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Abstract

This paper collects some remarks relating to the papers [Mo], [Kal, [Ku],
and [Li] for 2-fold metaplectic covers quasi-split unitary groups in an odd
number of variables over a p-adic field. We also address a question raised
in [G]. Tt is known that the metaplectic C'-cover of these groups splits
[MWYV].
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1. Notation

Let p be an odd prime, Let F' be a p-adic field, (, ) = (, )2 the quadratic Hilbert
symbol on F', Op its ring of integers, 7 a uniformizer, ¢ the cardinality of the
residue field F = Op/mOp, and |..| = |..|r the metric on F' normalized so that
\m| = ¢~'. Let v : F* — Z denote the valuation defined by |z| = ¢~®).

Let E/F denote a quadratic extension, so E = F(/€) for some € € F*/F*2.
We may assume that ¢! < |¢] < 1. Let o denote the non-trivial element of
Gal(E/F).

Let ju,(F) denote the group of n' roots of unity in F' and let y, denote the
abstract group of all n* roots of unity.

I thank J. Adams, C. Moen, and A. Bluher for their comments on these notes.

2. Generalities

Let
1 — ps — Sp(2n, F) — Sp(2n, F) — 1

be the 2-fold metaplectic extension of “the” symplectic group Sp(2n, F') defined by
Rao’s normalized cocycle, denoted 5 [Rao]. (A small point: since the metaplectic
groups are not algebraic, it is no longer sufficient to specify a group, such as
Sp(2n), up to isomorphism, say, in the category of groups over the algebraic
closure F or in the category of group schemes over F'. We must specify which
symplectic form this group is defined with respect to and hence specify its group
of F-rational points Sp(2n, F'). Similarly, for subgroups of Sp(2n) we must specify
an embedding into Sp(2n, F).)

Assume that V' is a o-hermitian space over E with hermitian form A, dimg (V) =
n, and let

U(V,F)={g € GL,(E) | h(gv,gw) = h(v,w), Yv,w e V}

denote the associated unitary group. Assume that we have an embedding U(V, F) C
Spon(F) and let U(V,F) denote the 2-fold cover defined by restricting S on
Spon(F) to U(V, F).

The question we want to address here concerns the splitting of the cocycle
when restricted to a unitary group embedded into Sp(2n, F'). Whether or not this

splits is sometimes less important in practice than knowing the relationship, as



provided by the following proposition, between the representations of the unitary
group and its (possibly split) 2-fold cover.

Proposition 2.1. Either

(a) Bluev,r) splits, or

(b) the restricted cover U(V, F') is non-trivial but there is a genuine character
v: UV, F)— C*.

This is essentially a result of J.-S. Li (see Lemma 2.2 in [Li]). Since it is not
proven there and since it was asserted in [Li] that the cover does not split - which
may be a little misleading - this is proven below. First, we state a

Corollary 2.2. There is a natural bijection between the set II(U(V, F')) of equiv-
alence classes of irreducible admissible representations of U(V, F') and the set
II(U(V, F)) of equivalence classes of genuine irreducible admissible representa-
tions of U(V, F'). This bijection preserves unitarity. It is given explicitly by

I(U(V, F)) = IU(V, F))
T— TR X,

where x is a fixed character (described in the proof below).

~——

proof of proposition: Let U(V, F) denote the metaplectic C'-cover of U(V, F)
defined by a cocycle ' [Rao]. It is known that this cover splits [MWV], ch 3.
Define

—~—

v UV, F) — C

by
(9,2) = c(g) - 7,

where ¢ : U(V, F) — U(V, F) is a splitting (so that 5'(g,g) = c(g)c(g’)/c(g99))-
Let x denote the restriction of 7' to U(V, F'). O
Let

SU(V,F)={g€ SL,(E) | h(gv, gw) = h(v,w), Yv,w €V}

denote the special unitary group associated to (V, h). The following result is due
to Kazhdan ([Ka], Lemma 7).



