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Abstract

The motivation for this note lies in the following simple question:
given a discrete series representation of a p-adic reductive group, is
there a purely local algorithm which will produce its L-packet? As
a means of producing an L-packet, the behaviour of the “stabilized
character” of a discrete series representation m of G is examined in
the special case of the (unramified) unitary groups G = U(1,1)(F),
U(2)(F), and U(2,1)(F), F a p-adic field, p # 2, 3.

Contents
1 Introduction 2
2 The Frobenius formula 4
3 Stabilized Characters of U(1,1) 5
4 Stablized Characters of U(2) 10
5 Stablized Characters of U(2,1) 12
5.1 Basic facts about parahorics . . . . . ... ... ... ... .. 12
5.2 Basic facts about elliptic Cartans . . . . . ... ... ... .. 15

5.2.1 Case Resgnyr(ker Ngajn), M/F the unramified cu-

bic extension . . . ... ... ... L. 17



52.2 Case EX! x EXV x EXY . . ... 17
5.2.3 Case E*! x Respyp(kerpav/n), M/F is a ramified

quadratic extension . . . . .. ... ... ... 18
5.2.4 Case Resgnyr(kergmm) M/F aramified cubic exten-
sionof F'u . . . . . 19
5.2.5 Case E*'xResgyyr(keremym), M/F aramified quadratic
extension . . . .. ... ... 20
5.3 Special representations . . . . . .. ..o 21

1 Introduction

It is hoped that the reasoning in the modest special case investigated in this
article ' will shed a little more light on the relationship between the Hecke
algebra approach of Howe-Moy [M] and the Langlands philosophy [Rog] to
the construction and classification of irreducible admissible representations of
p-adic groups. The Theorem below, and the discussion following it, suggest
a way to use the Hecke algebra approach of Howe-Moy, as developed in [Ja],
to construct Langlands L-packets, at least in some simple cases.

For example, for the groups U(1,1) and U(2) it turns out that the The-
orem below is a simple consequence of Jabon’s classification of the super-
cuspidals of these groups given in [Ja]. In the case of U(2,1) [Ja] (see also
[M]) is used to verify Theorem 1 for the supercuspidal representations. Using
different ideas the Theorem is verified for the special representations. Un-
fortunately, to do this it was necessary to rely on a character identity whose
proof requires the global stable trace formula for U(2, 1). Thus for the special
representations the results are philosophically less satisfactory.

Let F' denote a p-adic field (p a prime) with uniformizer 7p, ring of inte-
gers Op, and maximal ideal Pr. (We shall also use the letter 7 for representa-
tions but hopefully the reader will be able to distinguish the uniformizers from
the representatioons by the context.) Let G denote the F-rational points of a

connected reductive group G defined over F, let T denote an elliptic Cartan
of G, and let Dg(T/F) be as in [L]. Define the stabilized character (in
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distinction with what we shall call the “character of the L-packet”) by

X = D x=(),

weDG(T/F)

for regular v € T(F'). We must define x**(7y) when v is regular but not elliptic.
Suppose v is M-elliptic for some Levi M of G. By a formula of Casselman
[Cas2], xx(7) = Xan(7y) where N is the nilpotent radical associated to a
suitable parabolic P attached to M and my denotes a representation of M
associted to 7 via the Jacquet functor. We define x3 () as before and set
x5 (y) == x&, () in this case. Our main result is the following

Theorem 1 Let G denote U(2)(F), U(1,1)(F), or U(2,1)(F), associated
to the unramified quadratic extension of F', and assume p # 2,3. For any
irreducible discrete series representation m of G and any elliptic Cartan T,
we have

XHy) = Z cix,, (7), 7 € T(F) regular, (1)

where {¢;} = {cir=} C C is a finite set of constants (independent of v but
not necessarily T ) and {m;} is a finite set of admissible representations of G.

This is verified in §§2-4 below by explicit calculations involving the Frobe-
nius formula and the constructions in [Ja]. For G = U(1, 1)(F), we also show
that if 7 is an irreducible tempered representation which is not in the discrete
series then x5 vanishes on the elliptic set.

It should be remarked that the obvious analog of the character relation
in the above theorem seems to be easily provable in the cases SL(n) and
PGL(n). It is conjectured to hold for arbitrary connected reductive groups
over a p-adic field.

Given 7, the set {m;} satisfying the equation in the theorem is not unique.
Although we have not done so, as a by-product of the method it seems that
with a little more work one could give explicit formulas for at least some of
the stabilized supercuspidal characters.

We now offer some speculations on how this theorem relates to the con-
struction of Langlands L-packets of the discrete series. Let II, be the finite
set (independent of both v and T) of irreducible discrete series representa-
tions which

e containing T,



e if the {m;} satisfying (1) is not unique then I, is to contain all possible
choices,

e if 7' is an irreducible admissible representation of G' which satisfies
XHy) = x5 () for all elliptic regular « then II, is to contain 7', and

e II, is minimal with respect to the the above three properties.

