
Fourier series, sine series, cosine series
Prof. Joyner1

History: Fourier series were discovered by J. Fourier, a Frenchman who
was a mathematician among other things. In fact, Fourier was Napoleon’s
scientific advisor during France’s invasion of Egypt in the late 1800’s. When
Napoleon returned to France, he “elected” (i.e., appointed) Fourier to be a
Prefect - basically an important administrative post where he oversaw some
large construction projects, such as highway constructions. It was during this
time when Fourier worked on the theory of heat on the side. His solution to
the heat equation is basically what undergraduates often learn in a DEs with
BVPs class. The exception being that our understanding of Fourier series
now is much better than what was known in the early 1800’s and some of
these facts, like Dirichlet’s theorem, are covered as well.

Motivation: Fourier series, since series, and cosine series are all ex-
pansions for a function f(x), much in the same way that a Taylor series
a0 + a1(x − x0) + a2(x − x0)

2 + ... is an expansion. Both Fourier and Taylor
series can be used to approximate f(x). There are at least three important
differences between the two types of series. (1) For a function to have a Tay-
lor series it must be differentiable2, whereas for a Fourier series it does not
even have to be continuous. (2) Another difference is that the Taylor series
is typically not periodic (though it can be in some cases), whereas a Fourier
series is always periodic. (3) Finally, the Taylor series (when it converges)
always converges to the function f(x), but the Fourier series may not (see
Dirichlet’s theorem below for a more precise description of what happens).

Definitions: Let f(x) be a function defined on an interval of the real line.
We allow f(x) to be discontinuous but the points in this interval where f(x)
is discontinuous must be finite in number and must be jump discontinuities.

First, we discuss Fourier series. To have a Fourier series you must be given
two things: (1) a “period” P = 2L, (2) a function f(x) defined on an interval

1These notes licensed under Attribution-ShareAlike Creative Commons license,
http://creativecommons.org/about/licenses/meet-the-licenses. Originally writ-
ten 2006. Last modified 2008-11-28. The graphics were created by the author using
GIMP and SAGE .

2Remember the formula for the n-th Taylor series coefficient centered at x = x0 -

an = f(n)(x0)
n! ?
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of length 2L, usually we take −L < x < L (but sometimes 0 < x < 2L is
used instead). The Fourier series of f(x) with period 2L is

f(x) ∼
a0

2
+

∞
∑

n=1

[an cos(
nπx

L
) + bn sin(

nπx

L
)],

where an and bn are given by the formulas3,

an =
1

L

∫ L

−L

f(x) cos(
nπx

L
) dx, (1)

and

bn =
1

L

∫ L

−L

f(x) sin(
nπx

L
) dx. (2)

Next, we discuss cosine series. To have a cosine series you must be given
two things: (1) a “period” P = 2L, (2) a function f(x) defined on the interval
of length L, 0 < x < L. The cosine series of f(x) with period 2L is

f(x) ∼
a0

2
+

∞
∑

n=1

an cos(
nπx

L
),

where an is given by

an =
2

L

∫ L

0

cos(
nπx

L
)f(x) dx.

The cosine series of f(x) is exactly the same as the Fourier series of the even

extension of f(x), defined by

feven(x) =

{

f(x), 0 < x < L,
f(−x), −L < x < 0.

Finally, we define sine series. To have a sine series you must be given two
things: (1) a “period” P = 2L, (2) a function f(x) defined on the interval of
length L, 0 < x < L. The sine series of f(x) with period 2L is

f(x) ∼
∞

∑

n=1

bn sin(
nπx

L
),

3These formulas were not known to Fourier. To compute the Fourier coefficients an, bn

he used sometimes ingenious round-about methods using large systems of equations.
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where bn is given by

bn =
2

L

∫ L

0

sin(
nπx

L
)f(x) dx.

