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Abstract

We classify which symmetric groups S,,, have a complement in S,, m <
n. Such questions are of interest to computer scientists who wish for efficient
methods to store permutations.

This paper is essentially expository in the sense that it uses only well-
known results.
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This paper is inspired by a question of Herbert Kociemba [K], a computer
scientist who has one of the best Rubik’s cube solving programs known. Efficient
methods of storing permutations in Sg and Sy (the groups of all permutations of
the edges F and vertices V, respectively, of the Rubik’s cube) are needed, hence
leading naturally to the concept of the complement of 5,, in 5,,. Specifically, he
asked if Sg has a complement in Sy (this terminology is defined below). The
answer is, as we shall see, “no”. Nonetheless, it turns out to be possible to
introduce a slightly more general notion of k complementary subgroups (defined
below) for which the answer to the analogous question is “yes”.

Notation: If X is any finite set then



| X| denotes the number of elements in X.

e Sy denotes the symmetric group on X.

e 5, denotes the symmetric group on {1,2,....,n}.

o A, denotes its alternating subgroup of even permutations.

e (), denotes the cyclic subgroup of S,, generated by the n-cycle (1,2,...,n).

e My denotes "the Mathieu group of degree 10” and order 720 = 10!/7!,
which we define as the subgroup of Sy generated by (2,6,10,7)(3,9,4,5)
and (1,5)(3,8)(4,10)(7,9).

e M;i; denotes the Mathieu group of degree 11 and order 7920 = 11!/7! gen-
erated by (1,2,3,4,5,6,7,8,9,10,11) and (3,7,11,8)(4,10,5,6).

e M, denotes the Mathieu group of degree 12 and order 95040 = 12!/7! gener-
ated by (2,3,5,9,8,10,6,11,4,7,12) and (1,12)(2,11)(3,10)(4,9)(5,8)(6, 7).

e For any prime power ¢, F, denotes the finite field with ¢ elements.

e AGL,(F,) denotes the affine group of transformations on F} of the form
U+ AU+ d, where A € GL,(F,) and @ € IF7.

For other undefined groups arising below, we refer to [DM].

1. Background

1.1. Complements

If G is a finite group and (¢, (G are subgroups then we say (75 is the complement
of (G; when

o (71 NGy = {1}, the identity of GG, and
o G=G-Gy={q192 | g1 € G1, g2 € G}

If Gy and Gy are complementary subgroups then we may write each g € G in
the form g = g1 92, for some unique ¢; € G; and some unique g, € G3. We call ¢
and g, the factors of g. This implies the following result, whose (easy) proof is
omitted.



Lemma 1.1. Suppose (G is a finite group and (G is the complement of (G in the
sense above.

o There are well-defined projection maps p; : G — Gy, ps : G — G5, defined
by pi(g) = g1 and p2(g) = ga, where g = g1g2 is the factorization of g.

o G = (y - Gy and we may write each g € G in the form g = g¢y¢1, for
some unique g; € (G and some unique gy € G4. In other words, (G is the
complement of Gy in the sense above.

As is well-known, for any finite group, the right multiplication map p(z) :
g — g7, g,z € G, yields a homomorphism p : G — Sg, where Sg is the
symmetric group on . Though it shall not be needed, it is remarkable that a
similar result holds for each of the complements:

Lemma 1.2. Let G = (1 - G4 be a finite group with GGy a complement of (5.
(a) The right multiplication map p(z) : g — gz™', g,x € G, yields a homo-
morphism
p2 G — Sa,,

where Sg, is the symmetric group on Gz, pa(x)(g) = p2(p(x)(9)).
(b) The left multiplication map A(x) : g — zg, g,x € G, yields a homomor-
phism
)\1 G = SG”

M(z)(g9) = pi(M(z)(9)).

Remark 1. The Lemma above was inspired by a remark of Kosiemba [K], in
connection with an algorithm for his Rubik’s cube solving program.

proof: Write ¢ € (G in the form ¢ = ¢, ¢, for some unique g; € (G; and some
unique ¢ € G. Fix z € G and let g; € GGy and ¢} € (5 denote the factors of gz:
9T = 9,95-

Claim: ¢4, depends on g, and = but not ¢g;. Indeed, if g,z = g7g4, for some
unique ¢ € (1 and some unique g5 € (3 (which depend only on z,gs but not
on ¢i), then gz = ¢1(g22) = (g197)g5. By uniqueness, g5 = g4 and so the claim
follows.