It seems reasonable to expect (based on the examples we considered) that a
suitable linear combination of the x%!’s (for 7' € II,) should be the (stable)
character of the L-packet II of m. More precisely, it is expected that for
each Cartan T (elliptic or not) there is a suitable collection of constants
{apr |7 ell},

Y awaxt() = Y nl@)x, (1) = xa(y), 7 € T(F) regular,  (2)

' elly ' €lly

for any 7 € Gy, where {n(n')} C C is a finite set of constants (independent
of v and T'), and yq is the character of the L-packet IT of 7 [Rog] and I, C G
is the set above. In the case of U(2) and U(1,1) (and presumably, though
we have not done so, U(2,1) as well), one may use [Ja] to calculate the a. r
in terms of the ¢; 1.
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2 The Frobenius formula

Next we recall the following general version of the Frobenius formula.

Proposition 2 Let H denote the group of F-rational points of a connected
reductive group defined over F' and let K denote a compact open subgroup of
G. If m is an irreducible admissible representation of H induced from a finite
dimensional representation o of K then

Xal@)= Y [ Y xolgzg™)]

zin gin
K\H/K K\KzK



converges for each reqular x € H. (The convergence is not uniform.) Here

o) ={ 4 9%

The proof of an analogous version of this may be found in [Kut] or in [J].

3 Stabilized Characters of U(1,1)

Now let E/F denote an unramified extension of p-adic fields, p # 2, F =

F(y/€) with € a unit, let J = ( (1) (1) ), and let

G=U1)(F)={geGLy(E) | g-J- 'g=J},

where the conjugation (denoted by an overline) denotes the Galois action of
E/F. Let
K =U(1,1)(Or) = GNGL;3(0Og),

let 0. p-l
L={96G\9€(?§ OZ)

and let o o
r=toeGloe (5 or)

denote the Iwahori subgroup. Let Ky = K and
K;={k€ K |k=1 (modP)}, i>1.

Let Ly = L and

o i Or Pz :
Lz_{keK|kel+7r<,PE o, )}, i>1.

Lett:(o 1),1et10:I,andlet
m 0

Lj:{k€K|k€1+tj(g§ g§>} j>1.
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Clearly if g € G then Ng/p(det g) = 1, where Ng/p denotes the norm.
Note that the torus

T(F):{g:<‘8‘ 691) | o€ BX} = B>

is a subgroup of G and, by Hilbert’s Theorem 90, the map det : G — T'(F)
is surjective. Here T'(F') := E*! denotes the kernel of the norm map. Thus
we have an exact sequence

1= SUQ,1)(F)—>G—>T(F)—1,
where the third arrow is the det, and
SU(L)(F) =GNSLy(FE) (3)
_ o a b .
_{<c\/E J ) | a,b,c,d € F*, ad —bc =1} (4)

:(\f ?)i%(p)(\f (1)) (5)

Since

G/SU(1,1)(F) = B,
SU(1,1)(F)E*! is a subgroup of G of finite index; in fact,

G/SU(1,1)(F)E*' = EX' J(E*)2.

The only discrete series representations of G are supercuspidal representa-
tions and twists of the Steinberg representation by a character (if there were
others they would show up upon restricting to SU(1,1) & SL(2)). First we
describe the L-parameters associated to the supercuspidals.

Let 0 € Gal(E/F) denote the non-trivial element and let Gal(E/F) act
on GLy(C) by o(zg) := z~'J*gJ*, for all z € C* and g € SLy(C), where

-1
J* = ( 0 ? ) (a similar case is treated in [Kud] and [F1] for example).
We write

LU(1,1) = GLy(C) x Gal(E/F), (semi — direct product)

LSU(1,1) = PGLy(C) x Gal(E/F)(direct product).

6



Let Wr denote the Weil group. Using Clifford-Mackey theory, it is not hard
to verify that the L-parameters

¢ Wr— U@1,1)

associated to the supercuspidal packets of G are precisely the “lifts” of the

L-parameters B
é:Wp — SU(1,1)

associated to the supercuspidal packets of G. From the Labesse-Langlands
theory for SL(2, F') [LL], the latter L-packets are well-known.

We use [Ja] and the Frobenius formula below to examine the characters of
the supercuspidal representations. In the notation of [Ja], we have two maxi-

-1
mal parahorics, K and L = ( e 0 ) K ( e 0 ), and the Iwahori I =

0 1 0 1
viE 0\ _
)
—12( 7 0 _

7 0o 1 )asan element of SU(1,1)(F(y/7r)) C U(1,1)(F), we will

therefore say that K and L are stably conjugate parahorics. Consider a
supercuspidal # = Ind$ p or m = Ind% p, where p € K or p € L is in-
duced from a non-degenerate representation (of level one, unramified type,
or ramified type [Ja]).

