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Abstract
Let K = Q(vD), D = 2,3(mod 4) square-free, be a real quadratic ex-
tension of Q with ring of integers O = Z++v/DZ and let I' = PSL(2,0k).
This paper ! is devoted to a derivation (using an unpublished method of
Don Zagier) of the untwisted and twisted Kuznetsov-Bruggeman formulas
for I'\ H?, where H denotes the complex upper half plane.

1. Introduction

Let K = Q(v/D), D = 2,3(mod 4) squarefree, be a real quadratic extension
of Q with ring of integers Ox = Z + vV DZ and let T' := PSL(2,0k). For the
purpose of investigating the spectrum of the Laplacian, the Selberg trace formula
and Kuznetsov—Bruggeman (relative trace) formula have proved useful (see [Sel],
[Brl], [Br2], and [Kuz]) and, because of the lifting theory of Saito—Shintani-
Langlands [Sa] involving the “twisted” version of the Selberg trace formula, there
is reason to hope that the “twisted” version of Kuznetsov’s formula on I' \ H?
may also prove useful (see [Ye] for an application of the adelic version of the
Kuznetsov-Bruggeman formula, which H. Jacquet refers to as the “relative trace
formula”, to quadratic base change). Additionally, it may be of interest to extend
the theory of Deshoulliers-Iwaniec [DI] to the real quadratic case; this paper
hopefully constitutes a small step in this direction, as our formula is as explicit
as [Kuz] Theorems 1,2.

As the title indicates, this paper is devoted to a derivation (using an unpub-
lished method of Don Zagier) of the untwisted and twisted Kuznetsov-Bruggeman
formulas for I'\ H?. (Unfortunately, the form of the twisted formula below is not
as explicit as the twisted formula since 1 have not been able to obtain a simple
expression for the “Kloosterman sum term”.) Section 1 begins with D. Zagier’s
method, in the classical case of SL(2,Z)\ H. Since his method is unpublished, I
included details in this section. The appendix to section 2, which is the only part
of this paper to contain anything really new, addresses two issues: (1) it discusses
a technical question relating (D. Zagier’s [Z1] computation of) the function

Zsk(g) = /F\H2 k(gz,z)y*dz,

1This paper was published in Math. Z. 203 in 1990 and retyped in LaTeX in 1997 with
corrections included. I thank Professors Bruggemann and Miatello for pointing out a gap in the
original estimates. Originally supported by an NSF fellowship.



to the “Kuznetsov transform”
, 2 [ r ‘
op(x) == ;/_Oo JQiT(x)icosh(ﬂr) ¢g(r) dr

(see section 2 below), and (2) it verifies that a certain interchange of order of
integration and summation is valid. In section 2 I recall the results leading to
Selberg’s spectral decomposition theorem for I' \ H? . 1 have included most of
the details since the twisted case required a slightly more “symmetric” form that
what was available in [Ef] or [Zo]. Section 3 follows D. Zagier’s method for I'\ H?,
assuming for simplicity that K has class number one, to derive the trace formula.
In section 4, following a suggestion of Ram Murty, we turn to some of the simplest
applications. This involves Poincaré series, inner product formulas, and sums of
Kloosterman sums attached to a real quadratic field. A more detailed list of the
topics is given in the table of contents below and the introduction to section 4.

The Selberg trace formula for D = 2,3 (mod 4), with K having class number
one, was derived explicitly in the classical language by P. Zograf [Zo]. After this
paper was written I. Efrat’s book [Ef] appeared, where the more general case of
a totally real extension K/Q was dealt with, again, classically. Presumably, the
results of this paper easily extend to the case of a totally real number field of
class number one, using Efrat’s, rather than Zograf’s, spectral decomposition of
the kernel function. These results should also extend to the case of arbitrary
class number, but the added complications would probably not be so simple. The
adelic form of the Selberg trace formula was, of course, derived earlier by Jacquet—
Langlands, but since I follow D. Zagier’s method to derive the Kuznetsov formula
from the classical expression for the spectral decomposition of the kernel function,
the adelic form is not needed here. 1 believe that S. Friedberg, D. Goldfeld,
I. Piatetski-Shapiro, and P. Sarnak have independently derived versions of this
formula for GL(n) (for S.F. and D.G.) and GL(2) over a number field (for [.P.-S.
and P.S.).
Acknowledgement: 1 want to thank Professor Don Zagier for showing me his
method as well as guiding me into modular forms. I also want to thank Professor
Roelof Bruggeman for encouragement, detailed criticisms, and suggestions. He has
proven [Br3] a version of the Kuznetsov-Bruggeman formula in the real quadratic
case using his method in [Br2]. Finally, I thank the generous referee for correctly
calculating the §,,,-term and for making many detailed suggestions which have
substantially improved the manuscript. This paper was written at the Institute
for Advanced Study while the author was supported by an NSF fellowship.
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2. The case of SL(2,Z)\ H

It will be far more convenient for the reader who follows the Hilbert modular
case of Zagier’s method to have a clear idea about what happens in the relatively
simpler case of SL(2,Z)\ H (all the crucial ideas already occur in this setting, they
just get more complicated in the case of I'\ H?). The results of this subsection
are due to D. Zagier.

Let me change notation a little, in this subsection only. Namely, let G :=

PSL(2), I':==G(Z), k € C>(R), and
|z — 2|

vy’

i;:(z, 2= k(

):

where z = x4+ 1y, 2’ = 2’ +1y’. The invariant integral operator

Kf(z):= /Hl%(z,z')f(z') dz'

satisfies K'f = h(r)f, for all eigenfunctions f of the Laplacian A := —yz(% +
%), with eigenvalue 1/4 4+ r%. Here h is the Selberg transform. We have

Qw) = /OO };(i)wdt, k(t) := %[00 \?{%dw,

and

h(r) = /(: Qle" 4+ e™ — 2)e™du, Q"+ e ™ —2):= % /Z h(r)e dr.
One has the following fact about the functions k, A, g, and Q:
Lemma 2.1. ([Z1], p. 320) The conditions

o k(z) <<, a2 5F, for each e > 0,

o Q(w) <<, w ¢, for each ¢ > 0,

e h(r) is holomorphic in Imr| < 0/2,

are all equivalent.



Let }
Z') = Z k(z,~z"),
~er

be the kernel function for K on L*(I'\H). The Selberg spectral decomposition
states that (see, e.g., [Z1] (2.31), [Kub], or [DI})

kr(z,2') = 2oy hlrj)ui(2)ui(2') + Sh(if2) (2.1)
i [ Bl B — k(1) d, |

72

where {u;}7° form an orthonormal basis for the Maass forms of weight zero with

rj defined by Auj = (1/4 + ir})u;, and where

s) = % Z ez + d|7%
c,d€Z
(c,d)=1
is the Eisenstein series. The u;(z) have a Fourier expansion of the form
=¥ Y pi(n) K, (2[nly)e’™, (2.2)

n#0
whereas the Fourier expansion of E(z, s) can be read off from (see, e.g., [Z1] (2.6))
B(e.s) = 28y + (25— ' 23
—|—2\/§ 22021 n5_1/20-1—25( )[Xs 1/2(27Tny) 27rnx

where F*(z,s) == n7°I'(s)((2s)F(z,s) = F*(z,1 —3s), (*(s) := W_S/QF(S/Z)C(S) _
(1 =s), os(n) = zd|n d®, and

K.(t) := / e~teoshv cosh(zu) du, > 0.
0

Now substitute these Fourier expansions into the above identity for kr(z, z") and
comparing Fourier coefficients of €2™("*=7") 4m > 0, n > 0, we find that

\/Wfo f() —2mi(nz—mx )kr(x_l_ly’xl_l_zy/) drdz’

= 2 jm 1(ri)pi(n)p; (m) Kir, (2mny) Ky, (2mmy’) (2.4)
(n/m)* "o _2ir(n)o2ir(m) Kir(2mny) Ky (2mrmy’)
+1 [C(1+2ir) 2 h(r) ==yt d

r,



since |I'(1/2 + it)|? = w/ cosh(nt). Let 7.4 be any representative of the form

* %
(Cd>er,

for ¢ # 0. By the Bruhat decomposition, replacing = by = — % (using the I'-

invariance of ]NC) and z’ by z' + % (using the translation invariance of dz), the
left—hand side is, neglecting the “c=0 term”, given by

e S S R iy naa i) deds
(c,d)=1
_ 1 0 Qi ( Retmd o0 _ori(nz—ma') ]
—\/chﬂ(Z mod) © (%5 )> [ e k(z + iy, 55— e ) dada’.
ad=1( mod c)

(2.5)
The “c=0 term” of kp(z,2') is

~ r—xz'+b 2 _ )2
ZwGFo k(2772/) = EbeZ (( +2)yy+( = )
— Z({ C(( ) 2mil(z—x )7

where

o] 2 1\2
Cg(y,y/) ::/ eZmZuk(u (y y) )du

- yy'
In the expression (2.5), set A := ny, X := my’, and replace z, by f z, L.

[

\/g- 2’ respectively, so that (as vectors in R?) a simple computatlon shows that

—c? 1 m e —1
n

+ 1y, —_ — - Az + - ).
(o iy, ) e+ e 7 7T

x' +ay c

Taking A = X', we have

EOO h(r])p]( ) j(m)[&’”]@wi\)? ]
41 f (n/m)To_ 2tr(n)02tr(m)h(r)(I\ir(27r>\) dr

1¢( 1+227")|2\/_ cosh(nr))~1
_ 7;; S Snmc f f —27rz )k( + \}%7 /+\}&>dl'd$

—I'(Smn f_oo k u 27r2/\udu
(2.6)



Notice that the extra factor of y in the last (“c=0") term of (2.6) has been cancelled
by the 1/4/yy’ factor in (2.4). Here

S(m7 n; C) — Z eZwi(am—}-E’rz)/c).
a (mod ¢)), a@=1( mod c)

Integrate both sides of (2.6) from A = 0 to A = co. Let me assume that the
interchange of integrals with respect to A and with respect to z, z’ is valid. This
assumption will be verified later, see the appendix. Using

™

K, (27))° d) = ————
/0 Gir(2mA)° 8 cosh(mr)’

we find that
Eoo h(r;) ( _I_ f n/m o_ 2tt(n)021t(m)h( )dt

J=1 cosh(rr; ) |C 1424t)[?

- %Z:il @S(n,m, c f_oo fo f_oo —2mi 0 ot (:1; + 1y + 1, - +2y) da;dydt
+36mnk(0),
(2.7)
using the Fourier inversion formula for the k(0) term. Writing
2 B
k() = _f/ E2( 2R (1) dt,
™ —0
where Zk(1) := fH z +t,—1/2)y dz, the first term on the right hand side of

(2.7) may be expressed as

H

Z— n,m;c) ]{?*(47TW).

