
The heat equation

Prof. Joyner1

The deep study of nature is the most fruitful source of math-
ematical discoveries.

- Jean-Baptist-Joseph Fourier

The heat equation with zero ends boundary conditions models the tem-
perature of an (insulated) wire of length L:

{

k ∂2u(x,t)
∂x2 = ∂u(x,t)

∂t

u(0, t) = u(L, t) = 0.

Here u(x, t) denotes the temperature at a point x on the wire at time t.
The initial temperature f(x) is specified by the equation

u(x, 0) = f(x).

Method:

• Find the sine series of f(x):

f(x) ∼
∞

∑

n=1

bn(f) sin(
nπx

L
),

• The solution is

u(x, t) =
∞

∑

n=1

bn(f) sin(
nπx

L
) exp(−k(

nπ

L
)2t).

1These notes licensed under Attribution-ShareAlike Creative Commons license,

http://creativecommons.org/about/licenses/meet-the-licenses. Graphics were

created using SAGE and GIMP by the author. Last modified 11-18-2007.
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Example: Let

f(x) =

{

−1, 0 ≤ x ≤ π/2,
2, π/2 < x < π.

Then L = π and

bn(f) =
2

π

∫ π

0

f(x) sin(nx)dx = −2
2 cos(nπ) − 3 cos(1

2
nπ) + 1

nπ
.

Thus

f(x) ∼ b1(f) sin(x)+b2(f) sin(2x)+... =
2

π
sin(x)−

6

π
sin(2x)+

2

3π
sin(3x)+....

This can also be done in SAGE :

SAGE

sage: f1 = lambda x: -1
sage: f2 = lambda x: 2
sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]])
sage: P1 = f.plot()
sage: b10 = [f.sine_series_coefficient(n,pi) for n in rang e(1,10)]
sage: b10
[2/pi, -6/pi, 2/(3 * pi), 0, 2/(5 * pi), -2/pi, 2/(7 * pi), 0, 2/(9 * pi)]
sage: ss10 = sum([b10[n] * sin((n+1) * x) for n in range(len(b50))])
sage: ss10
2* sin(9 * x)/(9 * pi) + 2 * sin(7 * x)/(7 * pi) - 2 * sin(6 * x)/pi
+ 2* sin(5 * x)/(5 * pi) + 2 * sin(3 * x)/(3 * pi) - 6 * sin(2 * x)/pi + 2 * sin(x)/pi
sage: b50 = [f.sine_series_coefficient(n,pi) for n in rang e(1,50)]
sage: ss50 = sum([b50[n] * sin((n+1) * x) for n in range(len(b))])
sage: P2 = ss10.plot(-5,5,linestyle="--")
sage: P3 = ss50.plot(-5,5,linestyle=":")
sage: (P1+P2+P3).show()

This illustrates how the series converges to the function. The function f(x),
and some of the partial sums of its sine series, looks like Figure 1.
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Figure 1: f(x) and two sine series approximations.

As you can see, taking more and more terms gives functions which better
and better approximate f(x).

The solution to the heat equation, therefore, is

u(x, t) =
∞

∑

n=1

bn(f) sin(
nπx

L
) exp(−k(

nπ

L
)2t).

Next, we see how SAGE can plot the solution to the heat equation (we
use k = 1):

SAGE

sage: t = var("t")
sage: soln50 = sum([b[n] * sin((n+1) * x) * eˆ(-(n+1)ˆ2 * t) for n in range(len(b50))])
sage: soln50a = sum([b[n] * sin((n+1) * x) * eˆ(-(n+1)ˆ2 * (1/10)) for n in range(len(b50))])
sage: P4 = soln50a.plot(0,pi,linestyle=":")
sage: soln50b = sum([b[n] * sin((n+1) * x) * eˆ(-(n+1)ˆ2 * (1/2)) for n in range(len(b50))])
sage: P5 = soln50b.plot(0,pi)
sage: soln50c = sum([b[n] * sin((n+1) * x) * eˆ(-(n+1)ˆ2 * (1/1)) for n in range(len(b50))])
sage: P6 = soln50c.plot(0,pi,linestyle="--")
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sage: (P1+P4+P5+P6).show()

Taking 50 terms of this series, the graph of the solution at t = 0, t = 0.5,
t = 1, looks approximately like Figure 2.

