
Eigenvalue method for systems of DEs

Prof. Joyner, 10-24-20071

In this section, we will try to solve the
PROBLEM: Solve

{

x′ = ax + by, x(0) = x0,
y′ = cx + dy, y(0) = y0.

Let

A =

(

a b
c d

)

In matrix notation, the system of DEs becomes

~x′ = A~x, ~x(0) =

(

x0

y0

)

, (1)

where ~x = ~x(t) =

(

x(t)
y(t)

)

.

Motivation

First, we shall try to motivate the study of eigenvalues and eigenvectors.
This section hopefully will convince you that

• diagonal matrices are wonderful,

• conjugation is very natural,

• if our goal in life is to conjugate a given square matrix matrix into a
diagonal one, then eigenvalues and eigenvectors are also natural,

• Solving systems using matrix exponentials.

1These notes licensed under Attribution-ShareAlike Creative Commons license,

http://creativecommons.org/about/licenses/meet-the-licenses. Original version

created Jan 2004; last revised Oct 2007.
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Diagonal matrices are wonderful: We’ll focus for simplicity on the 2×2 case,
but everything applies to the general case.

• Addition is easy:

(

a1 0
0 a2

)

+

(

b1 0
0 b2

)

=

(

a1 + b1 0
0 a2 + b2

)

.

• Multiplication is easy:

(

a1 0
0 a2

)

·

(

b1 0
0 b2

)

=

(

a1 · b1 0
0 a2 · b2

)

.

• Powers are easy:

(

a1 0
0 a2

)n

=

(

an

1
0

0 an

2

)

.

• You can even exponentiate them:

exp(t

(

a1 0
0 a2

)

) =

(

1 0
0 1

)

+ t

(

a1 0
0 a2

)

+ 1

2!
t2

(

a1 0
0 a2

)2

+ 1

3!
t3

(

a1 0
0 a2

)3

+ ...

=

(

1 0
0 1

)

+

(

ta1 0
0 ta2

)

+

(

1

2!
t2a2

1
0

0 1

2!
t2a2

2

)

+

(

1

3!
t3a3

1
0

0 1

3!
t3a3

2

)

+ ...

=

(

exp(ta1) 0
0 exp(ta2)

)

.

So, diagonal matrices are wonderful.

Conjugation is natural. You and your friend are piloting a rocket in space.
You handle the controls, your friend handles the map. To communicate, you
have to “change coordinates”. Your coordinates are those of the rocketship
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(straight ahead is one direction, to the right is another). Your friends coor-
dinates are those of the map (north and east are map directions). Changing
coordinates corresponds algebraically to conjugating by a suitable matrix.
Using an example, we’ll see how this arises in a specific case.

Your basis vectors are

v1 = (1, 0), v2 = (0, 1),

which we call the “v-space coordinates”, and the map’s basis vectors are

w1 = (1, 1), w2 = (1,−1),

which we call the “w-space coordinates”.

Figure 1: basis vectors v1, v2 and w1, w2.

For example, the point (7, 3) is, in v-space coordinates of course (7, 3) but
in the w-space coordinates, (5, 2) since 5w1 + 2w2 = 7v1 + 3v2. Indeed, the
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matrix A =

(

1 1
1 −1

)

sends

(

5
2

)

to

(

7
3

)

.

Suppose we flip about the 45o line (the “diagonal”) in each coordinate
system. In the v-space:

av1 + bv2 7−→ bv1 + av2,
(

a
b

)

7−→

(

0 1
1 0

) (

a
b

)

.

In other words, in v-space, the “flip map” is

(

0 1
1 0

)

.

In the w-space:

wv1 + wv2 7−→ aw1 − bw2,
(

a
b

)

7−→

(

1 0
0 −1

) (

a
b

)

.

In other words, in w-space, the “flip map” is

(

1 0
0 −1

)

.

Conjugating by the matrix A converts the “flip map” in w-space to the
the “flip map” in v-space:

A ·

(

1 0
0 −1

)

· A−1 =

(

0 1
1 0

)

.

