Eigenvalue method for systems of DEs

Prof. Joyner, 10-24-20071

In this section, we will try to solve the
PROBLEM: Solve

{ ¥ =ax+by, x(0)=ux,
y' =cx+dy, y(0)=yo.

-(24)

In matrix notation, the system of DEs becomes
7= Az, #0)= ( xo),
Yo
S o x(t) >
where ¥ = Z(t) = .
) ( y(t)

Let

Motivation

First, we shall try to motivate the study of eigenvalues and eigenvectors.

This section hopefully will convince you that

e diagonal matrices are wonderful,

e conjugation is very natural,

e if our goal in life is to conjugate a given square matrix matrix into a

diagonal one, then eigenvalues and eigenvectors are also natural,

e Solving systems using matrix exponentials.
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Diagonal matrices are wonderful: We’ll focus for simplicity on the 2 x 2 case,
but everything applies to the general case.

e Addition is easy:

aq 0 + bl 0 - (ll—l—bl 0
0 a 0 by ) 0 as+by )

e Multiplication is easy:

aq 0 ) bl 0 o ai - bl 0
0 as 0 bg o 0 as - b2 .

e Powers are easy:
a 0 \" [ a? O
0 a9 N 0 ag '

e You can even exponentiate them:

aq 0 o 1 0 aq 0
exp(t( 0 a2>) = (o 1)”( 0 a2>
2 3
l 2 CL1 0 l 3 all 0
iy ( . a2> 1 ( . a2> P
. 10 + ta1 0
o 01 0 ta
14242 0 ) ( L33 0
+ 2! 1 + 3! 1 + ..
( 0 %tQag 0 %t:sa;’

= (70" it )

So, diagonal matrices are wonderful.

Conjugation is natural. You and your friend are piloting a rocket in space.
You handle the controls, your friend handles the map. To communicate, you
have to “change coordinates”. Your coordinates are those of the rocketship



(straight ahead is one direction, to the right is another). Your friends coor-
dinates are those of the map (north and east are map directions). Changing
coordinates corresponds algebraically to conjugating by a suitable matrix.
Using an example, we’ll see how this arises in a specific case.

Your basis vectors are

U1 = (170)7 Vg = (07 1)7

which we call the “v-space coordinates”, and the map’s basis vectors are

w1 = (1, ].), W9 = (1, —1),

which we call the “w-space coordinates”.
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Figure 1: basis vectors vy, vy and wy, ws.

For example, the point (7, 3) is, in v-space coordinates of course (7, 3) but
in the w-space coordinates, (5,2) since bw; + 2wy = Tvy + 3vy. Indeed, the



) 1 1 5 7
matrle_<1 _1)sends<2)to<3).

Suppose we flip about the 45° line (the “diagonal”) in each coordinate
system. In the v-space:

avy + bvy — buy + avs,
ay\ 01 a
b 10 b -

In other words, in v-space, the “flip map” is ( (1) (1) )

In the w-space:

WU + Woy — aw; — bw,,
ay\ 1 0 a
b 0 -1 b |-

In other words, in w-space, the “flip map” is ( (1) _01 )

Conjugating by the matrix A converts the “flip map” in w-space to the
the “fHlip map” in v-space:

A.(é_ol).A—lz(gg]).

FEigenvalues are natural too: The definition is the following: If A is any square
matrix and

AT = M\,

for some scalar A (possibly complex) and some non-zero vector v (also, pos-
sibly complex) then A is called an eigenvalue with eigenvector v. The claim
is that these are naturally arising objects.

Given a matrix A, is there a basis of the underlying space in which the
matrix is diagonal? Given how “wonderful” diagonal matrices are, it seems
clear we should find this basis and these diagonal entries.

Fact: When the diagonal entries are distinct, the basis elements are the
eigenvectors and the diagonal elements are the eigenvalues.
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Since this section is only intended to be motivation, we shall not prove
this here (see any text on linear algebra, for example [B] or [H]).

When there is an invertible matrix P and a diagonal matrix D for which
A= P7'DP (e.g, when P is the matrix of eigenvectors and D is the diagonal
matrix of eigenvalues) then we can compute the matrix exponential. Indeed,

1 1
et =1+tA+ E(tA)Q + 5(tA)3 + ...
1 1,
=P 'P+P'tD-P+P . 5(tD)2 P+ Pt g(tD)B-P+

1 1
=P Y(I++tD+ E(tD)Q + g(w)3 +..)P
| _plePp,

SAGE

sage: M5 = MatrixSpace(CC, 2, 2)
sage: A = M5([[0,1],[1,0]])
sage: A. eigenspaces()

[
(1. 00000000000000, [

(1. 00000000000000, 1.00000000000000)
1),

(-1.00000000000000, [

(1. 00000000000000, -1.00000000000000)

1)
]

This SAGE command tells us that the eigenvalues of ( (1) (1) > are A =1,—1

and the eigenvectors are v = (1,1), (1, —1).