[

9

We can express the function k*(z) and the number k(0) directly in terms of h(r)
as follows: By [Z1] (4.12), Zk(t) is given by

Zk(t) = i/_oo u(t,r)h(r)dr,

with
; cos(ar), if 2 <|t| = cosh(a/2),
u(t,r) = Zgiﬁgi:;, if 2 > |t| =sin(a/2), 0 < a <.



On the other hand, from [GR], §6.69, we have

tx dx

u(t,r) = C()S}Z.lﬁ /OOO[JQZ'T(:E) — J_gir()] COS(?)—,

x

so by the Fourier inversion formula we find that

rh(r)

cosh(mr)

Ble) = = [ Uanle) = Janle) I

n o)

(see the appendix for more details). For k(0) we have the formula (standard in
the classical derivation of the Selberg trace formula, see [Z1], (2.24))

1

k(0) = in /_OO rh(r)tanh(7r)dr.

Summarizing, we have proved:

Theorem 2.2. Let h(r) be even and holomorphic in |Imr| < 1/2 + ¢ with
|h(r)] << |r|7* . We have

0 h(r;) n/m 0 —2it{n)02:t{m
Z] 1 COSh(TrT’])p]( ; f Ic( 1+2£t))|2 ( )h(t) dt

= 2ezo S”f” R (4mE0) 4 26,,,k(0),

where h(r), k(0), k*(x) are related as above.

(2.8)

Remark 1. In practice, one sometimes is given k* and calculates or estimates h

from that. For examples, see [Kuz], subsection 5.5 below, [DI] §84-7, or [Z1].
On the other hand, Kuznetsov’s formula [Kuz] states that

fo'e) (b T n ‘7)” to_ 2zt n 02tt
Z] 1 COS{IEWT)])’O]( —I— f . |C 1+2it) |2 qu(t) (29)
=Y iS<n,m,c>¢H<4w“Z“> + 350mn o Hu)Jolu) du,

where

61(r) = gy Jo (Jain(2) = J2in(2)) () F,

() =2 % Joir(2) iy 6 () dr,

and .J,(x) denotes the usual J-Bessel function.

(2.10)
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We show in the appendix, for all ¢ such that ¢;(r) = h(r), the identity
E*(z) = ¢p(z) holds.
To complete the proof that Theorem 2.2 and (2.9) are really the same formula,
one must verify that
/ $(a) ol

for ¢ as above satisfying ¢g(r) = h(r). However, this identity follows immediately
from [Kuz] (6.33) and the equatlon for k(0) just above Theorem 2.2.

2.1. Appendix to §2 : The Zagier transform
2.1.1. An identity

The first object of this appendix is to show that, for suitably “nice” functions
(such as those obtained from the conditions imposed in §3), if ¢ is such that
h = ¢ then

F(2) = “2(Zk)(x) = éu (o). (2.11)

Here the notation is as above. This follows almost immediately from a result of
Zagier [7Z1] (4.12), expressing the Zagier transform Zk in terms of the Selberg
transform h. One must also use a formula for the Fourier transform of .J.(z)/z,
from [GR]. The result (2.11) generalizes to n—-dimensions, in the obvious way, and
it is the 2-dimensional version which will be applied in §4. The hypotheses on h, k
are as in Theorem 2.2. In particular, we will use the fact that h(r) = h(—r) = h(F),
for |Im r| < 4.

Lemma 2.3. ([Z1], (4.12)) We have

253 ry h ) cos(ar) dr, [t| = 2 cosh(a/2) > 2,
(t) = foo Malr [t <2, t =2sin(a/2), 0 <a <.

cosh (7r) ’

From [GR] §6.69, we obtain

Lemma 2.4. If ¢ > 0 then

- o[ mesmtem o
; 227"—1—5( )COS(.’ECL/ ) - = cos(irm+ ) a Z 9

(2ir+e)(a/2+4/(a/2)2=1)2ir+¢’

9



Recall, 2Z__ — ¢’ where b= cosh™"(a/2).

a+va?

i

Let 0; o
I r
(z) = — Joirge(t)——— dr, 2.12
o e)i= 2 [ arilo) s atr) dr (212)
where ¢; is as in (2.9). This € > 0 is introduced in order that we may, after
taking the Fourier transform of ¢p (z)/z, interchange the order of integration
and apply Lemma 2.3. One may alternatively use the fact that, by Cauchy’s

residue theorem,

on(r) = %/_m JM+6($)cosh{w—é_ri—el-/?c/Q)]qé‘](r tic/2) dr,

and, since h(r +i€/2) = h(r —1€/2),

B L2 h(r +1ie/2) cos[(2ir + €) cosh™ ([t]/2)] dr,  |t| > 2,

Zk(t) = o0 . cos[(2¢r+e€) sin~!
" { 3 J o hlr +ie/2) [(ECZ)ShF;r()r+ie/2()t]/2)] dr, [t <2.

However, using (2.12), note that

lim ¢p.(z) = du(x),

e—0+4+

since dominated convergence allows us to take the limit under the integral. If

h(r) = ¢(r) then, by definition,

o) = 2 [ inla) ) .

o cosh(mr)

To show that (2.11) holds, it is enough to show that (Zk)"(z) is 72/2 times the
limit, as € — 0, of the inverse Fourier transform of ¢ .(x)/x. This is because one
has (by dominated convergence)

lim elt$/2¢H7E(a;)—x = / ettel? lim¢H7E($)—$. (2.13)
x o T

e—0 0 e—0

On the other hand, (2.13) can be computed from Lemma 2.3, from which the
desired result follows.

10



2.1.2. Interchanging of orders of integration

Here we want to verify that

DR o i

= ch —nC:“ f_oooo f_oooo = 2mi R (umd) fo (u—l—i\/c,i—n, +Z_%) C&—Adudu’.
(2.14)
This, in fact, converges absolutely for k such that £ > 0 and qbgz)(()) = 0 for
n =0,1,2,3 (here ¢(" denotes the n'* derivative of ¢). This set of k’s span a

dense subspace of the space of k£’s in Lemma 2.1.
Let me first verify that

Jo S I em2miY u)k<“‘|‘i\/m7 +Z¢ck_) dudu' %
= —~2mi L (u! u -+ , udu’,
= [ S e ) Jo k( von i ) 4 dudu’

)k(u—l—i\/m, +sz) dudu’dA

(2.15)

assuming k is as above. By the positivity of the kernel k, we have

I o k(e 4t 4 i, ) dute

=TT R v, ) (2.16)
= Zk(1).

By our assumption on ¢g, Zk is smooth, so (integrating by parts, as usual)
Zk(t) << t7% as t goes to infinity. In particular, the following integrals are
absolutely convergent:

—1 d
/ Zk(t et dt = / / / u—l—t—l—w ) dt—vdu
_ u + v v

This verifies (2.15). Weil’s bound for S(n,m,c) along with (2.15), (2.11), and
Lemma 2.1 yields (2.14).

It should be remarked that, by using truncation operators, Ye [Ye] verifies
interchange orders of integration. However, his “relative trace formula” appears
to be somewhat different than ours.

3. The case of SL(2,0k)\ H?

Let me review some well-known material.

11



Some notation:

K := totally real number field of degree 2,
Ok = ring of integers of K,
O% = group of units(= Z x finite group),
¢ = fundamental unit of Og,e > 1,
@ = 7(a) := conjugate of a € K
N(a) := aa(= the norm ofa),
I':= PSL(2,0k),
', := Cent(y, ')(the centralizer),
I', :={y € I' | vz = z}(the stabilizer).

Recall that v € I' acts on z = (21, 22) € H* by

= (a21 +b 7(a)zq + T(b)) 7

czi+d T T(€)zq + T(d) (3.1)

via the embedding I' — PSL(2,R)? given by

[ a b a b 7(a) 7(b)
7_<c d)'—><<c d)’(r(c) T(d)))
The norm of ¢ € K will be extended to a “norm” of C? as follows: Nz := 22,
for z = (z1,22) .
Recall that a matrix A € SL(2,R), A # £1, is hyperbolic, elliptic, or par-
abolicif [tr A| > 2, |tr A| < 2, or|tr A| = 2, respectively. This notion makes sense
on the quotient PSL(2,R). A matrix v € I will be called (totally) hyperbolic,

elliptic, or parabolic if both y and 77 is. Otherwise, 7 is called mixed.
Let R :=R U {oo}. The following is well-known (see [Sh]).

Lemma 3.1. e An elliptic v has exactly one fixed point in H%, none in R
e A parabolic v has exactly one fixed point in Rd, none in H?.

e A hyperbolic v has exactly 2" fixed points in Rd, none in H?.

Lemma 3.2. (Selberg, see [Sh], footnote p.45) For v € I' mixed, 7;v is never
parabolic.

12



For the purposes of parameterizing conjugacy classes, one may separate the
hyperbolic elements into two classes: let’s say a hyperbolic element v € T' is of
compact type if it has the property that none of its fixed points are cusps. Recall
that a cusp is a fixed point in R of a parabolic element. If v € T" is hyperbolic
and not of compact type, then it is said to be of non—compact type. This
terminology is suggested by the following fact:

Lemma 3.3. (Shimizu [Sh]): If v # +1 is an element of I' which is hyperbolic
and not of non—compact type then G(R)./I', is compact where

G :=PSL(2),

and G(R), := Cent(y,G(R)). If v is hyperbolic and of non—compact type then
G(R),/1I', is non—compact.

As for the cusps themselves, there is the following basic result:
Lemma 3.4. (Maass) There are h (parabolic) cusps,

(1 = (100,...,100),

CZ = (C2(1)7 e §2(d)) ”

Ch = ( }(L1)7'..7C}(Ld))

such that no two are I'-equivalent and any other cusp is I'-equivalent to exactly
one of these.

Here h > 1 denotes the class number of K. Each cusp A € R? of I’ can be
considered as an element of K := KU{oo}, via K < R% Of the h ideal classes, let
us choose integral ideals Aq,..., A, in such a way that each belongs to a different
ideal class and each has a minimum norm among all integral ideals of its class.
These A; will be fixed once and for all.

For each cusp A, Siegel [Si] has given a fundamental domain for the stabilizer
[y write A = a/e, a,¢ € Ok, witha=1, ¢c=0if A = 00 = (00,...,0) € RY,
Let A = (a,c) be one of the ideals A; above, let aq,..., a4 be a basis for the
Or-module A7%, and fix a

a b .
v = < . d) € PSL(2,K),

13



with b,d € A~'. Then there are local coordinates X;,Y;,1 <i<d, 1 <j<d—1,
depending on z = z + iy € C?, such that

d—1

ZYlogITkéyl— log((v~'y)e/N(v~19)"/%) (3.2)

7=1

for 1 <k < d—1 (where the subscript k£ denotes the kit coordinate) and such
that

ZXTk ;)= (v o), (3.3)
for 1 <k <d. A fundamental domain for I, in H%is

27

Fy:={zc H?| XE[ 1,3),for 1 <i<d, and
€[—2,3).for1 <j<d-—1}.