The sine series of f(x) is exactly the same as the Fourier series of the odd

extension of f(x), defined by

fodd(x) =

{

f(x), 0 < x < L,
−f(−x), −L < x < 0.

One last definition: the symbol ∼ is used above instead of = because of the
fact that was pointed out above: the Fourier series may not converge to f(x).
Do you remember right-hand and left-hand limits from calculus 1? Recall
they are denoted f(x+) = limǫ→0,ǫ>0 f(x+ǫ) and f(x−) = limǫ→0,ǫ>0 f(x−ǫ),
resp.. The meaning of ∼ is that the series does necessarily not converge to
the value of f(x) at every point4. The convergence properties are given by
the theorem below.

Dirichlet’s theorem5: Let f(x) be a function as above and let −L <
x < L. The Fourier series of f(x),

f(x) ∼
a0

2
+

∞
∑

n=1

[an cos(
nπx

L
) + bn sin(

nπx

L
)],

(where an and bn are as in the formulas (1), (2)) converges to

f(x+) + f(x−)

2
.

In other words, the Fourier series of f(x) converges to f(x) only if f(x) is
continuous at x. If f(x) is not continuous at x then then Fourier series of
f(x) converges to the “midpoint of the jump”.

Examples: (1) If f(x) = 2 + x, −2 < x < 2, then the definition of L
implies L = 2. Without even computing the Fourier series, we can evaluate
it using Dirichlet’s theorem.

Question: Using periodicity and Dirichlet’s theorem, find the value that
the Fourier series of f(x) converges to at x = 1, 2, 3. (Ans: f(x) is continuous

at 1, so the Fourier series at x = 1 converges to f(1) = 3 by Dirichlet’s theorem.

4Fourier believed his series converged to the function in the early 1800’s but we now
know this is not always true.

5Pronounced “Dear-ish-lay”.
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f(x) is not defined at 2. Its Fourier series is periodic with period 4, so at x = 2 the

Fourier series converges to f(2+)+f(2−)
2 = 0+4

2 = 2. f(x) is not defined at 3. It’s

Fourier series is periodic with period 4, so at x = 3 the Fourier series converges to
f(−1)+f(−1+)

2 = 1+1
2 = 1.)

The formulas (1) and (2) enable us to compute the Fourier series coef-
ficients a0, an and bn. (We skip the details.) These formulas give that the
Fourier series of f(x) is

f(x) ∼
4

2
+

∞
∑

n=1

−4
nπ cos (nπ)

n2π2
sin(

nπx

2
).

The Fourier series approximations to f(x) are

S0 = 2, S1 = 2 +
4

π
sin(

πx

2
), S2 = 2 + 4

sin
(

1
2
π x

)

π
− 2

sin (π x)

π
, ...

The graphs of each of these functions get closer and closer to the graph of
f(x) on the interval −2 < x < 2. For instance, the graph of f(x) and of S8

are given below:

Notice that f(x) is only defined from −2 < x < 2 yet the Fourier series is
not only defined everywhere but is periodic with period P = 2L = 4. Also,
notice that S8 is not a bad approximation to f(x).

This can also be done in SAGE . First, we define the function.

SAGE

sage: f = lambda x:x+2
sage: f = Piecewise([[(-2,2),f]])

This can be plotted using the command f.plot().show(). Next, we com-
pute the Fourier series coefficients:

SAGE

sage: f.fourier_series_cosine_coefficient(0,2) # a_0
4
sage: f.fourier_series_cosine_coefficient(1,2) # a_1
0
sage: f.fourier_series_cosine_coefficient(2,2) # a_2
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Figure 1: Graph of f(x) and a Fourier series approximation of f(x).

0
sage: f.fourier_series_cosine_coefficient(3,3) # a_3
0
sage: f.fourier_series_sine_coefficient(1,2) # b_1
4/pi
sage: f.fourier_series_sine_coefficient(2,2) # b_2
-2/pi
sage: f.fourier_series_sine_coefficient(3,2) # b_3
4/(3*pi)

Finally, the partial Fourier series and it’s plot verses the function can be
computed using the following SAGE commands.

