥ da. Lemma
28 above is now a corollary of the non-metaplectic
version, which is equivalent to Lemma 4. #

Proposition 29 Assume ged(p,2n) = 1. Assume
X=Xy = Ind%u € TI(A) and suppose that x # xv.
The character of the irreducible representation m =

Iz (x) is given on the regular set by
trx(a)+tr (x(a)~ 1)

= la—a=1]
O, (x) { 0.

where

, x=a’ g€G, acA
if 26 Greg—(A™)C

(Zno)ﬁ ={d’|a€ Zno, g€ 6}

Moreover, trx(a) =0 unlessa € A",

11

T
reg»

" provided f € H(G//Ko)gen transfers to f €

Ind%,u € I(4), x # x™, and if ¥ = I;(x) then the
character of ™ is related to that of m = I4(u™) by

trw(f) = trw(f),

provided f € C°(G)gen transfers to f € C(G).

We now give an analogous result for the spherical
functions and the unramified principal series.

Theorem 31 Assume gcd(p,2n) = 1. Assume that
the cocycle 8 defining G is trivial on Ko. If x =
Xp = Ind%nou € TI(A) is unramified, x # x™, and
if ™ = Iz(x) then the character of T is related to that
of m=Ia(u™) by

trw(f) = tra(f),

H(G/[Ko)-

proof: Since I'4(x,) is unramified if and only if u
is, this is a corollary of the previous theorem. #
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