Furthermore,

= {((§ 5 ) lee 0k ceafir, (3.5)

where v = 4()) is as choosen above, and (in particular) if A = oo then,

(5 ) reeon e, 59

as in [Si] pp. 249-250. In fact, in this case, A™* = O.
From this the fundamental domain of I" can be constructed, as follows. For a
cusp A = a/c as above, with v = v()) as above, let

Az, A) = N(y_ly)_l/Q, z¢€ H?.

This is the Siegel distance from z to A. Observe that the distance, with respect
to the usual metric

d d
dz = [[y;? - dujdy;, ds* =) yiP(de? + dyf)

i=1 i=1
from z to A is infinite. The Siegel distance has the invariance property

A(gz,g)) = Az, A),

14



for ¢ € T, and the value of A(z,\) does not depend on the above choice of

v =7v(X). Let
A(z) :==infyA(z, A). (3.7)

Lemma 3.5. (Siegel, [Si] p. 257) For each z € H* there is a cusp X € K such
that A(z) = A(z, ).

The cusp mentioned in this lemma is usually unique (see [Si]) and is the cusp
with the smallest Siegel distance to z. If A(z) = A(z,A) then we say that z is
semi-reduced with respect to X. Let

Hi:={z¢c H" | A(z) = A(z,6)}, (3.8)

in the notation of Lemma 3.4, and let F; be a fundamental domain for (;. Define
z to be reduced with respect to I' if

e 2 is semi-reduced with respect to some (;, and

® 2 C FZ
Then
F :={z¢€ H?| z is reduced with respect to I'}
P Eo
= Ui:l(Fi N HZ) C Ui:l FZ
is a fundamental domain for I'.

If K = Q(vD), D squarefree, D > 1, and A = oo, then equations (3.2, 3.3,
3.6) give that

(3.9)

r. — { ( 8 i_lf ) lee OF, Ce OK} (3.10)

has fundamental domain

1 1
Foo:{zEH2|61_2§£§cf,—— LT <
Yo 2 2 2

1 (Il — .fL'Q) < 1}

2 2.v/D —2J)7
(3.11)

where z := (z1 + ty1, T2 + 1y2), and € is a fundamental unit > 1. Incidently, this

notation does not seem to be the same as [Zo].

15



If ¢; denotes the j cusp, T'; the stabilizer for (;, and o; € SL(2,K) the
element such that

o;7'Tjo; =T, (3.12)
then consider the truncated fundamental domains

FY :={z¢€ F;| N(Im(o;'2)) < Y},

FY 2 {zeF | N(o2) <Y, V1<i<h}. (3.13)

Later, for the purpose of estimating some error terms, it will be useful to know
that these truncated domains satisfy the following property:

h
F—F c|JF: - F)),

=1

for Y > 1.

3.1. The cuspidal contribution

This material is also well-known (see Kubota [Kub] and Zograf [Zo]).
Take K := Q(\/ﬁ), D > 1 squarefree, let € > 1 be a fixed fundamental unit,
and let G(R) := PSL(2,R)? Consider

dx jdy;

dz :=dzdzy, dz;:= 5
Yj

3

and u(w,w’) := Jw — w'|*/(Imw - Im v’ (w,w" € H), so that u(gw, guw') =

)
u(w,w'), for all g € PSL(2,R). Let S(R?) denote the Schwartz space. Fix two
ki, ky € S(R?), write (abusing notation)

ki(z,2') o= kj(u(z1, 21), u(z2, 23)) 5

such functions are sometimes called point—pair invariants, since k,(gz,g2') =
k (z,2'), for all g € G(R). Let me assume that there is a kg € S(R?) such that
ko(u(z1,27),u(z2,25)) = k(z,2'), where

k(z,2") = (kg * k2)(2,2")
= [ k(2 2")ka (2", 2") d2" .
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This is a G(R)-invariant function on H%. Let me also assume that the integral
function

Kf(z):= /}12 k(z,2)f(")de', feC>(H?), (3.14)

is positive—definite. These assumptions can be weakened considerably (see, e.g.,
[Zo] p. 1651).

Let F' denote our fundamental domain for I' and define L*(F,dz) to be the
completion of the space C°(I'\ H) of smooth I'-invariant functions with respect
to the inner product

(f1:/2) 5:/Ff1(2)mdz.

The positive-definite differential operators

on C>*(T'\ H?) extend to unbounded densely—defined self-adjoint operators on
L*(F,dz). Furthermore, they generate the (commutative) algebra of G(R)-invariant
differential operators on H? . Let

kr(z,2") = Zk(z,’yz'), (2,2 € F), (3.15)

~eT

and let
Krf(z):= /ka(z, 2N f(2)dZ', (3.16)

for f € C=(T'\ H?). Clearly, for all such f,

[(pf(z) = [(f(z) ’
D]-Kpf(z) = [X7FDj (Z>7

since
/ kr(z,2')f(z') dz" = / k(z,2")f(z")d2",
F H?
and since D; is self-adjoint.
Our first goal is to obtain a spectral decomposition for kp(z, z’). The first step
is to isolate the part of kr in the sum (2.4) which arises, in a sense to be made
precise later, from the cusps, i.e., the boundary of F'. The following is well-known.
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Proposition 3.6. For any two cusps (;,(;, we have

kr(z,z") — Z Z k(z,vz") = o(1),

=1 vyel;
, .
as z — (;, 2 = (; in F.

In other words, the contribution of the cusps to the kernel of k. is

Z Z k(z,v2") = Z Z k(o7 'z,vo7 12, (3.17)

i=1 ~v€l; =1 v€lo

since 07 'T';0; = I'o,. In order to compare this expression for the cuspidal contri-
bution with another more intricate expression introduced later, we need to derive
a simple approximate formula for (3.17). This is easy, but the details will require
more formulas, especially in the twisted case.

Let 7 : a — @ denote the non—trivial automorphism of K/Q and let

To(21,29) = (29,21), Ty: H* — H*. (3.18)
Clearly, T~' = T,. Note that T, doesn’t commute with the action of SL(2, K),

in fact

T,oy=71(y)oT, =75oT,.

On the other hand, T, sends cusp forms on I'\ H? to cusp forms and automorphic
forms to automorphic forms under

T, : f(z)— f(Tr2),

see H. Saito [Sa]. The fact that T sends automorphic forms to themselves follows
immediately from (3.18) and the fact that the automorphy factors of v and of ¥
coincide. The fact that T, also preserves cusp forms follows from Siegel’s Taylor
expansion [Si], Theorem 17 p. 275. (This action does not commute with the
Hecke operators. Indeed, the subspace of the space of cusp forms on which T
does commute with the Hecke operators is precisely the image of a base change
lift; see H. Saito [Sa].)

Just as in the untwisted case, where there is the kernel

kr(z,z') := Z k(z,v2"), (3.19)

~el

18



in the twisted case there is the twisted kernel

ki (z,2") = ZkZ’yTz (3.20)
For f € C>=(I'\ H?), we have

K{f(z):= /Fklf(z,z’)f(zl) dz' = K7 f(z), (3.21)

where
K7 f(z):= /1'—12 k(z,T.2")f(2") d=".

As operators on C*°(I"\ H?), neither kr nor ki are invariant; however, K and K~
are invariant. From

TTle(Z) = DZTTf(Z)7 TTDQf(Z) = DIT’Tf(Z)7

it follows that if f is a simultaneous eigenfunction of both D, Dy then T.f is
also a simultaneous eigenfunction of the D;. The theory invariant operators [Kub],
Theorem 1.3.2, gives us the following

Lemma 3.7. There are functions h(ry,r3), h™(r1, 1) such that if f is a smooth
function on H with D;f = X;f, 3 =1,2 then

Kf(z) = ()\17)\2) (

z)
K7 f(z) = h"(A1, A2) f(=

).
Lemma 3.8. We have

hT(T’l, TQ) = h(T’Q, T‘l) 5
and, for any simultaneous eigenfunction (of the D;) f € C=(T'\ H?) ,

krf=hA, ) f, kpf=h" (A, ) f .

The proof of (3.8) is omitted.
The function & is called the Selberg or Harish—Chandra transform of kg
(orof k) in (3.14). We may regard A" as the twisted Selberg/Harish—Chandra

19



transform of ko. If kg € S(R?) then h is determined from the following integral
formulas:

Q wl;’UJ = fw2 fwl [(t1—w1) ttl;i)u )]1/2 dtldt?;
) 626Q(w61 ,w)
ko (tlatQ B ft2 ftl (w1 —t1)( 1w22t2)]1/2 dwldw27
r) = fR2 Qe +e ™ —2 e* —|— e_“2 - 2) i du,
Q(eul _I_ e—ul _ 27 €u2 _I_ e —uy 2 fR2 —2r~u dr7
where u := (uy,uq), r = (r1,72), - u = riu; + rqug. (See, for example, [Kub],

[Ef], or [Z1]). The behavior at infinity of these functions is known, thanks to a
Paley—Wiener type theorem (see Lemma 2.1 above).