Eigenvalues are natural too: The definition is the following: If A is any square
matrix and

A~v = λ~v,

for some scalar λ (possibly complex) and some non-zero vector ~v (also, pos-
sibly complex) then λ is called an eigenvalue with eigenvector ~v. The claim
is that these are naturally arising objects.

Given a matrix A, is there a basis of the underlying space in which the
matrix is diagonal? Given how “wonderful” diagonal matrices are, it seems
clear we should find this basis and these diagonal entries.

Fact: When the diagonal entries are distinct, the basis elements are the
eigenvectors and the diagonal elements are the eigenvalues.
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Since this section is only intended to be motivation, we shall not prove
this here (see any text on linear algebra, for example [B] or [H]).

When there is an invertible matrix P and a diagonal matrix D for which
A = P−1DP (e.g, when P is the matrix of eigenvectors and D is the diagonal
matrix of eigenvalues) then we can compute the matrix exponential. Indeed,

etA = 1 + tA +
1

2!
(tA)2 +

1

3!
(tA)3 + ...

= P−1P + P−1 · tD · P + P−1 ·
1

2!
(tD)2 · P + P−1 ·

1

3!
(tD)3 · P + ...

= P−1(I + +tD +
1

2!
(tD)2 +

1

3!
(tD)3 + ...)P

= P−1etDP.

SAGE

sage: MS = MatrixSpace(CC,2,2)
sage: A = MS([[0,1],[1,0]])
sage: A.eigenspaces()

[
(1.00000000000000, [
(1.00000000000000, 1.00000000000000)
]),
(-1.00000000000000, [
(1.00000000000000, -1.00000000000000)
])
]

This SAGE command tells us that the eigenvalues of

(

0 1
1 0

)

are λ = 1,−1

and the eigenvectors are ~v = (1, 1), (1,−1).

Solving systems of DEs using matrix exponentials.
We know how to take the matrix exponential of a diagonal matrix. Let’s

assume A is diagonalizable and let

~x = etA~c.
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The derivative with respect to t of this vector-valued function is given by

~x′ = AetA~c = A~x.

(This is true even for non-diagonal matrices, and is the analog of the usual
derivative formula d

dt
eat = aeat, where a is a constant.) In other words, etA~c

solves the system (1). In the next section, we shall see another, more explicit,
way of doing this.
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Solution strategy

PROBLEM: Solve
{

x′ = ax + by, x(0) = x0,
y′ = cx + dy, y(0) = y0.

soln: Let

A =

(

a b
c d

)

In matrix notation, the system of DEs becomes

~x′ = A~x, ~x(0) =

(

x0

y0

)

,

where ~x = ~x(t) =

(

x(t)
y(t)

)

. In a similar manner to how we solved homo-

geneous constant coefficient 2nd order ODEs ax′′ + bx′ + cx = 0 by using
“Euler’s guess” x = Cert, we try to guess an exponential: ~X(t) = ~ceλt (λ is
used instead of r to stick with notational convention; ~c in place of C since we
need a constant vector). Plugging this guess into the matrix DE ~X ′ = A ~X
gives λ~ceλt = A~ceλt, or (cancelling eλt)

A~c = λ~c.

This means that λ is an eigenvalue of A with eigenvector ~c.

• Find the eigenvalues. These are the roots of the characteristic polyno-
mial

p(λ) = det

(

a − λ b
c d − λ

)

= λ2 − (a + d)λ + (ad − bc).

Call them λ1, λ2 (in any order you like).

You can use the quadratic formula, for example to get them:

λ1 =
a + d

2
+

√

(a + d)2 − 4(ad − bc)

2
, λ2 =

a + d

2
−

√

(a + d)2 − 4(ad − bc)

2
.
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• Find the eigenvectors. If b 6= 0 then you can use the formulas

~v1 =

(

b
λ1 − a

)

, ~v2 =

(

b
λ2 − a

)

.

