
Applications of DEs:
Spring problems, III

Prof. Joyner1

If the frequency of the driving force of the spring matches the frequency
of the homogeneous part xh(t), in other words if

x′′ + ω2x = F0 cos(γt),

satisfies ω = γ then we say that the spring-mass system is in (pure, me-
chanical) resonance. For some time, it was believed that the collapse of
the Tacoma Narrows Bridge [T] was explained by this phenomenon but this
is false [R].
Fact: Consider

x′′ + ω2x = F0 cos(γt), (1)

and

x′′ + ω2x = F0 sin(γt). (2)

Let xp = xp(t) denote a particular solution to either (1) or (2). Then we
have

• in case (1): if γ 6= ω then

xp(t) =
F0

ω2 − γ2
cos(γt),

• in case (1): if γ = ω then

xp(t) =
F0

2ω
t sin(γt),
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• in case (2): if γ 6= ω then

xp(t) =
F0

ω2 − γ2
sin(γt),

• in case (2): if γ = ω then

xp(t) = −
F0

2ω
t cos(γt).

In particular, in case (1), if γ 6= ω then

x(t) =
F0

ω2 − γ2
(cos(γt) − cos(ωt))

is a solution and, in case (2), if γ 6= ω then

x(t) =
F0

ω2 − γ2
(sin(γt) − sin(ωt))

is a solution. In both of these, to derive the case γ = ω, one can take limits
γ → ω in these expressions.

Example: Solve

x′′ + ω2x = cos(γt), x(0) = 0, x′(0) = 0,

where ω = γ = 2 (ie, mechanical resonance). We use SAGE for this:
SAGE

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: (m,b,k,w,F0) = var("m,b,k,w,F0")
sage: de = lambda y: diff(y,t,t) + wˆ2 * y - F0 * cos(w * t)
sage: m = 1; b = 0; k = 4; F0 = 1; w = 2
sage: desolve(de(x(t)),[x,t])

’(2 * t * sin(2 * t)+cos(2 * t))/8+%k1 * sin(2 * t)+%k2 * cos(2 * t)’
sage: desolve_laplace(de(x(t)),["t","x"],[0,0,0])

’t * sin(2 * t)/4’
sage: soln = lambda t : t * sin(2 * t)/4
sage: P = plot(soln(t),0,10)
sage: show(P)

This is displayed below:
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Figure 1: A forced undamped spring, with resonance.

Example: Solve

x′′ + ω2x = cos(γt), x(0) = 0, x′(0) = 0,

where ω = 2 and γ = 3 (ie, no mechanical resonance). We use SAGE for this:

SAGE

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: (m,b,k,w,g,F0) = var("m,b,k,w,g,F0")
sage: de = lambda y: diff(y,t,t) + wˆ2 * y - F0 * cos(g * t)
sage: m = 1; b = 0; k = 4; F0 = 1; w = 2; g = 3
sage: desolve_laplace(de(x(t)),["t","x"],[0,0,0])

’cos(2 * t)/5-cos(3 * t)/5’
sage: soln = lambda t : cos(2 * t)/5-cos(3 * t)/5
sage: P = plot(soln(t),0,10)
sage: show(P)

This is displayed below:
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Figure 2: A forced undamped spring, no resonance.

Exercise: Using SAGE , solve

x′′ + ω2x = cos(t), x(0) = 0, x′(0) = 0,

when ω = 1 and when ω = 2 (or any other value not equal to the resonance
frequency).
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