Let T denote the E/F-Galois conjugation of a matrix & with entries in
E. If g € G satisfies g- J - g = J and if 6 = ( 7BF (1)

that ¢° = §~'g¢d satisfies ¢° - J- *g° = J. Thus ¢ defines an automorphism of

KNL. Here mr denotes a uniformizer for '. Regarding <

> then one can check



(G which is not inner. Note

X (070 = Y1 > xﬁ(glélxég)1
| 9€Q\Q2Q J

= > | ) x6E () ag’s)
zin | g€Q\Q2Q

= > | D x(6'g'xgd)

zin | ge(Q\Q2Q)°

Q\G/Q
= > { > XZ(51919€95)}- (6)
Qé\z(i;n/Qé 9EQ\Q*2Q°

In particular, if 7 = Ind% p and 7' = Ind% (p°), with § as above, then the
Frobenius formula implies X, () = x2(z), for all z € G. On the other hand,
if § = < ?(; (1) ), with v a unit in F, 7 = Ind% p and 7' = Ind% (p°), or
7= Ind¢ pand ' = Ind¥ (p°), then likewise the Frobenius formula implies
Xa' (2) = x2(z), for all z € G.

To prove Theorem 1 in the case of U(1,1), we enumerate the elliptic
Cartans of G. Each elliptic Cartan of U(1,1) is associated to a quadratic
extension F'/F, F' # E. There are four conjugacy classes of anisotropic tori
of G, each stable conjugacy class of an elliptic Cartan contains two conjugacy
classes of elliptic Cartans. Let T;, © = 1,2, 3,4, denote the four conjugacy
classes of elliptic Cartans. We may label these in such a way that 77,7, are
stably conjugate, T3, T} are stably conjugate, and T} (F) — K, To(F) < L,
T5(F) < I, and Ty(F) — I. If T is an elliptic Cartan of U(1,1) associated
to F'/F then there is a natural bijection D(T/F) = F'™ /[Npi /g (F'™).

Let z € T(F) be regular and let

X (@) = > X (2°),

SEF' [Ny o (F'X)

-1
where 70 := ( g (1) ) T ( g 2 ) If F*/Npp(F'™) can be represented
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by 1 and a non-unit (e.g., 7p) then
Xi'(@) = x.(2) + X, (x), = € T(F) regular,

where 7 = Ind% p, 7 = Ind¢ (p°), and § = mp. On the other hand, if
F*[Npr(F') can be represented by 1 and a unit u then for € T(F)

regular, we have

xXHz) = x, (z) + x, (),

where 6 = u, 7 = Ind% p (and ' = Ind$ (p°)), or 7 = Ind§ p (and
7' = Ind¢ (p°)). In any case, we've verified Theorem 1 for the supercuspidals
of U(1,1)(F).

Since the Steinberg representation on SU(1,1)(F) = SL(2,F) has a
singleton L-packet, the restriction of the Steinberg representation Stg of
G(F) = U(1,1)(F) to SU(1,1)(F) must remain irreducible (by Clifford-
Mackey theory). By a well-known result of Borel-Serre-Casselman [Casl]
the character of the Steinberg representation is actually given as a certain
alternating sum of characters each of which is invariant under conjugation

0
01
in this case. (Alternatively, the value of the Steinberg character is known on
the elliptic set: see [Sil], §4.7.) This proves Theorem 1 for every element of
the discrete series of U(1,1)(F).

Our final goal of this section is to examine the stablized character of the
tempered non-discrete series representations of U(1,1). In fact, we prove the
following

by elements of the form . Therefore the Theorem is (trivially) true

Lemma 3 Let m denote a reducible unitary principal series representation
of U(1,1)(F) and let T(F) denote an elliptic Cartan subgroup of U(1,1)(F)
associated to a quadratic extension F'/F. Define the stablilized character on
T(F) by

X (z) =% (7) + x. (),
where v € T(F) is reqular and where conjugation denotes the Galois auto-
morphism of F'/F on T(F) (which is separate from the action of Gal(E/F)
onT(F)). If

1l—=m =7 —m —1,

for wrreducible m;, then
X () = x5,(7) = x=(7) = 0,
for all reqular v € T(F).



proof: Let 7 denote a reducible unitary principal series representation of
SLy(F) and let T'(F') denote an elliptic Cartan subgroup of SLy(F') associ-
ated to a quadratic extension F'/F. It is known that the composition series
of 7 is of length two:

l=o>m—=7—=>m—1,
for irreducible 7;. By the theory of Labesse-Langlands [LL], it is well-known
that
Xn (V) = Xz (),

for all v € T'(F), where conjugation denotes the Galois automorphism of
F'/F on T(F). Since SU(1,1)(F) = SLy(F), this identity transfers over
without change to SU(1,1)(F), provided one takes care to keep the Galois
automorphism of F'/F on T'(F) separate from the action of Gal(E/F) on
T'(F).