Figure 2: f(x), u(x, 0.1), u(x, 0.5), u(x, 1.0) using 60 terms of the sine series.

The heat equation with insulated ends boundary conditions models the
temperature of an (insulated) wire of length L:

{

k ∂2u(x,t)
∂x2 = ∂u(x,t)

∂t

ux(0, t) = ux(L, t) = 0.

Here ux(x, t) denotes the partial derivative of the temperature at a point x on
the wire at time t. The initial temperature f(x) is specified by the equation
u(x, 0) = f(x).
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Method:

• Find the cosine series of f(x):

f(x) ∼
a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
),

• The solution is

u(x, t) =
a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
)) exp(−k(

nπ

L
)2t).

Example:
Let

f(x) =

{

−1, 0 ≤ x ≤ π/2,
2, π/2 < x < π.

Then L = π and

an(f) =
2

π

∫ π

0

f(x) cos(nx)dx = −6
sin

(

1
2
π n

)

π n
,

for n > 0 and a0 = 1.
Thus

f(x) ∼
a0

2
+ a1(f) cos(x) + a2(f) cos(2x) + ...

This can also be done in SAGE :

SAGE

sage: f1 = lambda x: -1
sage: f2 = lambda x: 2
sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]])
sage: P1 = f.plot()
sage: a10 = [f.cosine_series_coefficient(n,pi) for n in ra nge(10)]
sage: a10
[1, -6/pi, 0, 2/pi, 0, -6/(5 * pi), 0, 6/(7 * pi), 0, -2/(3 * pi)]
sage: a50 = [f.cosine_series_coefficient(n,pi) for n in ra nge(50)]
sage: cs10 = a10[0]/2 + sum([a10[n] * cos(n * x) for n in range(1,len(a10))])
sage: P2 = cs10.plot(-5,5,linestyle="--")
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sage: cs50 = a50[0]/2 + sum([a50[n] * cos(n * x) for n in range(1,len(a50))])
sage: P3 = cs50.plot(-5,5,linestyle=":")
sage: (P1+P2+P3).show()

This illustrates how the series converges to the function. The piecewise con-
stant function f(x), and some of the partial sums of its cosine series (one
using 10 terms and one using 50 terms), looks like Figure 3.

Figure 3: f(x) and two cosine series approximations.

As you can see, taking more and more terms gives functions which better
and better approximate f(x).

The solution to the heat equation, therefore, is

u(x, t) =
a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
) exp(−k(

nπ

L
)2t).

Using SAGE , we can plot this function:

SAGE

sage: soln50a = a50[0]/2 + sum([a50[n] * cos(n * x) * eˆ(-(n+1)ˆ2 * (1/100)) for n in range(1,len(a50))])
sage: soln50b = a50[0]/2 + sum([a50[n] * cos(n * x) * eˆ(-(n+1)ˆ2 * (1/10)) for n in range(1,len(a50))])
sage: soln50c = a50[0]/2 + sum([a50[n] * cos(n * x) * eˆ(-(n+1)ˆ2 * (1/2)) for n in range(1,len(a50))])
sage: P4 = soln50a.plot(0,pi)
sage: P5 = soln50b.plot(0,pi,linestyle=":")
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sage: P6 = soln50c.plot(0,pi,linestyle="--")
sage: (P1+P4+P5+P6).show()

Taking only the first 50 terms of this series, the graph of the solution at
t = 0, t = 0.01, t = 0.1,, t = 0.5, looks approximately like:

Figure 4: f(x) = u(x, 0), u(x, 0.01), u(x, 0.1), u(x, 0.5) using 50 terms of the
cosine series.
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Explanation:
Where does this solution come from? It comes from the method of separa-

tion of variables and the superposition principle. Here is a short explanation.
We shall only discuss the “zero ends” case (the “insulated ends” case is sim-
ilar).

First, assume the solution to the PDE k ∂2u(x,t)
∂x2 = ∂u(x,t)

∂t
has the “factored”

form

u(x, t) = X(x)T (t),

for some (unknown) functions X,T . If this function solves the PDE then it
must satisfy kX ′′(x)T (t) = X(x)T ′(t), or

X ′′(x)

X(x)
=

1

k

T ′(t)

T (t)
.

