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Introduction 
 
Since the beginning of society, there has been a need for information to be passed swiftly 
and securely.  To solve this problem people searched for ways to mask what they were 
communicating.  Cryptology is the composition of cryptography and cryptanalysis, or the 
making and breaking of codes.  One of the earliest uses of cryptography was in the 
Roman Empire where they simply shifted the alphabet, so that each letter stood for 
another letter a certain number of positions down the alphabet.  While it would not be a 
secure cipher today, it was adequate for the day.  In this project we outline the basic 
theory of a modern cipher by analyzing elliptic curve cryptography, and eventually we 
will study and implement Rene Schoof’s algorithm [SE] which counts the number of 
points of an elliptic curve over a finite field. 
 
A serious problem that arises from creating secure cryptosystems is the ability to 
communicate and manage the encryption and decryption keys.  When dealing with 
symmetric ciphers, the decryption key can be easily derived when the encryption key is 
known.  So the problem arises when trying to establish a key when there is no secure 
communication already established between the entities that want to interact.  Up until 
recently, there were no asymmetric cryptosystems, in other words, there were no systems 
in which knowing the encryption key did not allow easy access to the decryption key.  
The ability to publish a key for which others could use to encrypt without giving away 
the decryption key solved the problem of communicating keys that are used for 
symmetric ciphers.  Now it is possible to exchange keys for secure symmetric ciphers by 
using an asymmetric, or public key, cipher.  Currently, methods in creating public 
encryption keys that are resistant to attack are based on mathematical problems that are 
believed to be computationally hard.  Two such mathematical problems are the 
factorization of integers and the discrete logarithm problem.  We will analyze the discrete 
logarithm problem further before analyzing several public key cryptosystems. 
 

Goals 
 
In this project we hope to accomplish several things, the first being an analysis of the 
discrete logarithm problem and factoring, and how it influences public key cryptography.  
From there we plan to move into elliptic curve cryptography, analyzing how the discrete 
logarithm problem changes, and the different problems that arise.  Finally we hope to 
analyze Schoof’s Algorithm, and discuss how it impacts elliptic curve cryptography. 

 
Discrete Logarithm Problem 

 
The discrete logarithm problem comes from the difficulty in finding the power to which 
to raise a generator of a cyclic group in order to find a specific element of that group.  We 
begin by defining the group and a generator of that group: 
 
Let n be a positive integer for which the group of invertible elements modulo n, *

nZ , is 
cyclic.  Gauss proved that in this case 
 



n= 2, 4, lp , lp2 , where l=1, 2, …, and p is an odd prime 
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then we choose which element we wish to find the discrete logarithm of, 
 

. ofelement an  be Let *
nZβ  

 
Then there is a unique a such that 
 

11 wherein * −≤≤= nan
a Zβα . 

 
This a is the discrete logarithm of β to the base α or, 
 

βαlog=a . 
 

The discrete logarithm problem(DLP) is written as such: 
 
Given a prime p, a generator α of *

nZ and an element *
nZ∈β , find a such that 

20  wheremod −≤≤≡ papa βα . 
 

For small p it is possible to do an exhaustive search in a short time span, but as p 
grows large, then the difficulty of finding a is exponentially harder.  It is the difficulty of 
finding a which provides the security for several modern asymmetric cryptosystems 
including the El Gamal cryptosystem. 
 

The El Gamal Cryptosystem 
 
Let p be a prime such that the DLP for *

nZ is infeasible.   ofgenerator  a be Let *
pZα .  Let 

a be an integer. 
 

( ) }mod:,,,{ papK a βαβα ==  
 
In the cryptosystem ( )βα ,,p  is the public key and (a) is the private key. 
The encrypter chooses a random number .1−∈ pk Z  
 
Encryption consists of  
 



( ) ( )

,mod

,mod

,,,

2

1

21

pxy

py

yykx

k

k
k

β

α

ε

=

=

=

 

 
where x is the message, 1y is the header and 2y  the encrypted message. 
 