Define r -1 : Gy — G by r.-1(g2) = ¢5. This is simply the restriction of the
right translation map p(z) : G — G followed by projection onto the (5 factor.
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Claim: r, -1 is bijective. Surjectivity is obvious. For injectivity, if go, hy € G
and gox = g1g5, hox = ¢{g, are factorizations with the same (5 factor then
plugging g5 = (g1) ™' g2z into the second equation gives hox = (g7 (g})~"')g2x, which
implies hagy ' = g/'(g4)~!. This is impossible (by uniqueness) unless hy = gy, which
proves the claim.

Thus we have a map

p2: G — S,
defined by pa(z) = rp-1.

Claim: pjy is a homomorphism. Indeed, if we fix z,y € G and ¢; € G, g2 € G
then we have

n

9@y (92) = gire-1(92)y = giry=1(re-1(g2)),

for some g1,¢7, 9" € G. By uniqueness, we must have

T(xy)—l = Ty—l OTry—1,

which implies py is a homomorphism.

This completes the proof of the first statement (for right multiplication) of the
Lemma. The proof of the second statement (for left multiplication) is similar and
hence omitted.

O

We end this discussion of complements with the following generalization:

Definition 1.3. Let Gy, G, ..., Gy denote subgroups of GG. More generally, we
say that these subgroups are complementary if

e foralll <i<j <k, we have G; N G; = {1}, the identity of G,
o foralll <i <k, we have G; N Giyy - ... Gy = {1}, the identity of G,
o foralll <i <k, Giyq-...- Gy is a group, and

e G=G,-.. -Gy :{9192---gk | g; € Gi, 1< < k‘}

Remark 2. Lemma 1.1 above has an “obvious” generalization to the case of k
complementary subgroups. Lemma 1.2 (b) also has an analog. The statement
and proof of these are left to the reader.



We also point out that
|G| = |G| - ... - |G|

One can use this to show that if I C {1,2,...,k} is any subset and if we define the
subset Gy C G by

G[ = HGZ = {gil et gi,

1€l

where g; € G, 1 € [ = {u1,...,4,} },

then we have

G[ ﬂ G[c - {1}7
where 1 = {1,2,....k} — I.

1.2. Stabilizers

Let X denote a finite set. If G is a subgroup of Sy and = € X then we let GG,
denote the stabilizer of z in G:

Gp ={g € G |g(z) =z}
Definition 1.4. Let k > 1 be an integer and let
X = {distinct k—tuples in X} = {(21, 29, .., 2p) | 2i #£ 25, 1 <i<j <k}

We say G acts k-transitively on X if G acts transitively on X*) via the ”diag-

onal” action g : (1,2, ..., xx) — (g(x1), g(x2), ..., g(zk)).
If G acts transitively on X and G, = 1 for some (hence all) x € X then we
say (G acts regularly on X.

Example 1.5. If G is a subgroup of S,, and x = (n — k4 1,...,n) € X*) then
Gy = Sn_k.

2. A table

We give a table which indicates, for small values of n, which 5,, have a complement
n S,.



n | m complement of S, in 5,

4 |2 Ay

4 3 04

5] 2 As

51 3 < (1,2,3,4,5),(2,3,5,4) >= AGL(F5)
size 20

51 4 Cs

6 | 2 Ag

6 | 3 <(2,3,4,5,6),(3,4,6,5) >= PG Ly(Fs)
size 120

6 | 5 Ce

7] 2 Ar

715 <(1,2,6,5,3,7),(1,4,3,2,5,6) >= AGL,(F7)
size 42

716 Cr

8 | 2 Ag

8 | 5 |<(1,5,8,6,7,4),(1,5,8,7)(2,3,4,6) >= PG Ly(Fr)
size 336

8 | 6 AG L (Fg)
size H6

8 | 7 Cs

9 | 2 Ag

9 16 PG Ly(Fg)
size 504

9 |7 AG L (Fy)
size 72

9 | 8 Cy

10 | 2 Ao

10| 7 Mg
size 720

(PG Ly(Fy) is another)
10 9 Cho




n | m complement of S, in S,
1] 2 An
111 7 My,
size 7920
1119 AGLy(Fyq)
size 110
11 | 10 Ci
12 ] 2 Ar
121 7 Miq
size 95040
1219 PGLy(Fyy)
=< (1,2,3,4,5,6,7,8,9,10,11),(1,2,4,8,5,10,9,7,3,6),
(1,10)(2,5)(3,7)(4,8)(6,9)(11,12) >
size 1320
12 ] 11 Cia