SAGE

sage: f.fourier_series_partial_sum(3,2)
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-2*sin(pi*x)/pi + 4*sin(pi*x/2)/pi + 2
sage: P1 = f.plot_fourier_series_partial_sum(15,2,-5,5,linestyle=":")
sage: P2 = f.plot(rgbcolor=(1,1/4,1/2))
sage: (P1+P2).show()

The plot (which takes 15 terms of the Fourier series) is given below.

Figure 2: Graph of f(x) = x + 2 and a Fourier series approximation, L = 2.

(2) This time, let’s consider an example of a cosine series. In this case,
we take the piecewise constant function f(x) defined on 0 < x < 3 by

f(x) =

{

1, 0 < x < 2,
−1, 2 ≤ x < 3.

We see therefore L = 3. The formula above for the cosine series coefficients
gives that
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f(x) ∼
1

3
+

∞
∑

n=1

4
sin

(

2
3
nπ

)

nπ
cos(

nπx

3
).

The first few partial sums are

S2 = 1/3 + 2

√
3 cos

(

1
3
π x

)

π
,

S3 = 1/3 + 2

√
3 cos

(

1
3
π x

)

π
−

√
3 cos

(

2
3
π x

)

π
, ...

As before, the more terms in the cosine series we take, the better the ap-
proximation is, for 0 < x < 3. Comparing the picture below with the picture
above, note that even with more terms, this approximation is not as good
as the previous example. The precise reason for this is rather technical but
basically boils down to the following: roughly speaking, the more differen-
tiable the function is, the faster the Fourier series converges (and therefore
the better the partial sums of the Fourier series will approximate f(x)). Also,
notice that the cosine series approximation S10 is an even function but f(x)
is not (it’s only defined from 0 < x < 3).

For instance, the graph of f(x) and of S10 are given below:
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Figure 3: Graph of f(x) and a cosine series approximation of f(x).

(3) Finally, let’s consider an example of a sine series. In this case, we
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take the piecewise constant function f(x) defined on 0 < x < 3 by the same
expression we used in the cosine series example above.

Question: Using periodicity and Dirichlet’s theorem, find the value that
the sine series of f(x) converges to at x = 1, 2, 3. (Ans: f(x) is continuous at

1, so the Fourier series at x = 1 converges to f(1) = 1. f(x) is not continuous at

2, so at x = 2 the Sine series converges to f(2+)+f(2−)
2 = f(−2+)+f(2−)

2 = −1+1
2 = 0.

f(x) is not defined at 3. It’s Sine series is periodic with period 6, so at x = 3 the

Sine series converges to fodd(3−)+fodd(3+)
2 = −1+1

2 = 0.)

The formula above for the sine series coefficients give that

f(x) =
∞

∑

n=1

2
cos (nπ) − 2 cos

(

2
3
nπ

)

+ 1

nπ
sin(

nπx

3
).

The partial sums are

S2 = 2
sin (1/3 π x)

π
+ 3

sin
(

2
3
π x

)

π
,

S3 = 2
sin

(

1
3
π x

)

π
+ 3

sin
(

2
3
π x

)

π
− 4/3

sin (π x)

π
, ...

These partial sums Sn, as n → ∞, converge to their limit about as fast as
those in the previous example. Instead of taking only 10 terms, this time we
take 40. Observe from the graph below that the value of the sine series at
x = 2 does seem to be approaching 0, as Dirichlet’s Theorem predicts. The
graph of f(x) with S40 is
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Figure 4: Graph of f(x) and a sine series approximation of f(x).
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Exercise: Let f(x) = x2, −2 < x < 2 and L = 2. Use SAGE to compute the
first 10 terms of the Fourier series, and plot the corresponding partial sum.
Next plot the partial sum of the first 50 terms and compare them.
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