Solving systems of DEs using matrix exponentials.
We know how to take the matrix exponential of a diagonal matrix. Let’s
assume A is diagonalizable and let

7= e



The derivative with respect to ¢ of this vector-valued function is given by

7 = Ae'té = A7
(This is true even for non-diagonal matrices, and is the analog of the usual
derivative formula %e“t = ae™, where a is a constant.) In other words, e4¢
solves the system (). In the next section, we shall see another, more explicit,
way of doing this.



Solution strategy

PROBLEM: Solve

{ ¥ =ax+by, x(0)=ux,
y' =cx+dy, y(0)=yo.

- (24)

In matrix notation, the system of DEs becomes

7 = AZ, f(o):(‘%),

Yo

soln: Let

- - t .
where & = Z(t) = ( ZE t; ) In a similar manner to how we solved homo-
geneous constant coefficient 2nd order ODEs ax” + bz’ + cx = 0 by using
“Buler’s guess” x = Ce™, we try to guess an exponential: X (¢) = éeM () is
used instead of r to stick with notational convention; ¢ in place of C since we
need a constant vector). Plugging this guess into the matrix DE X’ = AX

gives \éeM = AceM | or (cancelling )

Ac = )é.

This means that A is an eigenvalue of A with eigenvector c.

e Find the eigenvalues. These are the roots of the characteristic polyno-
mial
p(/\)—det( . d—)\>_)\ —(a+ d)A + (ad — be).

Call them A, A2 (in any order you like).

You can use the quadratic formula, for example to get them:

a+d +/(a+d)?—4(ad — bc) \ a+d_\/(a+d)2—4(ad—bc).

Alz —1'_ 9 2 =

2 2 2 2



e Find the eigenvectors. If b # 0 then you can use the formulas

L (b (b
U= )\1—0, ’ V2= )\2—0, '

In general, you can get them by solving the eigenvector equation
AU = A\
SAGE

sage: M5 = MatrixSpace(CC, 2, 2)
sage: A = M5([[1,2],[3,4]1)
sage: A. eigenspaces()

[
(-0.372281323269014, |

(1.00000000000000, -0.457427107756338)
1),

(5.37228132326901, |

(1. 00000000000000, 1.45742710775634)
1)

]

e Plug these into the following formulas:

(a) )\1 7§ )\2’ real:
( x(t) ) = 101 exp(\it) + caty exp(Aat).
(b) A\ = Ay = A, real:

t . "
( 28 ) = 10 exp(At) + co(Vht + P) exp(At),
where p'is any non-zero vector satisfying (A — A\l )p' = ;.

(¢) A\ = o+ i, complex: write v = uj + itly, where @; and s are
both real vectors.

( ;8 > = ci[exp(at) cos(Bt)uy — exp(at) sin(8t) ]
+co[— exp(at) cos(ft )iy — exp(at) sin(St)i].



Examples

Example 1 Solve

Let

and so the characteristc polynomial is
p(z) = det(A — xI) = 2* — 22 + 5.

The eigenvalues are
M =14+2i, A=1-—20

soa =1 and 8 = 2. Eigenvectors vy, Uy are given by

B 1 B 1
e ) 2Ty )

though we actually only need to know v,. The real and imaginary parts of v;

are

L (-1 . (0

Uy = 0 ) Ug = ) .
The solution is then

( x(t) ) _ ( —cy exp(t) cos(2t) + ¢z exp(t) sin(2t) )

y(t) —2cq exp(t) sin(2t) — 2c9 exp(t) cos(2t),

so x(t) = —cy exp(t) cos(2t)+cq exp(t) sin(2t) and y(t) = —2cy exp(t) sin(2t)—
2¢q exp(t) cos(2t).

Since x(0) = —1, we solve to get ¢y = 1. Since y(0) = 1, we get ¢ =
—1/2. The solution is: x(t) = —exp(t) cos(2t) — 3 exp(t) sin(2¢) and y(t) =
—2exp(t) sin(2t) + exp(t) cos(2t).

Example 2 Solve
' (t) = —2x(t) + 3y(t), y'(t) = —3x(t) + 4y(¢).
Let



and so the characteristc polynomial is
p(z) =det(A —xl) = 2* — 22+ 1.

The eigenvalues are
)\1 - )\2 =1.

i (2)

Since we can multiply any eigenvector by a non-zero scalar and get another
eigenvector, we shall use instead

s=(1)

Let p = ( Z ) be any non-zero vector satisfying (A— N )p'= vy. This means

(% 2)0)-0)

There are infinitely many possibly solutions but we simply take r = Oands =
1/3, so

L 0

P=\ 13 )
The solution s

(5)-0 o) ()

or x(t) = c1exp(t) + catexp(t) and y(t) = c1 exp(t) + sca exp(t) + cot exp(t).

An eigenvector vy is given by

Exercises: Use SAGE to find eigenvalues and eigenvectors of both
1 -1
4 1
-2 3
-3 4 )
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