Let A be any integral ideal of O and let Dif f denote the different of K/Q,
so that A = A/Dif f, where

A — {:E c K | TTK/Q(CL;L’) € Ok, for alla € A}

is the dual lattice of A with respect to the trace form. Also, the norm of the
different is the discriminant and this is related to the volume of the torus R?*/A
as follows:

vol(R%/A) = N(A) - diser( K/Q)'/2.
Regarding z € K as (z,7) € R? we find that

A={ze K |a-z€Ok,Vaec A},

where a - x denotes the inner product of (z,%) and (a,@). The Poisson summa-
tion formula for the lattice A is, for z € R?,

Y fla+a) = (vol(R*/A)™ ) " f(b) exp(2mib- x), (3.22)
a€A beA

regarding b as (b,b) € R?, and

f(b) = f(a:)e_QMb'I dz.
R2
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As a first step towards computing the cuspidal contribution, take A = O in the
summation formula (3.26) and choose

ri = w-n) _ e +e Mt — 2 wypi=log (y—l)
Vi ’ Y
Pag 1= WU _ gum 4 o-uzm 2, uy :=log (y—?)
y2y2/ 5 Y2
Tig i= W=w)” _ guiz 4 gmuiz 2, upg = log (y—})
ylylg 5 Ya
rop 1= B2 pun g emua 2, Uy :=log (y—?)
Y29, Y1

Lemma 3.9. As z,z' — 100, we have
1 1
Z k(z, ( 0 T )Z') = mvylyzyiyé Q(r11,7m22) +0(1)

and

1 a 1
> k(= ( 01 )TTZ/) eV n1y2y1ys - Q(riz,ra1) + o(1).
Since we need approximate formulas for
Zkz*yz andenyTz)
vel; vel;

this lemma isn’t sufficient. However, it implies both

Z k(z,v2") = \/ Y1Y291Y3 - Z (r11(k), r22(k)) + o(1),

V€l k=—o00

and
Y k(zAT2) = \/yly?ylyZ Z (r1a(k); r21 (k) + o(1)
Y€l % k=—o00

as z,z' — oo. Here

)= % =etdem™ =2, un = log (62:%)
oo 1= % = e¥22 4 T2 _ 2 , Ugg 1= 10g< —yzy2)
M2 = % €2 472 — 2 oy = 10g< 2:5/1)
o1 = % — el¥21 _I_ e %21 _ 9 ; Uy 1= 10g ( —z;ﬂw)
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From these we (finally) obtain the desired approximate formula describing the
cuspidal contribution:

Proposition 3.10. As z,z2" — oo,

h / 1 h /
SN k() = %;mew(l),

=1 vel’;
and
h 1 zh:

Z Zk(277TTZ/) =5 /= Gi(ZvTTzl) —I_O(l)v

i=1 v€l; 2\/5 =1
where (;(z, 2") equals

\/y1(a;lz>y2<a;1z)yi(aﬂ’)yé(aﬂz’) > Qlrulk,i),ralk,i)),
k=—o00

and where

Tll(k,’i) — (e kyl(aflz)—yi(ai—lz)P = el 4 gmu1 27 Uyy = 10g (M)

—1 T —1
;k%yl(ail z)yi/(cri 12) , ék(ai Z)l .
. (e*Pya (o] 2)—yz(o; 2)) u —u e Fya(o] 2)
roo(k. 1) 1= - i = e¥2 L U2 _ Q2 gy :=lo ( i )
(ks 1) = e Um0 TG

3.2. Eisenstein series and the continuous spectrum

Thoughout K/Q denotes a real quadratic extension Q(v/D), D =2,3 (mod 4)
square—free, and € > 1 denotes a fixed fundamental unit. In this section, the class
number h = h(D) of K is arbitrary.

Again, the results of this subsection are known (see [Ef], [Kub], or [Zo]). A
Poincaré series is a sum of the form

iTn

—1 —1 yl(o-]_lf)/z) 2loge
Eyni(z):= 10 Y2)Y20; 72)) |~ ;
ams(e) 1= 3 lle o7 Moo

(3.23)

for 1 < j < h, z€ H*, n € Z, and ¢ € C>(R). These are also known as
incomplete theta series.

It is easy to see that Fy,; € L*(F,dz). In Kubota’s notation, let © denote
the L?—closure of the subspace of all mock-Eisenstein series and denote by H, its
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orthogonal complement. © turns out to be the continuous plus residual part of
L* (see subsection 4.3 below). It is not hard to see that these spaces © and H,
are preserved by the action of T'.

Lemma 3.11. Let f € C(I'\ H?). Then f € H, if and only if

/ floiz)dz =0, dr:=dxidxs,
D

for all 1 <1 < h, where

D= {(mm) eR*| — o< DT <0 Lo N >}
is the “x—part” of F,.
Thanks to this lemma, it can be shown that
Ho = L2, (F,dz) (3.24)

is the completion of the space spanned by all cusp forms. From the symmetry of
D under 7', one can verify that the projections

L*(F,dz) — L%, (F,dz),

cusp

and

L*(F,dz) — ©,

commute with K, 7., and hence also K[. To investigate © further we must
introduce Eisenstein series.
Let

ik

yl(o-]_lf)/z):| 2loge

ya(051vz)

Bi(5,k) = Y (o7 92)ya(o7 72))" | (3.25)

~ET;\T

for se C, z€ H? 1 <j <h. Since D; commutes with

yi(z) — yi(aj_lfyz) ,
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it is easily seen that each F;(z,s,k) is a common eigenfunction of Dy, Dy with
eigenvalues

= M) = (o) o g 1),
)\2:)\2(8’]{) = <8_210g5)<8_ 210g5_1)'
Observe that 1. F;(z,s,k) = E;(Trz,s,k) = E;(z,s, —k).

Let me derive a few basic properties of these Eisenstein series needed to inves-

(3.26)

tigate © and hence K, KT. For this we need Fourier series. Let

in[(z14@2)m+(z1—z2)n/V/D] _ eiﬂ(l’zl‘}'gz?)’ (327)

e (z) = e, (x1,22) = €

where

v=m+n/VD.
A function f(xy,x) is called Ox—periodic if
f(l'l +a, —I_a) = f($17$2)7

for all @ € Ok. In this case, it is defined on the domain D (in (3.11)) and, if it is
sufficiently well-behaved, it has a Fourier expansion

f('fl? $2) — Z allell('rl7 $2) ) (328)
veOk
where

1
a, = m/pf(:z:)e_y(m) dx .

Of course, each F;(z, s, k) has a Fourier expansion at each of the h cusps. Let us
first obtain the Fourier expansion of Fy(z,s, k) at the cusp (; = o0 € K — R~
We have

a,(y,s, k) : \/_/ FEi(z,s,k)e_,(z) dz. (3.29)

We have a Bruhat decomposition:

Lemma 3.12. e ' \I'=T,U (Ugd Foo’yFo), where the union runs over
representatives v of

*

((¢),d(mod(c))) s.t. v = (’; d) €T (i, (c,d)=1).
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o [[~v¢ T, and o1 # 0y, with o; € I'g then

I's 7101 7é I's * Y2072 .

Since F;(z,s,k) is I'p—invariant, it is Og—periodic in z. This implies

+ ik ik

Cly(y, S, [{f) — 50m50ny1 2logey2_2loge
ik
+575 Jre Lerar (W1 (72)y2(72) [%} Heace () dr,
(3.30)
where v Tuns over representatives
* ok
( e d ) el \T,
with ¢ # 0, and v is as in (3.27). If v = 0 then ao(y, s, k) equals
S+2i2—ke S— 2i:ke 1_8_2i3)rk6 1_5+2i:k6
Y Yy T+ (s, Ry, "5y, o (3.31)

F(_%‘I’S‘I’ ik )F(_%_I_S_ irk)

Pols. k) = 2\7;5<Z€_k(c)¢(c)N(c)_28) I'(s+ Zﬁffe)r(s — ifrk ) = )

and
¢(c) := {d mod (c) | (¢, d) = 1}].

This expression was obtained by Zograf [Zo], p. 1642. An Euler product argument
allows one to conclude that

D Er(e)p(e)N(e) ™ = L(2s — 1,E5) L(25,€x) 7", (3.32)

where L(s, &) denotes the Hecke L—series for £.
The case v # 0 is not substantially different. If v = m + n/v/D, then

d d
Go(c) := Z e—u(Zv g)
(d) (mod (¢))
(c,d)=1
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is the Gauss sum attached to our real quadratic field. It can be calculated that

a(y,s.k) = (VD) T (V) X
Ky (rui DK,y (rva 7)) (3.33)
xGu(s, k) XENE) )
where
vi=m+n/VD T:=m—n/VD,
and

Gu(s,k) = Ek(c)Gu(c)N ()™

(The expression (3.33) differs from Zograf’s by a factor of 2.)
The Fourier expansion of the Eisenstein series is given by

FEi(ojz,s,k):= Z a,(y, s, kyi,7)e(x), (3.34)

v

where

1
al’(yvsvkaiaj) = m/ Ei(O'jZ,S,k)e_y(iL’) dz.
D

The computation is almost the same as when 1 = j = 1, except that the Bruhat
decomposition must be replaced by

3 | (U Foo’YFo) fori=7j
1 L c,d )
I'w\o; To; = { Upa T Lo, fori £, (3.35)

where the union runs over representatives of
* ok 1
((¢), (d) mod (¢)) s.t. v= e 4 )€ I'oj.
For this, I refer to [Kub], pp. 14-16.
Lemma 3.13. We have

Clo(y,S,k,i,j) = 5ijyfy26 + Qb(svkviaj)y%_ay;_B?
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where

qﬁ(S,k,Z?]) = \/_F( ) 1¢0(5 k,l,])
X CH R
Gue,4,7) =20 (d) mod(e) €-v(d/c,d/C )
* k)
c d ©
and
ay(y787k7i7j)
47ra+ﬁ\/m s L Lo \ya__(7r111| Dhﬂ %(7"1/2| v|)
—mins - (WP) T2 Ek(vV)u (s, k1, ) (@) () ;

and where o and (8 are as above.

The functions ¢, (s, k,,7) are all Dirichlet series and the h x h matrix
Op(s) := (beginarraycccqﬁo(s,k, L1)edo(s, by 1 R): " ido(s, by by 1)..go(s, by by )

1scalledtheconstanttermmatrix. [tisasymmetricmatrizwhichbecomesunitaryonthe“criticalline”l
s = 13 (see [Kub], [Ef]). The diagonal entries of the constant term matrix are
important for the following reason:

Lemma 3.14. F;(z,s,k) is holomorphic in {Res > 0} except possibly for a
finite number of simple poles which must all lie in the interval (%, 1] and must also
coincide with the (possible) simple poles of ¢o(s,k,t,t). Furthermore, E;(z,s,k)
has a unique finite limit as s — 5 + il in {Res > 1}.

Remark 2. By Zograf [Zo] p. 1643, Ei(z,s,k) has no poles on (1, 1] if k # 0; see
also [Ef]. For the proof of (3.28), see [Kub] Theorems 4.3-4.5.

We’ve finally compiled enough information to return to the study of the space
O C L*(F,dxz).

Let ©®y C © be the L*-closure of the subspace of ©® spanned by the simul-
taneous eigenfunctions of Dy, Dy in O. It is known that ©g is spanned by the
residues of £;(z,s,0) at the poles of ¢g(s,0,17,4) ([Kub], pp. 52-53). Let ©f denote
the orthgonal complement of @y in ©. Since the F;(z,s,0) are T,—invariant, the
decomposition @ = O & O commutes with 7., K., and K{. It can be shown
that

Op = L} (F,dz) =C", (3.36)

res
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where
1
n:={p¢€ (5, 1] | p is a pole of ¢o(s,0,4,1), for some 1 <7 < h}.

We also have O) = L2, (F,dz). Furthermore, it is known that n = 1 and the only

res

contribution to L2 _(F,dz) comes from the simple pole of ¢q(s,0) = ¢o(s,0,1,1)

res

at s =1 [Zo] p. 1644, [Ef] p. 64.

Theorem 3.15. We have the following K[ -invariant and Kr-invariant decom-
position:

LQ(F,dZ) :7‘[0@@0@@6
= L2 (F.dz)& L2 (F,dz) & L2 . (F,dz).

cusp res cont

3.3. The spectral decomposition of the kernel

The notation of the previous subsection is preserved; in particular, we assume
that D = 2,3 mod4 is square—free.