In general, you can get them by solving the eigenvector equation

A~v = λ~v.

SAGE

sage: MS = MatrixSpace(CC,2,2)
sage: A = MS([[1,2],[3,4]])
sage: A.eigenspaces()

[
(-0.372281323269014, [
(1.00000000000000, -0.457427107756338)
]),
(5.37228132326901, [
(1.00000000000000, 1.45742710775634)
])
]

• Plug these into the following formulas:

(a) λ1 6= λ2, real:

(

x(t)
y(t)

)

= c1~v1 exp(λ1t) + c2~v2 exp(λ2t).

(b) λ1 = λ2 = λ, real:

(

x(t)
y(t)

)

= c1~v1 exp(λt) + c2(~v1t + ~p) exp(λt),

where ~p is any non-zero vector satisfying (A − λI)~p = ~v1.

(c) λ1 = α + iβ, complex: write ~v1 = ~u1 + i~u2, where ~u1 and ~u2 are
both real vectors.

(

x(t)
y(t)

)

= c1[exp(αt) cos(βt)~u1 − exp(αt) sin(βt)~u2]

+c2[− exp(αt) cos(βt)~u2 − exp(αt) sin(βt)~u1].
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Examples

Example 1 Solve

x′(t)) = x(t) − y(t), y′(t) = 4x(t) + y(t), x(0) = −1, y(0) = 1.

Let

A =

(

1 −1
4 1

)

and so the characteristc polynomial is

p(x) = det(A − xI) = x2 − 2x + 5.

The eigenvalues are

λ1 = 1 + 2i, λ2 = 1 − 2i,

so α = 1 and β = 2. Eigenvectors ~v1, ~v2 are given by

~v1 =

(

−1
2i

)

, ~v2 =

(

−1
−2i

)

,

though we actually only need to know ~v1. The real and imaginary parts of ~v1

are

~u1 =

(

−1
0

)

, ~u2 =

(

0
2

)

.

The solution is then
(

x(t)
y(t)

)

=

(

−c1 exp(t) cos(2t) + c2 exp(t) sin(2t)
−2c1 exp(t) sin(2t) − 2c2 exp(t) cos(2t),

)

so x(t) = −c1 exp(t) cos(2t)+c2 exp(t) sin(2t) and y(t) = −2c1 exp(t) sin(2t)−
2c2 exp(t) cos(2t).

Since x(0) = −1, we solve to get c1 = 1. Since y(0) = 1, we get c2 =
−1/2. The solution is: x(t) = − exp(t) cos(2t) − 1

2
exp(t) sin(2t) and y(t) =

−2 exp(t) sin(2t) + exp(t) cos(2t).

Example 2 Solve

x′(t) = −2x(t) + 3y(t), y′(t) = −3x(t) + 4y(t).

Let

A =

(

−2 3
−3 4

)
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and so the characteristc polynomial is

p(x) = det(A − xI) = x2 − 2x + 1.

The eigenvalues are

λ1 = λ2 = 1.

An eigenvector ~v1 is given by

~v1 =

(

3
3

)

.

Since we can multiply any eigenvector by a non-zero scalar and get another

eigenvector, we shall use instead

~v1 =

(

1
1

)

.

Let ~p =

(

r
s

)

be any non-zero vector satisfying (A−λI)~p = ~v1. This means

(

−2 − 1 3
−3 4 − 1

) (

r
s

)

=

(

1
1

)

There are infinitely many possibly solutions but we simply take r = 0ands =
1/3, so

~p =

(

0
1/3

)

.

The solution is
(

x(t)
y(t)

)

= c1

(

1
1

)

exp(t) + c2(

(

1
1

)

t +

(

0
1/3

)

) exp(t),

or x(t) = c1 exp(t) + c2t exp(t) and y(t) = c1 exp(t) + 1

3
c2 exp(t) + c2t exp(t).

Exercises: Use SAGE to find eigenvalues and eigenvectors of both

(

1 −1
4 1

)

and

(

−2 3
−3 4

)

.
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