Lemma 2.3. SU(V, F) splits.

remark on the proof: This is proven in [Ka]. The proof there uses implicitly
the following argument: We may use either a result of Deodhar (Theorem 5.9 in
[PR]) or a result of Deligne (Theorem 5.11 in [PR]) to conclude that SU(V, F)
splits if (and, by Deligne, only if) SL(2, F) splits, where SL(2,F) C U(V,F)
is the subgroup generated by the si,-triple associated to the long (non-reduced,

divisible) simple root. (The fact that SL(2, F) splits is a known result of Tanaka
as referenced in [Kal, so the lemma follows.) O

3. A lemma
We need a simple lemma later.

Lemma 3.1. Let E/F be a quadratic extension of p-adic fields. Let T = E!
denote the kernel of the norm map N : E — F. Assume n is an odd positive
integer. If uy C F or if E/F is ramified or if (3,n) =1 then T = T".

proof: Let ®; denote the d* cyclotomic polynomial, so deg(®4) = ¢(d) is the
number of positive integers relatively prime to d and

d|n

Consider the map 7" — T", x —— a". If ( € T C E is a non-trivial element of
the kernel of this map then we have

¢(-C(=1,("=1, (#1, nisodd, (3.1)

where the overline denotes the conjugation of the Galois action.

Suppose first, (6,7) = 1 and d|n, so ¢(d) > 2. But ®4(¢) = 0 implies that the
degree of ( over ' must be greater than 2. This contradicts the assumption that
E/F is quadratic. Thus (3,n) = 1 implies T = T".

Now assume E/F is a ramified quadratic extension. By (3.1), we must have
¢ # +1 and so E = F((). Since ¢ must be a unit in the ring of integers, this
implies E/F is unramified. This is a contradition, proving that E/F ramified
implies T'=T".



Finally, assume ps C F. (This is the assumption in [J], chap 7, where this
result is stated without proof.) We have already shown that the assumptions (3.1)
imply ¢ # (. Since ®4(¢) = 0, for some d|n, and since deg(¢) = 2, we must have
(because n is odd) d = 3. This implies ®3(¢) = (?*+ ¢ + 1 = 0. Since uz C F, we
have then ¢ € F. But this contradicts ¢ # (.

This proves the lemma in every case. O

4. Compact subgroups

We shall make some general comments on compact subgroups.
The following result is due to C. Moore ([M], Ch III, Lemma 11.3).

Lemma 4.1. Let G be a simply connected F-split almost simple algebraic group
and let K = G(Op). If (p,n) = 1 then K has no non-trivial n-fold topological
central extension. In other words, H*(K, p,,) = 0.

As a corollary to this, we see that if Sp(2n, F') is a 2-fold metaplectic extension
1 — py — Sp(2n, F) — Sp(2n, F) — 1

then its restriction to Sp(2n, O) splits.

4.1. Bluher’s trick

Let K C G be a closed subgroup of a p-adic reductive group. Let G denote a
topological central extension of G,

1-C5G5 G -1,

and let K denote the inverse image of K under the map G — G.

We say that a character x of G is genuine if x(:(¢)) = ¢ and we say that a
representation m of G is genuine if its central character is genuine. Let (m, V)
denote a genuine irreducible admissible representation of G.

The following idea was communicated to me by A. Bluher.

Lemma 4.2. If VK is one-dimensional then K splits.



Remark 1. As J. Adams has pointed out, this lemma is a special case of a more
general principle, namely, that if a C*-cover K has a genuine character then it
splits.

proof: Pick a non-zero ¢ € VE. There is a function X : K — C* such that

It can be checked that A is a homomorphism. The map k& — (p(k), A(k)) defines
a splitting K — K. O

5. U(1)

Consider the group U(1) defined over F' whose F-rational points are given by
U(1,F) = E'. We can embed this into SL(2, F) by sending = + /ey to

E(z 4+ Vey) = (Z Ej ) € SL(2, F).

Lemma 5.1.

T €y
Yy

f(U(l,F))z{( ) | z,y € F, 2* —ey? =1} C SL(2,0pF).

proof: We shall first show that x € Op.