We breifly recall some results of Zograf [Zo] and obtain their twisted analogs.
In Zograf’s notation, set

o 1 h 50 o] k mk
Thl=2) 3= obings 2=t 2% oo BT+ 307 7 5iog) X (3.37)
X Ej(z, 5 +ir, k)Ej(2', 5 — ir, k) dr,

and in the twisted case set

Ti(z,2") == Tr(z,T;2") (3.38)
(i.e., replace E;(2/, 3 —ir,—k) by E;(2',1 — ir, k) in the integrand). Set
Sr(z,2") :=kr(z,2") — Tr(z, 2) (3.39)

and

St(z,2") := Sr(z, T:2"). (3.40)
The following fact is essentially well-known.

Lemma 3.16. Sp(z,z') and Sf(z,z') are bounded on F x F', and the integral
operators

Srf(z) = [ Sr(z,2")f(2") d',

SEf(z) = [ SP(z,2))f(2") dz" = SrT:f(z),
for f € C*(I'\ H?), are normal, compact, Hilbert-Schmidt operators on L*(F,dz).
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The following corollary will be used in the spectral decomposition below.

Lemma 3.17. (a) The restriction of Sr, S{ to L2, (F,dz) is trivial,i.e.,

2 2 Y
Lcont Lcont
7T Is ol
K7 = T7]|
2 iz
Lcon Lcont

(b) The restriction of Tr, T{ to L2, (F,dz) & L2 (F,dz) is trivial, i.e.,

cusp
Irf=17f =0,
for all f € L2, (F,dz) ® L2 (F,dz) .

proof: See Kubota [Kub| p. 59, for example. O
In L2, (F,dz) & L2 (F,dz) we can select an orthonormal basis {f;};en of

cusp res
common eigenfunctions of D, D,;. We denote the corresponding eigenvalues by

AW,

J

Dif;=Mf, jEN i=1,2. (3.41)

Using the separation of variables technique from differential equations, it is easy
enough to obtain some information about the Fourier coeflicients of the f; €

L3, (F,dz). Following Zagier [Z1] p. 307, write

cusp
Difj=(1/4+15)fi, [i € Léugp(F.d2). (3.42)

Since D; is positive definite, one has r?j > —1/4. The Fourier expansion may be
written

Fi(2) =Y Ay, ya e(x) . (3.43)

Since, in the notation of Lemma 2.1, (2.1),
2.2 9 :
ymvt, g =1,
Dje,(z) = 7j(v)* = { R i =2

and DiAU(yh y27j) = _yz%Av(ylv y27j) )

it follows that A,(y) satisfies the Bessel equations, for i = 1,2,

0* . . .
_y?a—y?Av(yhy%]) + WnyTi(V)ZAD(yhy?v]) - (1/4 + r?j)A”(yl’yQ’]) =0.
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The bounded solutions to this are of the form

Au(y1,42,5) = piWIVY192Kir, (myn [V]) Koy, (7y2|7]) (3.44)

where v := m + n/\/ﬁ, vVi=m— n/\/ﬁ This gives the Fourier coefficients
p;(v) of the Hilbert modular cusp forms f;. This expansion (3.43) can also be
derived as a consequence of Shalika’s multipicity one theorem for GL(n) (see, e.g.,
Bump [B]). A priori, the r;; are either real or pure imaginary of absolute value
|ri;| < 1/2. Whether or not the latter possibility occurs depends on whether or
not complementary series contribute to the (residual) discrete spectrum.

Finally, we can write down the spectral decomposition.

The Selberg/Harish—Chandra transform satisfies

Krf; = A A ) (3.45)
and
KEf; = O 0) 15 = RO AD - (3.46)
Denote the operator norm of Kt to be given by
I Kr={ [ |kr(z,2)? dzd2'}?,
FxF
so that
I &7 [|=] Kr || -

Theorem 3.18. (a) (Zograf) Considered as operators in the usual way, the limits

and

. 1 h T Tk nk
hmTvT/—ﬂ)O 16mv/Dloge Zj:l E—T'<k<T’ f—T h(?“ + 2loge’ r— 210ge)x

XEj(z, 5 +ir, k) E;(2, 3 —ir,—k) dr,

2

exist in the operator norm and these limits satisfy

kF(Z7ZI): Z hT( 7 7 ] )f]( )f]( )
mk mk
—|_167r\/_loge Z] 12—00<k<00f h + 210g57r_ 210ge)><
XE(Z@ —I—ZTk)E(’l—' —k)dr.

72
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(b) In the twisted case, we have

kE(ZVZ/): EOO hT( ] 7 ] )f]( )f( )
mk mk
+167r\/_loge Z] 1 E—oo<k<oo f h B 210g5’r + 210g5)x
X F;(z, —I-ZT EYE; (2,5 —ir, k) dr.

proof: This follows from the results above; for more details, see Kubota [Kub]
or Efrat [Ef]l. The fact that the “twisting” T, exchanges E(z 2 —ur,—k) with

E(Z, % —1r, k) is a trivial consequence of the definition of the Elsenstem series. O

4. Zagier’s method

4.1. Introducing the Kloostermann sums

As a simplifying assumption, let us assume that K has class number one. This
implies that Ok is a principle ideal domain and that I'\ H? has only one cusp.
As D =2,3 (mod 4), we also have O = Z + V/DZ and its dual lattice is given
by

1
D'. h Ox — ‘I’ —Z
lff K \/5

In Zagier’s method one of the steps is to transform

L/ / kr(z + iy, 2’ +iy')e, (z)ey (z') deda’, (4.1)
D JpJp

or, in the twisted case,

L/ / ki(z + iy, 2’ + iy )e,(z)ey (2') deda’, (4.2)
D JpJp

into an “abelian sum” (i.e., one over ideals in Ok, not over elements of I') involving
Kloostermann sums. This subsection will be devoted to carrying out this first step.
First, write kp, k[ in (4.1, 4.2) as a sum over (¢) and d (mod ¢), as follows.

Lemma 4.1. Suppose f(yz,vz') = f(z,2'), for all v € I'. We have
/ / Zf z,v2") dzda’ —/ / (2,7ea?') drda’,
e R2 JR2
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where the sum runs over (c), with ¢ = 0 and d an arbitrary unit, and representa-

tives (¢) # 0, (d) (mod ¢), with (¢,d) =1, and

S
%’d:<c d)EF

(we will show that the right-hand integral is well-defined, independent of the
choice of 7.4).

proof Since

r= {(é ‘f)meokr}-(i 69k>, (4.3)

k=—c0
the coset I'/T',, can be expressed as the union of all possible pairs
(C, d) € (A X A)/Ova (C, d) 7£ (07 0)7 (44)

with (c),(d) having no common factors, A being any ideal of (the p.i.d.) Ok.
Here O} —equivalence means

(e,d) ~ (c’,d’) <= ¢ = uc, d = ud, for some u € (’)}i

Phrased in another way: .4 ~ o4 (i.e., they belong to the same coset modulo

I's) if and only if
* % _ k0 * ok
d d ] 0 ek c d /)’

for some k € Z. If ad —bc =1 and a'd —b'e =1, so

[ a b fd
M= c d 2= c d

are two possible 4.4, we have to show f(z,7.42") makes sense. We have b =
b'+nd, a = a’+ nc, for some n € Ok, if and only if 71, 72 both represent 7. 4. A
simple calculation shows that

a b , (1 —n a b\ ,
e d )7 \0 1 c d)*
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On the other hand, our hypothesis on f implies that

(0 ) e =t (5 )= (0 5) )t
— Jd = ( ’;)zwx

The lemma follows. O
From (4.1) it follows that

fy Jy (e, e dds
= Jrz Jpo <Zc,d k(Za’Yc,dZ’))ey(x)ey;(a:’) drdx’,
and -
Jo Jp k(2,2 )eu()ew (a') duda’
= Jr2 Jr2 (Ec,dk(za’Yc,dTTZ’))ey(ll?)eyf(a:’) dzdz’.

(4.5)

(4.6)

As in section 1, we want to treat the “c=0 term” in this expression separately. For
¢ # 0, in the right-hand side of (4.5), replace x; by x1 + a/c¢, x2 by x2 +a/e¢, x}

by | — d/c, zh by xf, — E/E, i.e., replace 7.4 by

(o ¥ )melo )

where 7, 4 1s represented by
a b
c d )’

Neglecting the “c = 0 term?”, this yields for (4.17) the expression

Yo ;éo(z 0 et ) ey(a/c,a/z)ey,(d/c,a/z))><
ad=1 (mod (c))

(C,d)E(AXA)/O}(X
1/e

0 —
X Jaz Jpo (X ea k(2 ( c 0 ) Z))e(z)ey (') deda’.
The “c = 0 term” of k(z,7.42") in (4.5) is

Z’yegoo k(Z7 ZZ/> , )
= ZbGOK k0<(l‘1—I1) +(y1—y1) (m2—x2) +(1/2—y2) )

2y19; ’ 2y2yh

= EMEOA’A cﬂ(y7 y/)elu(x - .’EI)7
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where

2 2

culy,y) = /RQ eﬂ(u)ko(u% + (y1 — y1)

2yy1 2y24
Thus the “c = 0 term” of (4.5) is

51/,1/’611 (y, y/)-

uj + (y2 — yb) du.

(4.8)

For ¢ # 0, in (4.6), replace x; by x1 +a/e, x5 by xo +a/e, z by 2} —d/e, )
by z, — d/c. Neglecting the ¢ = 0 term, this yields the analogous expression

z(c)ﬂ(z P ey<a/c,a/e>ew<8/ad/c>)><

)
ad=1 (mod (c))
(C,d)E(AXA)/O}(X

X fR2 fR2 (Zc,d k(z, (
The “c = 0 term” of k7(z,7.42") in (4.6)

2er, K7 (2,72)

=Yy L ((Il—fé)2+(y1—yé)2 (9-“-2—90'1)2+(1/2—yi)2)
beOf 0 2Y195 ’ 2y2y] -

- EMEOA’A cz(y7 y/)eﬂ(x - TT"EI)7

0
¢

where

2 AY: 2 A
c;(y,y’) = / eu(u)ko(ul + (yl yg) uy + (yz 91) )du.
R2

leyé 7 2y2yi
Thus the “c = 0 term” of (4.6) is

5,70y, y)-

Here

Soi= Y e deds),
(d) (mod (c))
ad=1 (mod (c))
(C,d)E(AXA)/O}(X

—é/c ) TTZ’))%eyl(x’) dxdx’.