3. General results

The following result may be found, for example, in [R], Theorem 9.9.

Lemma 3.1. Let n > 2 be an integer and let X denote a set with n = |X|. Sx
acts n-transitively on X and A, acts (n — 2)-transitively on {1,2,...,n}.

Lemma 3.2. ([DM], Corollary 1.4A) If G acts transitively on X then G acts
regularly on X if and only if |G| = | X].

The following general result might be regarded as our main lemma. It’s proof
is omitted.

Lemma 3.3. ([DM], Exercise 1.4.1) If G acts transitively on X, x € X, and H
is any subgroup of G then

G=G,H={gh|geG,,he H}
if any only if H acts transitively on X.

The following result gives precise conditions which may be used to determine
the answer to the question in the title to this paper.
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Proposition 3.4. S, has a complement in S,, if and only if there is an subgroup

H of S,, such that
e H acts (n — m)-transitively on {1,2,...,n},
e |Hl=n(n—-1)..(m+1)=n!/ml

Remark 3. The method of proof actually proves something more general: one
may replace S, in the statement of the above Proposition with any stabilizer of
S, acting on {1,2,...,n}("=™),

proof: Let G = S,,, which we regard as acting transitivelyon X = {1,2, ..., n}"=™),
Identify S,, with the stabilizer G, of x = (m + 1,...,n) € {1,2,...,n}(*™™). The
above lemma says that G = G, H for some H if and only if H acts transitively
on X, i.e., acting (n — m)-transitively on {1,2,...,n}. H is a complement of GG,
if and only if H NG, = 1, which is equivalent to saying that H acts regularly on
X. Since | X| = n!/m!, the result follows from Lemma 3.2. O

Corollary 3.5. In general, Sy =< (1,2) >C S,, has a complement in S,,, namely
A,

Example 3.6. If n = 10 and m = 6 then the Theorem says that S¢ has a com-
plement in Sy if and only if there is a subgroup H of Sig of order 5040 which acts
4-transitively on {1,2,...,10}. The only subgroups of Sio which act 4-transitively
on {1,2,...,10} are Sy itself and Ajg. This follows from the classification of all
4-transitive groups (see [DM], chapter 7, or [R], page 289). This implies Sg has
no complement in Sig. (However, Sio does have a subgroup of order 5040 but it
is not even transitive on {1,2,...,10}.)

Similarly, Ss has no complement in Siq.

Note that Si¢ has not one but two non-isomorphic subgroups, H; and H,, of
order 720 = 10!/7!, each of which acts 3-transitively on {1,2,...,10} (see [DM],
chapter 7). These groups satisfy Hy = Mo and Hy = PGLy(Fy). Thus S; has

two non-isomorphic complements in Sio.

Lemma 3.7. ([DM], pages 242-243) Let g = p*, p a prime and k > 1 an integer.
There is a 2-transitive group G = AGL(F,) acting on X =T, of order q(q —1).
Consequently, S,_, has a complement in S,.



Lemma 3.8. ([DM], pages 242-243) Let q = p*, p a prime and k > 1 an integer.
There is a 3-transitive group G = PG Ly(F,) acting on X = F, U {cc} of order
(¢g+ 1)q(q —1). Consequently, S,_o has a complement in Sy ;1.

The following Theorem is our main result.

Theorem 3.9. e [fn > 2 is not a prime power or a prime power plus 1 then
the only 1 < m < n for which S,, has a complement in S, are m = 2 and
m=n—1.

If n > 12 is a prime power and not a prime power plus 1 then the only
1 < m < n for which S,, has a complement in S,, are m = 2, m = n — 2 and
m=n—1.

