
Existence of solutions to ODEs

Prof. Joyner1

[Peano] was a man I greatly admired from the moment I met
him for the first time in 1900 at a Congress of Philosophy, which
he dominated by the exactness of his mind.

-Bertrand Russell, 1932

When do solutions to an ODE exist? When are they unique? This section
gives some necessary conditions for determining existence and uniqueness.

1 First order ODEs

We begin by considering the first order initial value problem

x′(t) = f(t, x(t)), x(a) = c. (1)

What conditions on f (and a and c) guarantee that a solution x = x(t) exists?
If it exists, what (further) conditions guarantee that x = x(t) is unique?

The following result addresses the first question.

Theorem 1 (“Peano’s existence theorem”) Suppose f is bounded and con-
tinuous in x, and t. Then, for some value ǫ > 0, there exists a solution
x = x(t) to the initial value problem within the range [a − ǫ, a + ǫ].

Giuseppe Peano (18581932) was an Italian mathematician, who is mostly
known for his important work on the logical foundations of mathematics.
For example, the common notations for union ∪ and intersections ∩ first
appeared in his first book dealing with mathematical logic, written while he
was teaching at the University of Turin.

1These notes licensed under GFDL http://www.fsf.org

or Attribution-ShareAlike Creative Commons license,
http://creativecommons.org/about/licenses/meet-the-licenses, at your choice.
Much of this section uses Wikipedia [P], [PL].

1

http://www.fsf.org
http://creativecommons.org/about/licenses/meet-the-licenses


Example 2 Take f(x, t) = x2/3. This is continuous and bounded in x and
t in −1 < x < 1, t ∈ R. The IVP x′ = f(x, t), x(0) = 0 has two solutions,
x(t) = 0 and x(t) = t3/27.

You all know what continuity means but you may not be familiar with
the slightly stronger notion of “Lipschitz continuity”. This is defined next.

Definition 3 Let D ⊂ R
2 be a domain. A function f : D → R is called

Lipschitz continuous if there exists a real constant K > 0such that, for all
x1, x2 ∈ D,

|f(x1) − f(x2)| ≤ K|x1 − x2|.

The smallest such K is called the Lipschitz constant of the function f on D.

For example,

• the function f(x) = x2/3 defined on [−1, 1] is not Lipschitz continuous;

• the function f(x) = x2 defined on [−3, 7] is Lipschitz continuous, with
Lipschitz constant K = 14;

• the function f defined by f(x) = x3/2 sin(1/x) (x 6= 0) and f(0) = 0
restricted to [0, 1], gives an example of a function that is differentiable
on a compact set while not being Lipschitz.

Theorem 4 (“Picard’s existence and uniqueness theorem”) Suppose f is
bounded, Lipschitz continuous in x, and continuous in t. Then, for some
value ǫ > 0, there exists a unique solution x = x(t) to the initial value
problem (1) within the range [a − ǫ, a + ǫ].

Charles Émile Picard (1856-1941) was a leading French mathematician.
Picard made his most important contributions in the fields of analysis, func-
tion theory, differential equations, and analytic geometry. In 1885 Picard
was appointed to the mathematics faculty at the Sorbonne in Paris. Picard
was awarded the Poncelet Prize in 1886, the Grand Prix des Sciences Math-
matiques in 1888, the Grande Croix de la Légion d’Honneur in 1932, the
Mittag-Leffler Gold Medal in 1937, and was made President of the Interna-
tional Congress of Mathematicians in 1920. He is the author of many books
and his collected papers run to four volumes.
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The proofs of Peano’s theorem or Picard’s theorem go well beyond the
scope of this course. However, for the curious, a very brief indication of the
main ideas will be given in the sketch below. For details, see an advanced
text on differential equations.

sketch or the idea of the proof: A simple proof of existence of the solution is
obtained by successive approximations. In this context, the method is known
as Picard iteration.

Set x0(t) = c and

xi(t) = c +

∫ t

a

f(s, xi−1(s)) ds.