(4.9)

(4.10)

(4.11)

and its twisted analog in (4.9), which we denote by S7, can be shown to be (“real
quadratic”) Kloostermann sums, so Weil’s estimate is applicable as in the classical
case. Indeed, if (¢) = (p) C Ok is a prime ideal of K then d (mod (p)) runs

34



through a field of N(p) elements and, moreover, we have an additive character of

the field Ok /(p),

o (a) = e,(a/p,a/p)e,(d/p,d/p) = exp (mﬁ“(#)), (ad =1 (mod (p))),

which yields the usual expression for a Kloostermann sum over a finite field. The
twisted sum S7 is treated similarly, except that 1/ gets replaced by /.

4.2. A Change of Variables

Next, we need a clearer understanding of the expression

[ L w7 ) enatmients) deds

c£0,d

and its twisted analog

fo Lot

This involves a rather lengthy sequence of change—of-variables, analogous to one
carried out in the previous section, but nothing more. Once this is accomplished,
we can turn to the second step of Zagier’s method.

For brevity, let

v =m+n/VD , T:=m-n/VD, (4.14)
Vo o=m'+n' /D , 7 :=m'—n'[VD. '

As in the previous section, we assume that v # 0, v/ # 0. In the notation of
(4.14), we have

k(z, < (c) _%)/C ) TTZ’))%Q,/(:U’) dxdz'. (4.13)

c#0,d

e (x)e,(2') = exp[—mi(z1v — 21V + 22U — THV)]. (4.15)

To reduce (4.12) to something which can be more easily understood, it is useful
to change variables in such a way that z; and z! then have the same coefficients
in the exponent of (4.15). This amounts to replacing

1:11—>Cx/ Viv-xzy, 19— «/_’/D To (4.16)
zy — I\ v/ 21}1751}2!—}%\/1//1/ zh, '
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provided v//v € K* is totally positive (we take the positive value of the square
root). Then €,e,: is replaced by

Eu,u’,c($7$1) = exp[— EVVV/'(:UI_II T
c

1) — V' (22 — .TL‘/Q)], (4.17)
and k(z, < 2 —%)/c > z') is replaced by

Vv , Vv —1/c —1/e?
E( STy oy, Tg + 1Y2, e ). (4.18)
Now set vy := vy, v = Vyq, Ui =

= V'yy, vy =
k(Az,Az") = k(z,2') to see that (4.18) is equal to

7'y, and use the fact that
e e
k(l’l +

! Zc I\—1 ! ZE \—1
T b + N —(z3 + ﬁ%) ,—(25 + ﬁ%) ). (4.19)
Combining (4.16-4.19), we arrive at the following

Lemma 4.2. If v/ € K* is totally positive then

0 —1/c
fuylzu’ybo Vy2 ="'y}, >0 m Jro Jra (2, ¢ ()/ ) Ze,(x)e, (') deda'doidoy
- 1
= N(c)™? fm:u;>0 va=vh >0

V1Y Y25 %
X fR’Z fR’Z Ev,v’m(l’v xl)k (wla Wa,

-1 -1 /
w_i7 @) drdzx dvldvz,
where F,, . is as in (4.17) and
A ic [ ic .1
wy =21+ —\/;71)1, wy =T+ =y,
L yi , Vi
Wy = Tq9 + \/%vg, w,

=xh + \/%vé
Lemma 4.3. If v/ € K* is totally positive then

(S”’”I fl‘yl =v'y; >0 JTy2 ="y, >0

1 /
7\/mcy(y, y')dvidvg
= fR?I- fR2 eu(ulyla u2y2)k0(u%/27 u%/Q)du dy

= 6,,,/64ko(0,0).

36



Remark 3. (a) The integrals over vy; = V'y;, etc., are with respect to dvydv,,
not dy,dys, so there is a suppressed constant factor which will appear explicitly
later.

(b) Our assumptions on k(z,z') in §1 easily imply absolute convergence of the
integrals.

We need the twisted analog of Lemma 4.2. In this case, we want to do the
same as in (4.16), except that the roles of z} and 2/, are exchanged. This amounts

:1;1|—>%\/7’/1/-:z:1, :z;2|—>%\/1/’/§-:z:2 (4.20)
ay— LUl e L v v o, '

provided v'T € K* is totally positive. Then €,e, is replaced by

to replacing

E], (z,2') ==exp | — VAT (v — x}) — o (z2 — 2], (4.21)
o c

[

and k(z, < (c) _%)/C ) T,z") is replaced by
— ) fid 175 ) -1 2 -1 =2
7/ '$1+1y171/7/1/'$2+@yza /e /e

<

E( — S ). (4.22)
‘ ‘ VT - iy, Yo iy
Now set vy 1= vy, vy 1= Dyq, v} 1= V'y], v = U'y}, as before, and use the fact

that k(Az, AT, 2") = k(z,T,;2') to see that (4.22) is equal to

1c N 1C -1 -1 )
— =1, T vy = .
V! b \a%74 51/’2 + \/T/UQ Ty + ﬁ’”i'

Whereas in the untwisted case, Zagier’s method dictated that we integrate over

k(z + (4.23)

v; = v}, vy = vh, in the twisted case we must integrate over vy = v}, vy = v1, i.e.,
vy = U'yy, Tys = V'y;. Summarizing (4.20-4.23), we obtain

Lemma 4.4. If v'U € K* is totally positive then

0 —1/¢
1

_ —2 1
= N(C) ful u2>0 ’U2:’Ui >0 mx
X fR2 fR2 v! u xl)k(Clv CQ? Z_{la E_él) dl’dl’/dvld’v%
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where EZ,V',C is as in (4.21) and

. ic roa_ o e,/
cl =z + \/ﬁvla §1 =Ty \/ﬁvw
iC

P iC . ! !
(2 =xg+ ﬁrv?a (2 =T + \/ﬁvl'

Lemma 4.5. If v'U € K* is totally positive then

1

B 1 7 !
v fuylzi'y§>0 792:g/yi>0 /7y1yiy2yécy(y7y)dvldv2
= fRi fR2 eu(U1yr, uaya ) ko(ui/2,u3/2)du dy
— 8,64k (0,0).

Now only one more transformation remains to be performed. Define the Za-
gier transform by

(Z[{f)(tl,tg) = / k‘(Zl —|—t1722—|—t2,—1/21,—1/22)y1y2 ledZQ, (424)
H2
and let
(Zk)A(Tl,TQ) = / ei(“tﬁ”t?)/Q(Zk)(tl,tg) dtldtg (425)
R2

This Fourier transform differs slightly from the Fourier transform in (3.22). From
Lemma 4.2, we obtain

\/I/V’W’(Zk)A(ZW—VZ”',QW—“;_”/)
_ 1
= Jnmto Jonerio (4.26)
X fR2 fR2 k(z, ( (c) _B/C ) ey (x)e (2') dedr'dy, dys,

if v/ € K* is totally positive.
In the twisted situation, define the twisted Zagier transform by

(ZTk)(tl,tg) = / k‘(Zl —|—t1722—|—t2,—1/22,—1/21)y1y2 ledZQ, (427)
H2
and let
(ZT]{T)A(Tl,TQ) = / ei(rlt1+r2t2)/2(27k)(t1,tz) dtldtg (428)
R2
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From Lemma 4.2, we obtain

v/ I/V’W’(ZTk) (27‘('\/_ 27‘('\/_)
X

fuyl =v'ys>0 Joya=v'y| >0 \/m (429)
0 —1 —
X fR2 fR2 k(Za ( c O/C ) Z/)GU(JJ)GUI(J/’/) dl’dl’/d%dy%

»—A(‘I

if V'U € K* is totally positive.
This concludes the first step.

4.3. Contribution of the Eisenstein series and the f;

Here we examine the terms
1 . , 1
Z B) Aa(r, k) Bz, 5 + ir, k) B (2, 5 —ir, —k) dr (4.30)
and
1 . , 1
Z k) Ao, k) B (2, 5 + i, ) B2, 5 — ir, k) dr (4.31)

from the spectral decomposition of the kernel function, where

M= N0 k) = s 7)o g — 1),

/\2 - /\2(r7k) = _(S - QZIZgE)(S - 210g5 1)

However, we are only interested in the term arising from the v** and v/** Fourier

coefficients of the Eisenstein series. In other words, we consider

Z/ h(A1, A2)a —|— ir, k)a, (2’ % —r,—k) dr (4.32)

and, in the twisted case,
1.
Z/ h(A1, A2)a —|— ir,k)a, (2, 5~ ir, k) dr. (4.33)

39



Since these Fourier coefficients involve K—Bessel functions, which converge very
rapidly, there are no convergence problems here.
Let us begin with (4.32). For brevity, denote

R I _imk
@ T2 +or + 210g5]C
1 . am

6 =a=g i 2loge?

and recall that, for some constant C' = C'(k,r,v, ") € C* not depending on y, we

have, by (4.19),

a,(y, % +ir, k)a(y, % —ir,—k)
= C/y1yay1ys - Kaoipp(mn|v|) Kooapo(myt [V ) Kgo o (my V) Kg— o (mys |77
=4C4/ % Ko1)o (2mpn ) Ko po(2mp ) Kp_1 2 (2 pa2) K g1 72 (2 1ty ),
(4.34)
where
pa = iy /2, pa o= [Plye/2, ph =1y g o= Py
By the formula following (2.6), it is easy to see that

SO
cosh[m(r + 7752

2loge

/ / [&’a_l/Q(Zﬁw)QKB_I/Q(27Ty)2 dxdy =
o Jo

This fact will be used later.
In the twisted case, one has, for some constant C' = C'(k,r,v,v/') € C*
independent of y,

a,(y, % +ir, k)a (Y, % —ir, k)
= O\ y1y2y1ys - Kaoapo(myn [v])) Kooapo(myg [V) K1 po(mye|V]) K12 (mys [7'])
= 40N\ BEEL - Koo (2min ) K o (27404 Koo (2 p12) Koo o (27ah),
(4.35)

where, as above,

po = vy /2, pa o= [Ply2/2, py =Yy, = 1P |y
Now we turn to the f;. Those f; € L?

res

be constant and we have assumed v # 0, v/ # 0. For those f; € L?

cusp

f](z> = ZAu(yaj)eu(‘T)? (436)

(F,dz) may be ignored, as they must
(F,dz), we

have
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where A, is given by (3.44). By the results of section 3, we have

Ay, 5)Auly’,5)
= pi(V)p; (V) /11 Y2yl ys X
X Kiry, (my1[V]) Kir (my|[V]) Ky, (m2| V) Ko, (T [V7]) - (4.37)
= 4p;(v)ps (V)] ek

X ](iru (27-[-/”‘1)[(’57“1] (2'”:“/1)[(2'7“2] (27T/~L2)[(i7‘2] (27T:u/2)7

in the notation above. Combining the spectral decomposition with (4.3, 4.37), we
find that the f; € L2, (F,dz) contribute (in the untwisted case)

cusp

> RO D), (0 (V) Ko, (2 10) K, (2413 K i (27 p12) K (2715), (4.38)
J

and the FEisenstein-Maass series contribute

(4rv/Dloge) ' Y00 7 Cour(k,r)R(Mi(r, k), Aa(r, k) x

4.
X Kir 2y ) K (2 pi) ) K (2 o) K, (2 p1ly) (4.39)
where . '
=g i+ g
- : ik
6 = _%k_ = 2'lokge’
/\1 = _(S + 2217;%6)(8 + 2217;%6 o 1)’
)\2 = _(S - ZZlde)(S - ZZIde - 1>
Finally, (4.7) contributes to the untwisted case
Sy ) i Yo S vse) [on k(z 0 —1/e z’)e (x)e,(z') deda’
16D \/ pypopipl £<(c) 7Y R2 JR? "\ ¢ 0 v v
+ouu (Y1929195) " ey, y')
(4.40)

Here we have cancelled 4|vv/T'D| "2y propty 1)~/ from both sides of the spectral
decomposition and the usual assumptions on v, v/ are in force.
In the twisted case the terms are

> WD N s () (V) K, (2 10) K, (2413 K i (27 p12) K (27055 (4.41)
J
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47T\/—10gE Yo J (k)R ( A (), Aa(r, k) x

4.42
X[X“n(27TILL1)[X“n(27TILL1)[X’,5T(27TILL2)[X’Z'T(27TILL/2) dr; ( )

and

— ] 0 —1/¢ S
65\ s 25(0) S (V,V’;C)fwfwk(%(c 0/ )TTZ’)GV(I)GV'(JE’) dzdz’

+6, 7 (y2yivy) " e (Y. ).