Now let m be as in the statement of the Lemma. Since U(1,1)(F) is
semisimple-rank one, m must also have a composition series of length two.
Since E*! belongs to the center of U(1,1)(F) and since both m; must have
the same central character, the above character identity between 7 and 7
must extend to a character identity on SU(1,1)(F)E**:

Xm(’Y) = X (7);
for all regular v € T(F) N (SU(1,1)(F)E*'). Since
U(1,1)(F)/SUQ,1)(F)E*! = EXY/(EX1)?,

the extension of the latter identity to all of U(1,1)(F') is an immediate con-
sequence of Clifford-Mackey theory. [J

4 Stablized Characters of U(2)

Again, E/F denotes an unramified extension of p-adic fields, p # 2, F =

F(y/e), let H = ( L0 ), and let
0 T

G=UQ)(F)={geGLy(E) | g-H '5=H},

where the conjugation denotes the Galois action of E/F. Clearly if g € G
then Ng/rp(det g) = 1. Note that the torus

) ={(§ §) laser,
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is a subgroup of G and, by Hilbert’s Theorem 90, the map det : G — T'(F)
is surjective. Here T'(F) = E*! denotes the kernel of the norm map. One
can also show that

SUQ)(F) = G SLy(E)
{( o 5) 0,8 E*, am+rfB=1}.  (7)

—WB [
Thus we have an exact sequence
1->SU2)(F)—>G—>T(F)—1

where the third arrow is the det map.
Now we describe the L-group of G. Let 0 € Gal(E/F) denote the non-
trivial element and let Gal(E/F) act on GLy(C) by o(zg) := 2z~ ' H*gH*, for
0

all z € C* and g € SLy(C), where H* := < o (1] > (see [F1] for a similar

example). We write
LU(2) = GLy(C) x Gal(E/F), (semi — direct product)

LSU(2) = PGLy(C) x Gal(E/F)(semi — direct product).

To describe the stable “packets” II, of supercuspidal representations, we
proceed as in the previous section. There is only one conjugacy class of

)
parahoric subgroups of G. Moreover, if g € G then ( "g (1) ) g ( z 0 ) €

01
G if and only if x € E*!.
To verify Theorem 1 in the case of U(2), we enumerate the elliptic Cartans
of U(2). Every Cartan of U(2) is of the form

T”(F) = R€SEFI/F((EFI)X1),

where F'/F is a quadratic extension of F. If F = E then T"(F) = E*! x
E*Y If F' # E then the action of Gal(F'/F) on T"(F) can be affected by

conjugation with ( _01 (1] ) (see [Ja], p. 61, (3-8)).

Now define the stabilized character on 7"(F') by

xXHx) = x, (7) + x,.(7),

11



where v € T"(F) is regular and where conjugation denotes the Galois auto-
morphism of F'/F on T"(F). Since the matrix w := < _01 (1] ) defines an
automorphism of U(2, F') which is not inner, but does preserve the filtrations
K; of the parahoric, the reasoning of the U(1, 1) case can be carried out here
(and is in fact a bit easier). We obtain

xXHz) = x, (=) + x, (@),

where 7 = Ind$, p and 7' = Ind%, (p*). From this, Theorem 1 follows easily
in this case.

5 Stablized Characters of U(2,1)

The purpose of this section is to verify Theorem 1 in the special case of
the (unramified) unitary group of three variables U(2,1) attached to the
unramified quadratic extension of a p-adic field F', p # 2, 3. Since p # 2, 3,
every quadratic or cubic extension is tamely ramified and may be embedded
in a finite, tamely ramified, Galois extension.

Let E/F denote the unramified quadratic extension and let

G=U(2,1)(F)={g9€ GLs(E) | gJ'g = J}.

5.1 Basic facts about parahorics

Let us begin by briefly recalling some facts about the parahorics of GL(3, F)
which we shall need later. In the notation of [T], §3.10, the special parahorics
Py, P, and P, are all conjugate. They are the stabilizers of the three ver-
tices of a certain fixed facet C' in the standard apartment A of the building
Bgr@3,r)- The Iwahori B = P, N Py N P, fixes the facet itself. All vertices of
Bgrs,r) are hyperspecial, hence I%, P, and P, are all hyperspecial, maximal
bounded, compact subgroups of GL(3, F).