If ¢ Op then z = ur*, for some k < 0 and u € O, so |z| = ¢7F > 1. Since
1?2 — ey? = 1, we must also have y = u/7*, for some u' € OF, so u? —e(u')? = 7=F.
This implies that there is a u” = u/u’ such that |(u")? — €| = ¢* < 1. In words, €
is close to a square. We shall now show that this implies that this forces € itself to
be a square, which is the desired contradiction. We have € = (u")? + 7, for some
n € F with || < 1. If we can solve for an a € F such that n = 2u"r + r? then
this will imply € is a square. The quadratic formula gives

—2u" +\/4(u")? + 4n )
— = "+ \2 = —u"+ 4"\ /1 m2
T 5 u" £/ (u")? + u’ £ u’\/14+n/(u")

It is known that the function f(¢) = /1 + ( converges (in F') for || < 1 (see
[Ko], ch 1, §3, for example), so r € F. This contradiction implies z € Op.
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Similarly, y € Op. Since we have assumed (without loss of generality) € € Op,
the result follows. O

For g = @ b ),deﬁne

d

c, c#0,
z(g) = { d cié 0
For g,¢' € SL(2, F), define the cocycle 3 by

n_ xlgg") z(g9")

This defines a 2-fold metaplectic cover SL(2, F') of SL(2, F') [Rao]. Let £(U(1, F))

denote the restriction of the 2-fold cover SL(2, F') to the image of U(1, F'). The
previous lemma, together with Lemma 4.1, implies the following:

Lemma 5.2. The cover £(U(1, F)) splits.

6. U(3)

_ o O
O = O
o O =

Let E/F denote an quadratic extension of ', E = F( /e), let J = (

)

where o denotes the Galois action of E/F. This group is named QAE% in [T1] and
2A! in [T2].

and let
UB)F):={geGLs(E) | g-J- '¢°=J},

6.1. The embedding into Sp(6)

In this subsection, we follow [Mo].
The form
(v, w) — "7 Jw
is a o-hermitian form E3 x E3 — F [B]. Fix an element 8 € E such that 87 = —f3
and let
Fv,w) = "7BJw.

7



This is an € — o—hermitian form, with ¢ = —1 [B] and F(v,w) + F(v,w)? is a
symplectic form E? x E3 — F.
Let

a = [z1 + ey, xo + Veys, x3 + Veys], b= [ur + Vevy, us + Vevs, uz + Vevs],

where x;, y;, u;, v; € F. We map £ : E3 — F in such a way that these get mapped
to

6(0’) = [_y17 X1,%2,Y2, —T3, 213]: §(b) = [_Ula U1, U2, V2, —Ug, U3]'
If we let i
0 0 0 0 —262 0
0 0 0 0 0 2462
0 0 0 242 0 0
J(] =
0 0 —262 0 0 0
262 0 0 0 0 0
0 —28 0 0 0 0

then we have
F(a': b) + F(aa b)a = tg(a) ) JO : f(b)

(This was discovered using MAPLE - it does not agree with the matrix in [Mo],
p 142, so there may be a typo there.) Thus Jy is the matrix of this symplectic
form. If we define

Sp(6)(F) :={g € GLs(F) | g- J. 'g = Jo},
then we have an embedding
E:UB)(F) < Sp(6, F).

C. Moen [Mo] makes this result explicit by describing £ on the generators of
the group. From this description, we may conclude the following

Lemma 6.1. If Z denotes the center of U(3)(F) then Z = U(1,F) = E' and
&(Z) C Sp(6,OF).



6.2. The splitting

Lemma 6.2. If either u3 C F or E/F is ramified then the center Z of U(3)(F)
is

z 0 0
Z={| 0 2z 0| |z€eE"}.
0 0 =z

Furthermore, every element g € U(3)(F) may be written as ¢ = zh, for some
z € Z and some h € SU(3)(F).

Furthermore, the cosets zus and hus are uniquely determined.
proof: Let

det(g)'/3 0 0
z= 0 det(g)'/3 0
0 0 det(g)'/?

By Lemma 3.1, z € Z. Clearly, g/z € SU(3)(F), so the result follows. O

Conjecture 6.3. Let G denote a reductive p-adic group, let G' = |G, G] denote
the commutator subgroup and let Z denote its center. The map

HZ(G, C*) — HQ(G’,(CX) X HZ(Z, Cx)
B — Blarxar X Blzxz

is an injection.