(4.43)

Here again, the usual assumptions on v, v/ remain in force.

4.4. The real quadratic Kuznetsov-Bruggeman formula

In the untwisted case, one must simply integrate
(4.38) 4 (4.39) = (4.40) + (4.8)

over the quarter—plane yy = pf > 0, pe = py > 0, assuming that the interchange
order of integration is justified for our fixed v, v/ € Ox”, and using the two-
dimensional analog of the result in the appendix to section 1 to express the formula
in its final form. The interchange of orders of integration can be verified just as
in the SL(2,Z) case (see the appendix to section 1). For (4.38), we obtain

(%) 2 Z h(/\g;)’ /\52)) COSh(Pj(V)Pj(V') (4.44)

mry;) cosh(mry;)’

whereas (4.39) yields

() Do 3% [ cbminte e e

(4.45)
and finally, if v2/ is totally positive then (4.40) formally yields (by (4.26))

1 — (v, ¢) 2m\/vv! 2aVTUT
8—D\/VV’1/V’ Z Zk)" ( P )

c

42



Let ¢j(r1,r2) and ¢m(x1,x2) be the obvious two-variable generalizations of the
transforms defined in (2.9). Since, for h(ri,rq) = ¢s(r1,r2), the appendix to
section 2 yields the identity

4$1$2

4 (Zk)/\(xla x?) = 95H(l'17 $2)7
7T
(see (4.25) for the definitions),the contribution of (4.40) may be rewritten

m S(v, V5 ¢) Imvvr 2mVTT
32D'Z N(e) ¢H< c ¢ )

(4.46)
(©)

The real quadratic Kutznetsov formula is the identity
(4.44) + (4.45) = (4.46) + 0,,,/ko(0,0),

assuming vv' is totally positive.

In the twisted case, we integrate over the quarter—plane p; = pf > 0, py =
py > 0, formally interchanging orders of integration. Again, the validity of this
can be verified by the method in the appendix to section 2. The contribution of
(4.41) is

> hOE A ()i () B2 (4.47)
J

where

R; ::/ K, (2m2) Ky, (2m2) da.
0

If |Rer;| + |Rergj| < 1, this has an expression in terms of I'—functions and
Gauss’ hypergeometric function: from [GR] p. 693, we have

“ K, (2)K,(z) dz

_ 1 I+p+v VDN 14—t 1 p—v Tdptr l—ptv. 1. (4.48)
= gl (PR )T (55 T (=) D (52 F(FH5, =57 101,

for |Reu| + |Rev| < 1. The asymptotic behavior of this can be completely
determined (in fact, in [EMOT] p. 371, one can find an expression for this as
a product of I'-functions alone). Since K, is even in r, corresponding to (4.42)

we have the contribution

(ﬁ> (47r\/_10g6 Z / "(k,r)hT(A (r’k)’)\z(r’k))cosh[ (d:- Qloge)]27

(4.49)
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whereas (4.43) yields, if N7/ is totally positive, the contribution

m ST™(v,v'5¢), A 2nN Y 2nNVTTT
32D.(2): NP (ZET)™( 2 ). (4.50)

Unfortunately, we have not been able to apply the result of the appendix to section
2 to rewrite (4.50) in an explicit form useful for applications. The twisted real
quadratic Kuznetsov formula is

(4.47) + (4.49) = (4.50) + &, 7k0(0,0),

assuming that v77 is totally positive.

5. The method of Poincaré series and applications

5.1. Introduction

This section briefly sketches the real quadratic analog of some of the parts of
[Kuz].
The purpose of this section is to discuss applications to estimating eigenvalues
of Maass wave forms for SL(2,0k) and sums of Kloosterman sums. In 5.1,
we compute the Fourier coefficients of the Poincaré series; in 5.2, we state the
Petersson formula for the inner product of two Poincaré series, involving “real
quadratic” Kloosterman sums; in section 5.3, we use the Selberg—Parseval equality
(derived from the Selberg spectral decomposition) to obtain another inner product
formula, involving Fourier coefficients of Eisenstein series and an orthonormal
basis of cusp forms of weight zero; in 5.4, we obtain the estimate
2
<t Loty ety = DT + Op(GT) )+
+0.p(TiToN(v)° + N(v)'/2Fe),
(5.1)

for v totally positive, where ¢ > 0 is an absolute constant. This has the corollary

i (V)| <<ep explm(rij + ra)/2] - N(v)' /4, (5.2)

as v — oo runs through totally positive elements. We state the real quadratic
Kuznetsov-Bruggeman trace formula as Lemma 5.4, in the form presented in
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[Kuz] pp. 327-328. This (untwisted) formula is, of course, exactly the same as
that obtained in the previous section by Zagier’s method. In 5.5, we apply our
trace formula to prove the following estimate:

Y S )N(e)T <<epuur (TiT2)VF+ Z [(TyTy) 2l e (1 Ty) 2],

0<C<T1

0<eTs 0</\ J<1/a,

(2
0<A;<1/4

(5.3)
where v, v/ are fixed and totally positive, and Ty} ~ Ty &~ T — oo are both of the
same order of magnitude.

5.2. Fourier expansion of Poincaré series

The notation of the previous section is preserved. Fix v € (’51(, z = (21,22) € H?,
s = (s1,82) € C*,Im(s;) > 1. Let us denote the " non—holomorphic Poincaré
series by

Us(z,s) = 3 (Imyz1) (Im322) 2 e, (21, 722), (5.4)
Teo\T

and let
—1/* —1/¢
it p

fl/(zvsvc) = Z |21+N|_251|22+ﬁ|_252ey<

w€O0 K

).

We have then that

U =gl )
FX o (B ()7 S, a0/ T/ + dfe 4T/ c,5),

c€0x (e,d)=1,
c€O0g

(5.5)

Clearly f,(z) is Og—periodic in z = Re(z), so it has a Fourier expansion,
(z,8,¢) Zb (o, y,8,c)eq(x),
OZEO}\

where

bl/(avyvsvc) —ffol, :U—I—Zy,s,c) ( )d;z;
= [ Jpo Il 72t 2| 722 e, (51 1/C —122 eo(x) da.

45



Let
v/c? d¢

(i + 5)y1] (14 ¢&2)°

and similarly for J;5(y2, $2,¢). Then we have, after a simple change of variables,

Joalyr,si,¢) = y' 7 / expim[—ady —
R

b,(a,y,s,c) = Jua(y1, 51, ¢)J55(Y2, 52,€),
UD(Z,S) = EMGO}( BU(Vayv‘S)eM(x)7
B (1,y,8) =Yy +
+> 40 S,y c)le|=21[e| =220, . (y1, s1, ¢) Sz z(y2, $2,C).
€0

(5.6)

5.3. Petersson inner product formula

For v, v/ totally positive, we will now compute the Petersson inner product of
two non-holomorphic Poincaré series, using the “unfolding—of-the—integral” trick.
Let F denote a fundamental domain for I' \ H?.

We have

fF\H2 (2,8)U,(z,5") dz
= E»yeroo\r ff (2 3)(Im’721) i(111(1722)55% (v21,722) d=

oo s1+st sy+s!
= o [T ST T el (Vi ) e
—I_Z 0 (V7V7c)|c|_281|6|_282 fo fo y1 v, (y17517 )y;2><
c€0k

XJU,F(Q% 52, E) eXp[_ (I/ Y1 + v y2)] dyldy2 ]

The first expression is of the form
—51—5' —55—5! e o —1—s5—5!
51,71,/7T2 S1781782 S2V/1 S1ms1 2F(S1 + 8/1 — 1)F(82 + 8/2 — 1),

after a simple change of variables. The second expression is more complicated and
a non—trivial change of variables is required. Following pp. 315-320 of Kuznetsov
[Kuz], let us first consider an integral arising in the last expression in (5.7):

0o sh—s1— . v/c? I
fR v exp[—mr(fyly’—|— yl(é+g))]e . dylﬁ

—f 005181 GX[ (57/‘|‘ V‘I‘ /2 )]d (58)
RJo %1 P Siv T vi(1=i€) y1(1+§2) T
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Note that y;0/(14+1¢€) + 62(1_”2.5)% = |”|” }H (v1 +1/v1), where we have changed

variables: vy := y1/V[v|c|\/1 + €2, dyr = \/v/V|c|7 (1 + £2)7V 2w,

With this change of variables, now use

1 [~ d
Ki(z) = 5/ exp —g(u + 1/u) :1, Rez >0, (5.9)
0

to express (5.8) in terms of a K—Bessel function with a complex argument. (This
can then be re—expressed in terms of J-Bessel functions of real arguments, as in

[Kuz] pp. 319-320.) The integral (5.8) is equal to

) Vv 1
21/(5 —s1)/2 /(s2 D /2| | s1—s) /(1 _|_52) (s1+s] )/2[/‘51 _y (27_[_ ‘|‘I ) df
R |C| 1 -
A similar expression holds for the term analogous to (5.8) obtained by replacing
v by 7, etc. In terms of the function @ in [Kuz], (4.9) p. 315, we have

2| |—51 51(”)(51 S /QIR 1+£2) 51+5 )/2[/‘51 S 2’7‘[‘ l/y’ 1+Z
= (%)(81 Wt plel™ 51<I>(31,81,27T le] -

sin(s1—s]

A similar expression holds for the analogous term involving 7, 1/, etc.. Collecting
these computations together, we arrive at the following

Theorem 5.1. Petersson inner product formula

, , (UU(*7/S)7UIJI(>’:7?)>
= 5u,ufﬂ2_51_51_52_521/1‘51‘5131‘52‘52F(51 + 57— Dl(s2 + 54 — 1)+

v 515 / :
)

)(52 $5)/2  gb—si—si—sa=s)
v v sinn(sy—s])sinm(s2—s))

S(v' v,e) ’ 7

X — 20 P(sq, s 2 D(sy, 5, 2mY=—).