Now let us recall some facts about the parahorics of G which we shall
need later. We use the notation of [Ja]. There are three conjugacy classes of
parahorics: the hyperspecial maximal bounded, compact subgroup

K =U(2,1)(0r) = G N GLy(Op),

12



the special (but not hyperspecial) maximal bounded, compact subgroup
Or Op Pg'
L={zeG|ze| Pg O Op |},
Pe Pr O

and the Iwarori

Or Or Og
I=KNL={zeK|ze| Pg Og Or |}
Pe Pe Og

Their “Levi components” are

K/K, = U(2,1)(kr),
L/Ll = U(la 1)(kF) x U(la kF)a
I/1 = A(kr), (8)
where kr = Or/Pr denotes the residue field and where K7, Ly, I; are defined
below. Extending scalars from kr to kg, we find that
(K/K1) ® kp = GL(3, kr),
(I/I) ® kp = GL(1,kr)?. (9)

Thus K “corresponds to” Py, L “corresponds to” PyN P, and I “corresponds
to” B, under “base-change” E/F.

The filtrations of these subgroups which we shall need are as follows. Let
Ky = K and

Ki={keK|k=1(mod P})}, j>1.
Let Ly = L and let

Orp O Pz' P Op Og
60: PE OE OE 9 €1: PE PE OE )
Pz Pr Og P2 Pg Pg

and let £o; 4 = mhly, for k=0,1and j > 0. Let L, = {z € L | x € 1 +4,,},
for m > 0. Let Iy = I and let

Or Or Og Pr Op Og Pr Pg
w=| Pe Og Og |, 4u=\| P Pg O |, t=| Prg Pg
Pr Pr Opg Pz Pr Pg fP%; Px

13



and let 43,4y = W%ik, fork=0,1,2and j > 0. Let I, ={z € L |z € 1+i,},
for m > 0. Let Ig =1 and let

Py Py Op Pz Py Pg
2 =iy, =i, i,=|Pg Py Pg |, #=| P Pz Pr |,
Pr Pz Pp P: Py Pr

and let z'ngrk = ﬁ%i',’c, for k =0,1,2,3 and 5 > 0. Let Ifn ={rel|zxc¢€
1+4,}, for m > 0.

For the reader’s convenience, we next recall from [T], §1.15, some relevant
facts about the group SU(2,1)(F). Let

-1
er(t) == 1 , e_1(t) ==e (),
4

and let a;, a_; be defined by a;(ei(t)) := t, a_i(ei(t)) := t7'. The set
of roots relative to the maximal split torus S := {ei(t) |t € F*} is & =
{a1,2a1,a 1,2a_1}. The local Dynkin diagram is given on page 42 of [T].
The standard apartment for SU(2,1)(F) is the affine space

A:={ve; | v € R}

A point a € A is special if and only if (i) v € Z, or (ii) v € Z+ 1/2. A point
a € A is hyperspecial if and only if v € Z (and E/F is unramified). Thus the
embedding of A into the standard apartment for SL(3, E) (with the Galois
action which fixes A) may be pictured as :

<]
< T
<
<

<
>
<
d

R

14



The building for SU(2, 1)(F) is a tree, each vertex being either of order ¢>+1
(special vertices) or ¢ + 1 (hyperspecial vertices). Here - labels hyperspecial
vertices and x labels special (but not hyperspecial) vertices.

5.2 Basic facts about elliptic Cartans

To verify Theorem 1 in the case of U(2,1), we enumerate the different types
of Cartans 7" which can arise in the construction of supercuspidals in this
case. We can have

o T = Resgm/r(ker Ngaym), M/F the unramified cubic extension,
o Respur(kergayn), where M/F is a ramified cubic extension of F),

o T'= E*'xRespyyr(kergm ), where M/F is the unramified quadratic
extension,

o T = E*' x Resgnyp(kerpayn), where M/F is a ramified quadratic
extension,

o T =FEx! x EX1 x E*1,

With these preliminaries out of the way, let T;, ¢ = 1,2, 3,4, denote a
set of conjugacy classes of stably conjugate elliptic Cartans of G which split
over the unramified extension E/F, so T;(F) = E*! x EX! x EX'. Suppose
T(F)— K,i=1,2,and T;(F) — L, j = 3,4. From [T}, §2.5, it follows that
T;(F) fixes some hyperspecial vertex x = z¢ in the building Bg for G. Note
that the building for U(2,1)(FE) is isomorphic to the building for GL(3, E)
and, by [T], §2.6.1, or [R] (“Galois descent”) the Gal(E/F)-fixed points of the
building for U(2,1)(E) is the building for G. Let g € U(2,1)(F) = GL(3, E)
be an element such that T;(F) = Ty (F')9, j = 3,4. Clearly