If n > 12 is a prime power plus 1 but not a prime power then the only
1 < m < n for which S,, has a complement in S,, are m = 2, m = n — 3 and
m=n—1.

If n > 12 is both a prime power plus 1 and a prime power then the only
1 < m < n for which S,, has a complement in S, are m =2, m = n — 3,
m=n—2and m=n—1.

o [fn <12 see the above table.

Remark 4. Roughly speaking, this theorem says that if you pick an integern > 2
“at random” then, with “probability one” (in the sense of Dirichlet density), the
only S,,’s which have a complement in S, are Sy and S,_;.

proof: The proof below depends on the classification of 2-transitive groups of
degree n (see [DM], §§7.6-7.7). The following groups are 2-transitive:

e Some “affine groups” and some of their subgroups are 2-transitive. These
groups always act on a set of prime power degree.

e Projective special linear groups PSL4(F,) acts 2-transitively on projective
d — 1-space P47L(F,), a set of size (¢° — 1)/(qg — 1). In general (see [R],
chapter 8, page 223),

(¢ = 1)(q" = q)--(¢" = ¢"")

PSLaF)l = == g =1) - (q=1)

9



In case d = 2, PG Ly(F,) is sharply 3-transitive of degree g + 1. If ¢ is even
then PGLy(F,) = PSLy(F,). If ¢ is odd then PSLy(F,) is a subgroup of
index 2 in PG Ly(F,).

The symplectic groups Spe,(F2), m > 2, act 2-transitively (in different
ways) on a set of size 2”71(2™ + 1) and a set of size 27 1(2™ — 1) (see [DM],
§7.7, page 245). We have

1S o (Fy)| = 277 (22 — 1)(2% — 1)...(22" — 1)
(see [R], chapter 8, page 245).

Special projective unitary groups PSUs(F,). These groups are of order

1

PSU(F,)| = ———
[PSUA(E,) ged(3,q+1)

¢*(¢* = 1)(q" +1)
(see [R], chapter 8, page 245) and act 2-transitively on a set of size ¢° + 1
(see [DM], §7.7, page 249).

Suzuki groups Sz(q) = 2By(F,), where g = 22*!. This group is order

152(9)] = ¢*(¢ = 1)(¢* + 1), ¢q>2

(see [DM], §7.7, page 250). If ¢ = 2 then Sz(2) = AGL,(F5). This group
acts 2-transitively on the ¢* + 1 points of a Steiner system of type S(3,q +
1,¢*+1).

Ree groups R(q) = 2G»(F,), where g = 3*"*!. This group is order
|R(a)] = ¢’(a = 1)(q" +1).

(see [DM], §7.7, page 251). This group acts 2-transitively on the ¢ + 1
points of a Steiner system of type S(2,q+ 1,¢> 4+ 1).

The Mathieu groups (see [R], chapter 9):

— Mg is 3-transitive of degree 10, |M;o| = 720.

— My, is 4-transitive of degree 11, |My;| = 7920. Also, M;j; has a 3-
transitive action of degree 12. (See [DM], §7.7, page 252.)
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— M, is b-transitive of degree 12, |M;4| = 95040.

— My, is 3-transitive of degree 22, | My,| = 443520.

— M3 is 4-transitive of degree 23, | My3| = 10200960.
— My, is b-transitive of degree 24, | My,| = 244823040.

e PSILy(Fy1) has a 2-transitive action of degree 11 (recall |PS Ly(F11)| = 120 -
110/20 = 660). (See [DM], §7.7, page 252.)

e A; has a 2-transitive action of degree 15 (see [DM], §7.7, page 252).

e Higman-Sims group H.S of order 44352000 has a 2-transitive action on a set
of size 176 (see [DM], §7.7, pages 252-253).

e The Conway group Cos of order 495766656000 has a 2-transitive action of
degree 276 (see [DM], §7.7, page 253).

There are no other 2-transitive groups.

To see if S, has a complement in S,, not already listed (i.e., to try to find a
counterexample to the statement of the Theorem above), we must find an (n—m)-
transitive group of degree n and order n!/m!. Because of Lemmas 3.7 and 3.8,
we may assume m € {2,3,4,5}, n > 12, (n,m) # (a prime power,n — 2), and
(n,m) # (a prime power plus 1,n — 3).