Sy sy 2 0 205
CEO}(

(5.10)

5.4. An application of the Selberg—Parseval equality
For any f, g € L*(F,dz), we have the Selberg— Parseval equality
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o0

(1, 9) = U 65)(g, de(D) 3 / (f, E(e,1/2+ir,k))(g, B 1/2 4 ir k) dr.

7=1 k=—c0

(5.11)
where ¢(D) := 1/(4nv/Dloge). Applying this to f(2) = U,(z,s), g(z) :=

U, (z,s"), we must compute, after unfolding the integral, the inner product

(Uu(*vs)aéj) = OOO OOO fl 2 2 2ffD QDJ(Z dl‘ dy
= fo Py 2 (1Y1,1Y2 ffD J(2)di(z) dx dy
o D) e )

X [ [ e K (1) Ky, (y2)yy 2y ™ dyydys.

(5.12)
Since ([GR], §4.62 pp. 712, Re(a) > |Re(8)])
o r INa —
/ [l?a_le_x[(,é’(x) dr = \/_E (Oé + 6) (a 6)7
0 22 I'a+1/2)
we obtain
(UV(*as)vqu)
— (27‘[‘)2_81_52\/EV1/2_81D1/2_82X (513)
r 51— ile T 51— —irlj T S9— ‘i7”2] T S9— —‘iTQJ N
o Dls1=1/24ir1)T (51 -1/2 F(81§FES2) 1/2+ir;)T(s2—1/2 ),Oj(V)-
Define the coefficients a,(r,y, k), ¢, (r, k) by
a,(r,y, k) ::#EIID (z 4 1y,1/2 + ir, k)e, () dx (5.14)
= CV(rak)\/ylyZAa—l/Z( |1/|y1)]&5 1/2( T|7y2),
SO
FE(z,s,k) = constant term +
+ Zyeo}( cu(r, k)\/y1y2Ka—1/2(7T|V|yl)KB—1/2(7T|7|y2)€y(l’) .
(5.15)
Similarly, we obtain
(U (*,5), (%, 1/2 +ir, k)
— (27.[.)2—81—82\/5’/1/2 5171/2 ng (516)
T(s1—14+a)[(s1—1—a)'(s2—1+5)(s2—1-0
w« I )T F(51§FES2) )T Ve (r k) L(r k) .

Putting these results together, we obtain the
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Theorem 5.2. Selberg—Parseval inner product formula
(U (*

— 2\/57.[.2—51—5’1—52—55 (VV/)(I—sl—s'l

< S5 @) A, r ) A )+

0 fy eulr R (A, (o = 1/2) [)ACS (B = 1/2)i) dr}.
(5.17)

Combining this inner product formula with the Petersson inner product for-
mula we will obtain a special case of the Kuznetsov trace formula (see Lemma 5.4

below).
To prepare for this, first note that

msinh(nt) Hr 1), (5.15)

where

cosh(mr)
coshm(r + 1) cosh m(r — t)'

H(r,t) =

In case sy =1+ 11t; = 57, s3 = 1 + 1ty = 53, the Petersson inner product formula
reads

= 8,7 z/—lv—lr(l)2 + (D)’“(:)”Qsm(. 2

v 1t1) sin 7 (it2)

XY o N @ity 1 =it 20 )@ (1 it 1 — itz;%«/_g'y,)’
ceO0k
(5.19)
where
' ) (s = du
O(1 +1t,1 —it,x) := msin(int) [ai(zu) — J_gi(zu)] —. (5.20)
1 U

The inner product formula (5.17) combined with the inner product formula (5.19)
give
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Lemma 5.3. For v, v/ totally positive, |Imt;| < —, we have

2\/5—Sinh(mti:2inh(m){ ;11 pi(v )PJ( ") cosh(mry;) ™t cosh(mry;) ™ H(ryj,t1) H (o, t2)+
0 e el e (R H (0 = 1/2) i t) H((B = 1/2) i, 12) dr |
=4, T(1)* + —|—7T2N(1/)1/2N(1//)1/2X

S(v',v,c .
Xy ot ](V(c) )CI)(I + ity 1 —ity;
CEOK

VD1 + ity, 1 — ity 20 5.

This is the real quadratic analog of [Kuz], Lemma 4.5 p. 323.

5.5. Mean—square estimates and the trace formula

Multlply both sides of Lemma 5. 3 by ¢ t2 and then integrate over 0 < ¢; < T;, for
v = V', or, equivalently, take h(r fo (r,t)sinh(mt) dt in the real-quadratic
formula of §5.4 above. In elther case, we obtain

Lemma 5.4.

2D Y2, |pi(v)|? cosh(mry;) 7" cosh(mra;) " hay (r15) b, (rag)+
+ 2 h e Jr leu(r B) 2Ry (0 = 1/2) [1) Ry, (B — 1/2) /1) dr
—ir(err
+ E S wve) rT1 T2 t1to o= (27_[_\/_7 1)q) (27_[_ vaz ,tg),

c£0 N(c) 0 0 cosh(mt;) cosh(ntz) | 2]
c€O0k

where r
he(r) := f, H(r,t)sinh(wt) dt,
O*(z,t) =a®(1 4,1 —1it,z).
Following [Kuz] p. 324, we obtain

Lemma 5.5. For v € Ok totally positive,

ZT1JST1 Em] <T» cosh(rlfj)(l;ysh(wrg]) = 2\/_ T2 + OE D((T1T2)1+E)+
H%MﬂﬂN()+N(WHq

C()l'()llal'y 5.6. ([l/ Z] P- 32;) Asv — oo runs ﬂll()llgh t()taﬂy posjﬁve ] tS,
we have eiemen
|,0]'(I/)| <<5,D e’ (7”1]+7"2])/2N(V)1/4+6‘
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5.6. Estimating sums of Kloostermann sums

From section 3, we recall the real quadratic version of the Kuznetsov-Bruggeman
formula:

Theorerp 5.7. Let h(ry,r2) = hy(r1)hq(r2), with each h; as in Theorem 2.2. For
v, V' € Ok totally positive, we have

Z;; pi(v )/)J( ") cosh(mri;) ™" cosh(mra;) " h(rij, maj)+
+ed e oochV ro kYo, (r k)h(a —1/2)/1), (B — 1/2) /i) dr
=6, [T J7 tanh(miy) tanh(mtz)ttzh (t1)ha(ts) dirdt+

-I-c”z G yb)k*(Qﬂ'\/'?,Q’,’T ”M /),

CEO}\

2Z'2 tltzh(tl tQ)
. 2 Z. Z. : dtydts,
(21,22) - /R /R Jait, (21)J2it, (72) cosh(mty) cosh(miy) e

where

and the ¢, ¢, ' are certain constants, depending at most on D. The values of
these constants are given in section 3 above. (Their values won’t be needed for
the application below.)

For estimates on Kloostermann sums, see Bruggemann and Miatello, “Sum
formula for SL, over a number field and Selberg type estimates for exceptional
eigenvalues,” Geometric and Functional Analysis, 8(1998). The estimates given
in the published version of the (paper contam a gap and are valid only under the
assumption that either both A}’ and /\ are exceptional or both are not (i.e.,
“mixed” type eigenvalues don’ t exist) 2.

We apply this to prove the following estimate:

Lemma 5.8. Assume that either both )\5-1) and )\;-2) are exceptional or
both are not (i.e., “mixed” type eigenvalues don’t exist).

Y S )N (o)™ <<epawr (TiT)F 4+ Z [(TyTy)2rslte g (T4 Ty) 2],

0<cesTh o<l <1ya,

(2
0<A;<1/4

where v, V' are fixed and totally positive, and T} &~ Ty, &~ T' — oo are both of the
same order of magnitude.

1 am grateful to Professors Bruggemann and Miatello for pointing this out
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proof Write ¢ = k* and qg = h in Theorem 5.7. Pick two bump functions ¢, ¢, on
R obtained by taking, in the notation of [Kuz| p. 333, a = ay := 27V, T =T}
for ¢y and taking a = ay := 2rVr/, T = Ty for ¢,. Now consider the bump
function on RZ defined by (21, z3) := ¢1(x1)da(22). Fix, for now, a Ty << T2/3+e
and consider the “diamond”

D(Tl,TQ) = {C € O[{ | T1 <c< T1 —|—T0, T2 <ec< T2—|—T0}

Using Weil’s bound for S(v, v/, ¢), on easily finds that

Y 1SV Q)IN(e) T << T(ThTa) ™ /7F. (5.21)
CED(Tl,TQ)
Set _
() = Z S(V,V/,C)¢<2T\/VV/ 27T\/71/’>
A N(e) el 7 e/
c#0
c€O0k
and

Sy (Ty,Ty) := Z S(v, v, c)N )

0<CST1
0<e<Ts
From (5.21), we obtain
|ZV7V'(¢) - Sl‘v”'(Th T2)| <<E,D,u,u’ TO(TITQ)_1/2+E- (522)

By definition of ¢ and ¢, Kuznetsov’s argument [Kuz| p. 333, gives

120 () = Zuus(S11)] << V. (5.23)

(The key point is to keep in mind that the variables of ¢ are separated.) Fix,
for the moment, any M;, My > 1. The definitions of ¢ and & along with the
two—variable version of Kuznetsov’s argument [Kuz| p. 334, gives

Z |COSh(Pj(V)Pj(V) h(ryj,ra;)| << /MiMy+ Z (T Ty 2rs by (7, Ty 2rashée],

3 cosh :
L 7ry;) cosh(mry;) NI

ro SMQ
! 0<A§2 <1/4

(5.24)
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and

o 1.7,
h(ry;, re; —
Z |cosh(7rr1]) Lcosh(mry;)~t (s rag)] << TE/ M, M,

ri;>M;
roj>Ms

(5.25)

By putting together Theorem 5.7, (5.25), we obtain

Syl/ (T1,T2) <<D,e,vp! T()Z(Tsz)_l/2+E—|—
\/7 + 2T1T2 —I_ Z [(T1T2)2|T1J|+E + (T1T2)2|T2]|+Ej|‘
T2/M: M2
1 ?

Taking My = My =T/Tq, Ty = T2/3+¢ gives the result stated in Lemma 5.8. O
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