Since x, t are independent variables, these quotients must be constant. In
other words, there must be a constant C such that

T ′(t)

T (t)
= kC, X ′′(x) − CX(x) = 0.

Now we have reduced the problem of solving the one PDE to two ODEs
(which is good), but with the price that we have introduced a constant which
we don’t know, namely C (which maybe isn’t so good). The first ODE is
easy to solve:

T (t) = A1e
kCt,

for some constant A1. To obtain physically meaningful solutions, we do not
want the temperature of the wire to become unbounded as time increased
(otherwise, the wire would simply melt eventually). Therefore, we may as-
sume here that C ≤ 0. It is best to analyse two cases now:

Case C = 0: This implies X(x) = A2 + A3x, for some constants A2, A3.
Therefore

u(x, t) = A1(A2 + A3x) =
a0

2
+ b0x,

where (for reasons explained later) A1A2 has been renamed a0

2
and A1A3 has

been renamed b0.
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Case C < 0: Write (for convenience) C = −r2, for some r > 0. The ODE
for X implies X(x) = A2 cos(rx) + A3 sin(rx), for some constants A2, A3.
Therefore

u(x, t) = A1e
−kr2t(A2 cos(rx) + A3 sin(rx)) = (a cos(rx) + b sin(rx))e−kr2t,

where A1A2 has been renamed a and A1A3 has been renamed b.
These are the solutions of the heat equation which can be written in

factored form. By superposition, “the general solution” is a sum of these:

u(x, t) = a0

2
+ b0x +

∑

∞

n=1(an cos(rnx) + bn sin(rnx))e−kr2
nt

= a0

2
+ b0x + (a1 cos(r1x) + b1 sin(r1x))e−kr2

1
t

+(a2 cos(r2x) + b2 sin(r2x))e−kr2

2
t + ...,

(1)

for some ai, bi, ri. We may order the ri’s to be strictly increasing if we like.
We have not yet used the IC u(x, 0) = f(x) or the BCs u(0, t) = u(L, t) =

0. We do that next.
What do the BCs tell us? Plugging in x = 0 into (1) gives

0 = u(0, t) =
a0

2
+

∞
∑

n=1

ane
−kr2

nt =
a0

2
+ a1e

−kr2

1
t + a2e

−kr2

2
t + ... .

These exponential functions are linearly independent, so a0 = 0, a1 = 0,
a2 = 0, ... . This implies

u(x, t) = b0x+
∑

n=1

bn sin(rnx)e−kr2
nt = b0x+b1 sin(r1x)e−kr2

1
t+b2 sin(r2x)e−kr2

2
t+... .

Plugging in x = L into this gives

0 = u(L, t) = b0L +
∑

n=1

bn sin(rnL)e−kr2
nt.

Again, exponential functions are linearly independent, so b0 = 0, bn sin(rnL)
for n = 1, 2, .... In other to get a non-trivial solution to the PDE, we don’t
want bn = 0, so sin(rnL) = 0. This forces rnL to be a multiple of π, say
rn = nπ/L. This gives
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u(x, t) =
∞

∑

n=1

bn sin(
nπ

L
x)e−k(nπ

L
)2t = b1 sin(

π

L
x))e−k( π

L
)2t+b2 sin(

2π

L
x))e−k( 2π

L
)2t+...,

(2)
for some bi’s. The special case t = 0 is the so-called “sine series” expansion
of the initial temperature function u(x, 0). This was discovered by Fourier.
To solve the heat eqution, it remains to solve for the “sine series coefficients”
bi.

There is one remaining condition which our solution u(x, t) must satisfy.
What does the IC tell us? Plugging t = 0 into (2) gives

f(x) = u(x, 0) =
∞

∑

n=1

bn sin(
nπ

L
x) = b1 sin(

π

L
x)) + b2 sin(

2π

L
x)) + ... .

In other words, if f(x) is given as a sum of these sine functions, or if we can
somehow express f(x) as a sum of sine functions, then we can solve the heat
equation. In fact there is a formula2 for these coefficients bn:

bn =
2

L

∫ L

0

f(x) cos(
nπ

L
x)dx.

It is this formula which is used in the solutions above.
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