The argument shall be case-by-case:

Case 1: The projective special linear groups PSL4(F,). We may assume d > 2
since otherwise n will be a prime power plus 1. In this case n = (¢¢ — 1)/(qg — 1)
and m = n — 2. In order for H = PSL,(F,) to be a complement of S,,_, we must

have

¢’ —1)(¢" = q)--(¢"— ¢
ged(d,q—1) - (g —1)
by Proposition 3.4. In other words, ¢ must satisfy

H| = |PSLy(F,) = —n(n— 1),

(¢' = q)..(¢" = ¢"")

ged(d,q —1) =n—1=(¢"-q)/(¢g-1),

which is impossible if d > 2.
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Case 2: The symplectic groups Spg,(Fz2), m > 2. In this case n = 2"71(2" +1)
orn=2"Y2"-1)and m = n—2. In order for H = Sp,,(F,) to be a complement
of S,_; we must have

|H| = |Sp2(F2)| = 2’”2(22 — 12" = 1)...2* = 1) =n(n —1).
In other words, r must satisfy either
27’2(22 - -2 -1 =22+ )RR+ 1) - 1)

or

2722 — )2 = 1)..2Y — 1) =272 — )22 = 1) = 1).

Both of these equalities are impossible since for r > 1 the left-hand side is always
larger than the right-hand side.

Case 3: The special projective unitary groups PSUs(TF,) In this case n = ¢°+1
and m = n — 2. In order for H = PSU;(F,) to be a complement of S,,_, we must
have

1

H| =|PSU3(F,)| = ————

¢*(¢* = D¢’ +1) =n(n—1) = (¢’ + 1)q".
This is impossible unless ged(3,9 4+ 1) = ¢* — 1, i.e., unless ¢ = 2. But if ¢ = 2
then the degree is n = 9 and we have already covered this case in the table above.

Case 4: The Suzuki groups Sz(q) = ?Bs(TF,), where ¢ = 2*"*1 In this case
n=¢"+1and m =n—2. In order for H = Sz(q) to be a complement of S,,_»
we must have

|H| = 152(q)] = ¢*(¢ = 1)(¢* + 1) = n(n — 1) = (¢" + 1)¢".

This is impossible.

Case 5: The Ree groups R(q) = 2G4(F,), where ¢ = 3*"*1. In this case
n=¢q>+1and m =n—2. In order for H = R(q) to be a complement of S,,_» we
must have

|H| = |R(g)| = ¢°(¢ = 1)(¢" + 1) = n(n—1) = (¢’ + 1)¢".

This is impossible.
Case 6: The Mathieu groups. Since we are assuming n > 12, we need only
consider
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o My, is 3-transitive of degree 22, | My,| = 443520.
o My is 4-transitive of degree 23, | Ma3| = 10200960.
o My, is H-transitive of degree 24, | My,| = 244823040.

None of these satisfy |H| = n!/m!, for m =n —3,n — 4,n — 5, respectively.

Case 7: A7 has a 2-transitive action of degree 15. In this case, n = 15 and
m =mn — 2. But |A7| = 2520 # 15 - 14 = 210, so A7 is not a complement of S;3 in
Sis.

Case 8: The Higman-Sims group HS. In this case n = 176 and m = n — 2.
But |HS| = 44352000 # 176 - 175 = 30800, so H.S is not a complement of Siz4 in
S176-

Case 9: The Conway group Cos. In this case, n = 276 and m = n — 2. But
|Cos| = 495766656000 #£ 276 - 275 = 75900, so Cos is not a complement of Sy74 in
Saze-

This exhausts the 2-transitive groups, so the proof is complete.

O

4. Final remarks

From the table in §2, we see that Ss does not have a complement in S15. However,
PG Ly(Fyq),Cy, Sg are complementary in Sz (in the sense of Definition 1.3),

512 — PGLQ(IFll) . 09 . Sg.

This yields one method of storing permutations in Sy, using those of Ss.

More generally, given any m and any n with m < n, Theorem 3.9 and the
table in §2 may be used to find the smallest k& such Gy, Gy, ..., G = S5, are
complements (in the sense of Definition 1.3) in S,,.
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results stated in the table in §2.
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