Decryption consists of 
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this works since 
 

( ) ( ) ( ) ( ) .modmodmodmod,

,mod
,mod

111

1221

2

1

pxpxpxpyyyyd

pxy
py

kaakakka
k

k

k

====

=

=

−−−
αααβ

β

α

  



Elliptic Curves 
 
One of the difficulties of previous public key cryptosystems is the ability to find unique 
groups which can be used for encryption.  While elliptic curves are a well studied area of 
mathematics, it was not until the mid 1980s when V. Mitler [Mi] and N Kolbitz [Ka], 
working independently found a solution for this problem.  Elliptic curves are solution sets 
for certain polynomials, and can be defined over pZ .  While not a recent discovery, 
their use in cryptology have proved to be quite useful.  For simplicity we will analyze 
elliptic curves over the R, the set of real numbers, first. 
 
A non singular elliptic curve is the set of solutions ( ) RRxyx ∈,   to the following 
equations: 
 
 Let R∈ba,  such that 0274 23 ≠+ ba .   
 

baxxy ++= 32  
 
and the point O, also called the point at infinity. 
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Now that we have defined what an elliptic curve E is, we need to define an to make E an 
abelian group.  The identity element of E is defined as O. 
 
Let EQP ∈, , where  ( ) ( )2211 ,,, yxQyxP == . 
 
We then have three cases which must be considered 
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In the first case we look at the line L which intersects E at the two points P and Q.  It is 
clear that L also intersects E at a third point R′ .  We define P+Q=R, where R is the 
reflection of R′  about the x-axis. 



 The elliptic curve would not be very useful if we could not define R algebraically 
as well as graphically, so in order to do so we begin by analyzing the equation for L. 
 

vxy += λ ,  
 
where  
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is the slope and 
 

2211 xyxyv λλ −=−= . 
 
We then solve for the intersections of L with E by substituting vxy += λ into the 
equation for E 
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When we solve for x in this equation we will get the three x-coordinates of LE ∩ , and 
since we already know two of them are real from P and Q, we know the third root is real 
as well.  Furthermore we know that the sum of the three roots must be equal to  
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Now that we have solved for the x-coordinate of R′ , we let 3y  be the y-coordinate of R′ , 
and compute it by using λ . 
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We now have a simple formula to solve for ( ),, 33 yxR =  where 
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For the second case, we simply define  
 
( ) ( ) Oyxyx =−+ ,, , the point at infinity. 
 
In the third case we are adding P to itself and assume that 01 ≠y .  In this case we need to 
define L to be the line tangent to E at P.  While most of the analysis is Identical to case 1, 
the slope needs to be calculated through implicit differentiation 
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therefore in the case of ( )11, yxP =  
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By combining the three cases we can summarize addition to: 
 
Let ( )11, yxP =  then ( )11, yxP −=− .  If ( )22 , yxQ =  and PQ −≠ , then ( )33, yxQP =+ , 
where 
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Elliptic Curve Cryptography 
 
Elliptic curves are used for cryptography because of the difficulty of the elliptic curve 
DLP.  While generic algorithms apply, the index calculus algorithm has no adaptation, 
effectively eliminating one of our most powerful tools.  Before we can look more in 
depth at the cryptosystems, we need to modify the addition on elliptic curves for pZ . 
 
Let ( )11, yxP =  and ( )22 , yxQ =  if 2121  and yyxx −==  then OQP =+  otherwise 

( )33, yxQP =+ , where 
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and P+O=O+P=P for all EP∈ . 
 
If E is small enough, it is possible to calculate all of the elements of E using a brute force 
method.  After we determine the elliptic curve, we need to calculate the order.  The brute 
force method is extremely slow when p is a large prime, and there are several theorems 
which allow us to approximate the order, but our most powerful tool for doing this is 
Schoof’s algorithm.  Schoof’s algorithm computes E  with a running time of O ( )8log p , 

and is efficient for primes p up to several hundred digits.  After we have determined E  
we can easily see if the elliptic curve is cyclic, because if the order of a group is prime, 
then the group is cyclic.   
 
 Now that we have established that pZ  is a group, and we can determine 
relatively easily if it is a cyclic group, we can look at the El Gamal cryptosystem, which 
translates nicely to the elliptic curve. 
 The first thing we need to do is to change the encryption and decryption from 
multiplicative to additive notation. 
 
Let α  be a generator of the cyclic elliptic curve E, and let a be the private key. 
 

αβ a=  
 
Given a plain text to be encrypted x, and a secret number k 10 −≤< Ek , encryption is 
as follows 
 
( ) ( )βαε kxkkxk += ,,  

 



and decryption is 
 

( ) 1221, ayyyydk −= . 
 
It is important to note that x must be an element of E, and the encoding of x onto E is not 
trivial when E is over pZ . 
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