T;(F) — (KN Ky)Gal(E/F) _ (Kg)aaz(E/F)_
Here g denotes the action of Gal(E/F) on g € U(2,1)(E) fixing G, (K9)%F/F)
stabilizes the vertex in the building for G “corresponding to” (via “Galois

descent”) the edge in the building for U(2,1)(E) which is fixed by K9 N K9.
This proves the following
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Lemma 4 Take p # 2 and let U(2,1)/F denote the unramified unitary
group in three variables associated to the unramified quadratic extension E/F.
Suppose T; and T are stably conjugate elliptic Cartans which split over E
and suppose (without loss of generality) that T;(F) — K. Then there is a
g€ U(2,1)(E) 2 GL(3,E) for which

Tj(F) — (K9S0, Ty(F) = T1(F)°.
In fact, essentially the same argument yields the following result:

Lemma 5 LetU(2,1)/F denote the unramified unitary group as above. Sup-
pose T and T are stably conjugate elliptic Cartans which split over a tamely
ramified Galois extension of F' and suppose that T(F) — K. Then there is
ageU(2,1)(E)=GL(3,E) for which

T'(F) — (K9)GUE/F) — TI(F) = T(F).

Moreover, one can replace K by L or even [ in the above argument, with
only minor modifications. The result is the following

Lemma 6 LetU(2,1)/F denote the unramified unitary group as above. Sup-
pose T and T" are stably conjugate elliptic Cartans which split over a tamely
ramified Galois extension of F' and suppose that T(F) < L. Then there is a
g€ U(2,1)(E) = GL(3,E) for which

T'(F) < (L9)S®0), - T'(F) = T(F)*.
A similar statement holds if we replace L by I.

If we assume that p # 2,3 then every quadratic or cubic extension of F
must be tamely ramified. Let F’/F denote such an extension. It is easy to
see that there always exists a tamely ramified Galois extension F"/F such
that F C F' C F".

Now, to verify Theorem 1 for the supercuspidals of GG, we discuss the
various possibilities in detail using [Ja].

First, consider the case where 7 is of non-degenerate type (Kj;,$2,), i
odd, @' elliptic. In this case, either G’ = Cent(a, G) = G, is isomorphic
to Resgmyr(ker Ngavyn), M/F the unramified cubic extension, or to E*! x
E*tx E*!. We fix an embedding of G’ into K. If G’ = Resgny/r(ker Ngwur)
then G' is stable and there is an embedding G’ — K. In this case, if v € G’
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then clearly x5'(y) satisfies the Theorem. As mentioned above, if G' &
EX! x E*! x EX! then there are two non-conjugate embeddings of G’ into
K and two into L. In either case, we have (in the notation of [Ja], p. 37)

_ G
m=1Indc, , po-
i1

We use the Frobenius formula to write the character of = in terms of the
values of py.

5.2.1 Case Respu/r(ker Npyym), M/F the unramified cubic exten-
sion

Suppose first that G' = Resgnyr(ker Ngaya)- We have already considered
X5t (y) with v € G', so we may without loss assume that 7 belongs to some
other elliptic Cartan T'(F'). Since

po(g'k) = 0(9") (),

ke K i, ¢' € G', we claim that by using the Frobenius formula it can be
shown that x,(y) = 0 unless v € T(F) N Kip. We claim that Qo) =
Qu(7y) for o € Autp T(F) (this follows from the definition of €2, and the fact
that T(F) # G'). We claim that this implies x:f(y) satisfies the Theorem.
This finishes the case G' = Resga/r(ker Nuav/m)-

5.2.2 Case E*! x E*X! x Ex!

Now let us consider the case G' & EX! x EX! x E*!. We fix an embedding
of G' into K. Define

Observe that K% is normal in K and

Ni(G)Kiss € Ng(G'K ).

2 2

We may identify G’ with

a 0 By
G={| 0 vy 0 |e€U21)(0r}

bBve 0 «

where b € O3>
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Lemma 7 Let T(F) denote an elliptic Cartan of G and let m be of non-
degenerate type (K;,Qy), i odd, @' o elliptic. If v is a reqular element of
T(F) then x () satisfies (1).

proof: The elements of D (T/F) may be represented by elements § of
G. Analogous to (6), we may express x'(y) as a sum of elements x.(7),
where each 7’ is also supercuspidal. [

Note if v € K NT(F) is regular then x,(v) = xx(1) = d, is the formal
degree of 7, so the character is stable in this range. Let T'(F) denote a
Cartan of G which is stably conjugate to T(F). If v € T(F') and v € T'(F)
have the same preimage belonging to G’ but not to K i1 then the above
corollary implies

)= D xGww) = > x5 (wyw).

weAutp(T") weAutp (T)

This implies that x:() satisfies the Theorem in case G’ & E*! x E*! x F*1
and ~ belongs to some elliptic Cartan stably conjugate to G'. If v does
not belong to some elliptic Cartan stably conjugate to G' then we claim
that the same reasoning as in the previous case suggests that x5'(y) satisfies
the Theorem in this case as well. This finishes the case where 7 is of type
(K;,Qq), 7 odd, « elliptic. The case where i is even is similar and omitted.