We shall prove a special case (G = U(3)) of this below.
The following is our main result:

Theorem 6.4. If p # 2 then the 2-fold cover U(3)(F) splits.

Remark 2. Assuming the above conjecture, the theorem follows easily from what
we’ve already established. (We shall prove the conjecture later in this special case
by actually verifying the splitting itself.)



6.3. The inflation-restriction sequence

We shall prove the conjecture in the case of G = U(3) in this subsection.

First, we recall some results from group cohomology. Let N < G be a closed
normal subgroup of a topological group G and let A be a G-module. We have
homomorphisms

Res: HY(G,A) - HY(N, A),
Inf : HY(G/N, A) — HY(G, A).

The following result is well-known:

Lemma 6.5. (‘“restriction-inflation sequence”, [S], Prop. 5, §6, ch VII) Given an
integer ¢ > 1, suppose that H'(N, A) =0, for 1 <i < q. Then

0— HYG/N,A) ™ HY(G, A) % HY(N, A)

is exact and . .
HY(G/N,A) ™ H(G,A), 1<i<q-1,

is an isomorphism.

Here the cohomology is either continuous cohomology of topological groups or
abstract cohomology (sometimes denoted H if there is danger of confusion) of
abstract groups.

We use this lemma to verify that the conjecture above is true in the following

special case:
G=U(3,F), N=SU(@3,F), A= u,.

(ua = {£1} is a trivial G-module written multiplicatively.) Unless stated other-
wise, we assume this notation for the rest of this subsection.

By Lemma 2.3, H*>(N, A) = 0. Since N is simply connected, a lemma of Moore
(Lemma 1.1 [M]) implies H}(N®, A) = 0, where (as in [M]) N® denotes N as an
abstract group. The restriction-inflation sequence lemma above implies

H2(G*/N®, A) & H%(G*, A). (6.1)
Another lemma of Moore (Lemma 2.8, [M]) implies

H2(G*/N%, A) = H2(G/N, A)
H2(Ge, A) = H2(G, A).
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We may identify G/N = U(3, F)/SU(3, F) with U(1, F)/u3(F') by the discussion
in §6.1. Thus, we have

H*(G, pp) = H(U(L, F)/ p3(F), p2)-
We may apply the same reasoning to the following case:
G=U(LF), N=u(F), A= p,
to get the following continuous analog of (6.1):
H2U(1, F), 1) = HAU(1, F)/p13(F), o).
We already know, by §5 above, that H*(U(1, F), us) = 0 so H3(U(3, F), us) = 0.

This proves the splitting, hence also the conjecture, in this case. O

7. Remarks

We collect some assorted remarks in this section.

7.1. On [Mo]

We have shown that the splitting of U(3, F') claimed (without proof) in [Mo] is
true.
7.2. On the higher rank case

Let E/F denote an quadratic extension of F, E = F(y/e), let J denote the
(2n 4+ 1) x (2n + 1) skew-symmetric matrix

00 ... 0 1
0: 0 10
J = :
01 0 0
10 0 0

and let
U(2TL+ 1)(F) = {g € GLQn_H(E) | g- J - tga = J},
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where o denotes the Galois action of E/F. The center Z of this group is the
subgroup of scalar matrices with values in E*.

It seems likely that the argument above can generalized. The statement below
is the result:

Conjecture 7.1. Let E/F be a quadratic extension of p-adic fields, p # 2. Let
T = E' denote the kernel of the norm map N : E — F. If y3 C F or if E/F
is ramified or if (3,2n + 1) = 1 then there is an embedding U(2n + 1, F) <
Sp(4n + 2, F') such that U(2n + 1, F) splits.

We finish with the following vague remark: In the case of an “even” unitary
group G which is part of a dual reductive pair of a symplectic group Sp(2N, F),
there are cases in which the explicit splitting formulas of Kudla ([Ku], §3) along
with results of Deodhar ([D], [PR], §5) implies that the 2-fold cover of G splits.
This depends on whether or not there is a quadratic character of E* which extends
the character x — (x,1/€)2 of F*, where E = F(y/€) is the quadratic extension
of F splitting G.
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