It turns out that Lipschitz continuity implies that the mapping T defined by

T (y)(t) = c +

∫ t

a

f(s, y(s)) ds,

is a contraction mapping on a certain Banach space. It can then be shown, by
using the Banach fixed point theorem, that the sequence of “Picard iterates”
xi is convergent and that the limit is a solution to the problem. The proof
of uniqueness uses a result called Grönwall’s Lemma. �

Example 5 Consider the IVP

x′ = 1 − x, x(0) = 1,

with the constant solution x(t) = 1. Computing the Picard iterates by hand is
easy: x0(t) = 1, x1(t) = 1+

∫ t

0
1−x0(s)) ds = 1, x2(t) = 1+

∫ t

0
1−x1(s)) ds =

1, and so on. Since each xi(t) = 1, we find the solution

x(t) = lim
i→∞

xi(t) = lim
i→∞

1 = 1.

We now try the Picard iteration method in SAGE . Consider the IVP

x′ = 1 − x, x(0) = 2,

which we considered earlier.
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SAGE

sage: var(’t, s’)
sage: f = lambda t,x: 1-x
sage: a = 0; c = 2
sage: x0 = lambda t: c; x0(t)
2
sage: x1 = lambda t: c + integral(f(s,x0(s)), s, a, t); x1(t)
2 - t
sage: x2 = lambda t: c + integral(f(s,x1(s)), s, a, t); x2(t)
tˆ2/2 - t + 2
sage: x3 = lambda t: c + integral(f(s,x2(s)), s, a, t); x3(t)
-tˆ3/6 + tˆ2/2 - t + 2
sage: x4 = lambda t: c + integral(f(s,x3(s)), s, a, t); x4(t)
tˆ4/24 - tˆ3/6 + tˆ2/2 - t + 2
sage: x5 = lambda t: c + integral(f(s,x4(s)), s, a, t); x5(t)
-tˆ5/120 + tˆ4/24 - tˆ3/6 + tˆ2/2 - t + 2
sage: x6 = lambda t: c + integral(f(s,x5(s)), s, a, t); x6(t)
tˆ6/720 - tˆ5/120 + tˆ4/24 - tˆ3/6 + tˆ2/2 - t + 2
sage: P1 = plot(x2(t), t, 0, 2, linestyle=’--’)
sage: P2 = plot(x4(t), t, 0, 2, linestyle=’-.’)
sage: P3 = plot(x6(t), t, 0, 2, linestyle=’:’)
sage: P4 = plot(1+exp(-t), t, 0, 2)
sage: (P1+P2+P3+P4).show()

From the graph you can see how well these iterates are (or at least appear
to be) converging to the true solution x(t) = 1 + e−t.

More generally, here is some SAGE code for Picard iteration:

SAGE

def picard_iteration(f, a, c, N):
’’’
Computes the N-th Picard iterate for the IVP

x’ = f(t,x), x(a) = c.

EXAMPLES:
sage: var(’x t s’)
(x, t, s)
sage: a = 0; c = 2
sage: f = lambda t,x: 1-x
sage: picard_iteration(f, a, c, 0)
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Figure 1: Picard iteration for x′ = 1 − x, x(0) = 2.

2
sage: picard_iteration(f, a, c, 1)

2 - t
sage: picard_iteration(f, a, c, 2)
tˆ2/2 - t + 2
sage: picard_iteration(f, a, c, 3)
-tˆ3/6 + tˆ2/2 - t + 2

’’’
if N == 0:

return c * t ** 0
if N == 1:

#print integral(f(s,c * s** 0), s, a, t)
x0 = lambda t: c + integral(f(s,c * s** 0), s, a, t)
return expand(x0(t))

for i in range(N):
x_old = lambda s: picard_iteration(f, a, c, N-1).subs(t=s)
#print x_old(s)
x0 = lambda t: c + integral(f(s,x_old(s)), s, a, t)

return expand(x0(t))
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Exercise: Apply the Picard iteration method in SAGE to the IVP

x′ = (t + x)2, x(0) = 2,

and find the first three iterates.