5.2.3 Case E*X! x Respmr(kerpmm), M/F is a ramified quadratic
extension

Next, consider the case where 7 is of non-degenerate type (Lo; 1,%%), @ a
elliptic. In this case the centralizer G’ of o is isomorphic to E** xResgnyr(kersmm),
where M/F is a ramified quadratic extension. There are two non-conjugate

but stably conjugate embeddings of G’ into G: one into L and another into

the non-standard filtration on the Iwahori I. We fix an embedding of G’ into

L, let X be an extension of Q,|cnr,;_, to G', and let J = L;, where

a 0 7B/
a={ o 4 o0 e L}.
2B\/e 0 «

In this case we have
G
= IndG,Lip)\,
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where py(¢'7) = A(¢')Q20(j) for ¢ € G' and j € L;. It is clear that the reason-
ing for the case (K;, Q,) applies to this case as well, with minor modifications

Lemma 8 Let T(F) denote an elliptic Cartan of G and let ™ be of non-
degenerate type (Loi_1,0), @ elliptic. If v is a reqular element of T(F)
then x5'(7y) satisfies (1).

proof: Omitted. (]

Next, consider the case where 7 is of unramified type (K, ), © cuspidal.
Suppose v and ~' are stably conjugate elliptic elements of K. Under that map
k +— k. := k mod K, the elements v, and 7. are conjugate in U(2,1)(kp)
(kr = Op/Pr denotes the residue field). Thus the class function x(x) is
stable. From the Frobenius formula it follows as in the case above that the
character x:' satisfies the Theorem.

Lemma 9 Let T(F) denote an elliptic Cartan of G and let w be of unramified
type (K, ), Q cuspidal. If vy is a reqular element of T(F') then x5'(7y) satisfies

(1)-

proof: Omitted. (]

Next, consider the case where 7 is of ramified type (L, (), Q cuspidal.
Suppose 7y and 7' are stably conjugate elliptic elements of L. Under that map
{+—— ¢, :={ mod Ly, the elements v, and 7, are conjugate in U(1,1)(kr) %
U(1,kr). Thus the class function x%(z) is stable. As in the case where 7
is of unramified type (K,Q), it follows that the character x5 satisfies the
Theorem.

Lemma 10 Let T(F') denote an elliptic Cartan of G and let w be of ramified
type (L, 2), Q cuspidal. If vy is a reqular element of T(F) then x'(v) satisfies

(1)-

proof: Omitted. [

5.2.4 Case Resguyp(kergmym) M/F a ramified cubic extension of F

Next, consider the case where 7 is of non-degenerate type (I;,2,), j = 3i—1
or j = 3i — 2, w'la elliptic. In this case the centralizer of « is isomorphic
to Resga/r(kerga/m) where M/F is a ramified cubic extension of F'. This
Cartan is stable (i.e., contains one conjugacy class inside its stable conjugacy
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class) and has an embedding into I. We fix such an embedding. We may
realize G' as

a B 7
G={|ln a B|el}
™8 Ty «

Let d := [Z2] (the greatest integer). By [Ja], Prop. 3.35, or [M], Theorem
3.5, we have

_ G
m = IndG/Ij_H_d,O,

where p = pe is a character of G’ which agrees with Q, upon restriction to
G'.
J

Lemma 11 Let T(F) denote an elliptic Cartan of G and let m be of non-
degenerate type (I;,0,), j =3i—1 or j = 3i — 2, @' elliptic. If v is a
reqular element of T(F') then x:'(v) satisfies (1).

proof: Omitted. (]

5.2.5 Case E*! X Resgu/r(kergu/m), M/F a ramified quadratic ex-
tension

Next, consider the case where 7 is of non-degenerate type (I;,Qa), j =
4i — 2, w' e elliptic. In this case the centralizer G’ of « is isomorphic to
E*'x Resguyr(kerga/nr), where M/F is a ramified quadratic extension. As
mentioned above, there are two non-conjugate but stably conjugate embed-
dings of G' into G: one into L and another into the non-standard filtration
on the Iwahori I. We fix an embedding of G’ into the non-standard filtration
on I. We have
a 0 Bye

G =/{ 0 v 0 €I}
m8ve 0 «
We have
T = Indg,ll, 0,
24

for some representation p of G'I3;.

Lemma 12 Let T(F) denote an elliptic Cartan of G and let m be of non-
degenerate type (I]b-, D), j = 4i —2, @' a elliptic. If v is a reqular element
of T(F) then x*(v) satisfies (1).
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proof: Omitted. [

The remaining cases deal with various types of 7 with w** !« non-elliptic.
These are shown in [Ja] to reduce down to one of the cases we’ve considered
already. Thus we have verified Theorem 1 for the supercuspidals in every
case.

5.3 Special representations

To deal with the discrete series representations of G which are not super-
cuspidal (i.e., the “special representations”), different methods are required.
From [JKM], for example, such a representation must be either a twist of
the Steinberg representation St; by a 1-dimensional character or a twist of
one of countably many other square-integrable representations oy, agh), say,
where h > 1 is the degree of the character \g in [JKM], §3. It is known that
Sta, 01, and 09 = aéh) all embed into a (reducible) principal series represen-
tation whose composition series is of length 2. The other constituent in the
composition series containing Stg (resp., 01, 09) is one-dimensional (resp.,
infinite dimensional and non-tempered). By [Rog], §12, or [F2], the Lang-
lands L-packet of Sts is a singleton whereas the L-packet of o; consists of o;
and a certain supercuspidal representation which we denote by m;, i = 1, 2.

In the case of the Steinberg representation, and its twists, we may verify
the Theorem using the Borel-Serre-Casselman character formula as in the
case of U(1,1)(F). (Alternatively, the value of the Steinberg character is
known on the elliptic set.) In the cases of g;, we use the following character
identity of J. Rogawski and Y. Flicker (whose proof uses the global stable
trace formula on U(2,1)).

Lemma 13 (/Rog/, Lemma 12.3.7) There is a supercuspidal representation
i, an endoscopic group H of G, and a transfer factor 7 such that

XU;’((S) - Xm (6) = T((S)XStH (7))
where § € G(F) and v € H(F') are matching elliptic reqular elements.

From the basic properties of the transfer factor [Rog] and the fact that
Sty is stable and 7; satisfies the Theorem, it follows from this character
relation that o; must also satisfy the Theorem, 7 = 1, 2.

This verifies the first part of Theorem 1 for all discrete series representa-
tions of G, p # 2, 3, as desired. Moreover, if 7 and 7’ are supercuspidal and
7' ¢ I, then I, NI, = ¢.

21



References

[Casl] W. Casselman, “The Steinberg character as a true character”, in
Harmonic Analysis on Homogeneous Spaces, Proc. Symp. Pure Math.,
AMS, 1973

[Cas2] ——, “Characters and Jacquet modules”, Math. Ann. 230(1977)101-
105

[F1] Y. Flicker, “Stable and labile base change for U(2)”, Duke Math. J.
49(1982)691-729

[F2] ——, “Packets and lifting for U(3)”, preprint

[HC] Harish-Chandra, Harmonic Analysis on Reductive p-adic Groups
(notes by G. Van Dijk), Springer-Varlag LNM 162(1970)

[Ja] D. Jabon, “The supercuspidal representations of U(2,1) and GSp(4)
over a local field via Hecke algebra isomorphisms”, Thesis, Univ. of
Chicago, 1989

[JKM] D. Jabon, D. Keys, and A. Moy, “An explicit Plancheral formula for
U(2,1)”, Trans. Amer. Math. Soc. 341 (1994), no. 1, 157-171

[J] D. Joyner, “A correspondence for the generalized Hecke algebra of the
metaplectic cover SL(2, F), F p-adic,” New York Journal of Mathemat-
ics 4 (1998), 223-235

[Kud] S. Kudla, “On certain Euler products for SU(2,1)”, Comp. Math.
42(1981)321-344

[Kut] P. Kutzko, “Character formulas for supercuspidal representations of
GLy, £ a prime”, Amer. J. Math. 109(1987)201-222

[L] R. Langlands, “Stable conjugacy: definitions and lemmas”, Can. J.
Math. 31(1979)700-725

[LL] J.-P. Labesse and R. Langlands, “L-indistinguishability for SL(2)”,
Can. J. Math. 31(1979)726-785

[M] A. Moy, “Representations of U(2,1) over a p-adic field”, J. fiir die r. u.
a. Math. 372(1986)178-208

22



[R] G. Rousseau, “Immeubles des groupes réductifs sur les corps locaux”,
Thesis, Orsay, 1977

[Rog] J. Rogawski, Automorphic Representations of Unitary Groups in
Three Variables, Annals of Mathematics Studies, 123. Princeton Uni-
versity Press, Princeton, NJ, 1990

[Sil] A. Silberger, Introduction to Harmonic Analysis on Reductive p-adic
Groups, Princeton Univ. Press, 1979

[T] J. Tits, “Reductive groups over local fields”, in Automorphic forms,
Representations, and L-functions, vol. I, 1979 Corvallis Conference, ed.
A. Borel, W. Casselman, Proc. Symp. Pure Math. 33(1979), A.M.S.,
1979

David Joyner

Mathematics Department

US Naval Academy

572 Holloway Road
Annapolis, MD 21402  USA
wdj@nadn.navy.mil

David Jabon

Dept Mathematics

DePaul University

2219 N. Kenmore

Chicago, Illinois 60614-3504
djabon@uppost.depaul.edu

23