2 Higher order constant coefficient linear ho-

mogeneous ODEs

We begin by considering the second order2 initial value problem

ax′′ + bx′ + cx = 0, x(0) = d0, x′(0) = d1, (2)

where a, b, c, d0, d1 are constants and a 6= 0. What conditions guarantee that a
solution x = x(t) exists? If it exists, what (further) conditions guarantee that
x = x(t) is unique? It turns out that no conditions are needed - a solution to
2 always exists and is unique. As we will see later, we can construct distinct
explicit solutions, denoted x1 = x1(t) and x2 = x2(t) and sometimes called
fundamental solutions, to ax′′ +bx′ +cx = 0. If we let x = c1x1 +c2x2, for
any constants c1 and c2, then we know that x is also a solution3, sometimes
called the general solution to ax′′ + bx′ + cx = 0. But how do we know
there exist c1 and c2 for which this general solution also satisfies the initial
conditions x(0) = d0 and x′(0) = d1? For this to hold, we need to be able to
solve

c1x1(0) + c2x2(0) = d1, c1x
′

1(0) + c2x
′

2(0) = d2,

for c1 and c2. By Cramer’s rule,

c1 =

∣

∣

∣

∣

d1 x2(0)
d2 x′

2(0)

∣

∣

∣

∣

∣

∣

∣

∣

x1(0) x2(0)
x′

1(0) x′

2(0)

∣

∣

∣

∣

, c2 =

∣

∣

∣

∣

x1(0) d1

x′

1(0) d2

∣

∣

∣

∣

∣

∣

∣

∣

x1(0) x2(0)
x′

1(0) x′

2(0)

∣

∣

∣

∣

.

For this solution to exist, the denominators in these quotients must be non-
zero. This denominator is the value of the “Wronskian” at t = 0.

2It turns out that the reasoning in the second order case is very similar to the general
reasoning for n-th order DEs. For simplicity of presentation, we restrict to the 2-nd order
case.

3This follows form the linearity assumption.
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Definition 6 For n functions f1, . . . , fn, which are n−1 times differentiable
on an interval I, the Wronskian W (f1, ..., fn) as a function on I is defined
by

W (f1, . . . , fn)(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) · · · fn(x)
f ′

1(x) f ′

2(x) · · · f ′

n(x)
...

...
. . .

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

for x ∈ I.

The matrix constructed by placing the functions in the first row, the first
derivative of each function in the second row, and so on through the (n−1)-st
derivative, is a square matrix sometimes called a fundamental matrix of
the functions. The Wronskian is the determinant of the fundamental matrix.

Theorem 7 (“Abel’s identity”) Consider a homogeneous linear second-order
ordinary differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x) y = 0

on the real line with a continuous function p. The Wronskian W of two
solutions of the differential equation satisfies the relation

W (x) = W (0) exp

(

−

∫ x

0

P (s) ds

)

.

Definition 8 We say n functions f1, . . . , fn are linearly dependent over
the interval I, if there are numbers a1, · · · , an (not all of them zero) such that

a1f1(x) + · · · + anfn(x) = 0,

for x ∈ I. If the functions are not linearly dependent then they are called
linearly independent.

Theorem 9 If the Wronskian is non-zero at some point in an interval, then
the associated functions are linearly independent on the interval.
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Example 10 If f1(t) = et and f2(t) = e−t then

∣

∣

∣

∣

et e−t

et −e−t

∣

∣

∣

∣

= −2.

Indeed,

SAGE

sage: var(’t’)
t
sage: f1 = exp(t); f2 = exp(-t)
sage: wronskian(f1,f2)
-2

Therefore, the fundamental solutions x1 = et, x2 = e−t are

Exercise: Using SAGE , verify Abel’s identity in this example.
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