
Introduction to DEs

Prof. Joyner, 8-15-20071

But there is another reason for the high repute of mathe-
matics: it is mathematics that offers the exact natural sciences
a certain measure of security which, without mathematics, they
could not attain.

- Albert Einstein

Motivation

Roughly speaking, a differential equation is an equation involving the
derivatives of one or more unknown functions.

In calculus (differential, integral and vector), you’ve studied ways of an-
alyzing functions. You might even have been convinced that functions you
meet in applications arise naturally from physical principles. As we shall
see, differential equations arise naturally from general physical principles. In
many cases, the functions you met in calculus in applications to physics were
actually solutions to a “natural” differential equation.

Example 1 Consider a falling body of mass m on which exactly 3 forces act:

• gravitation, Fgrav,

• air resistance, Fres,

• an external force, Fext = f(t), where f(t) is some given function.

1These notes licensed under Attribution-ShareAlike Creative Commons license,
http://creativecommons.org/about/licenses/meet-the-licenses. Last modified
11-2-2007.
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mass m

?

Fgrav

6

Fres

Let x(t) denote the distance fallen from some fixed initial position. The
velocity is denoted by v = x′ and the acceleration by a = x′′. We choose
an orientation so that downwards is positive. In this case, Fgrav = mg,
where g > 0 is the gravitational constant. We assume that air resistance is
proportional to velocity (a common assumption in physics), and write Fres =
−kv = −kx′, where k > 0 is a “friction constant”. The total force, Ftotal, is
by hypothesis,

Ftotal = Fgrav + Fres + Fext,

and, by Newton’s 2nd Law2,

Ftotal = ma = mx′′.

Putting these together, we have

mx′′ = ma = mg − kx′ + f(t),

or

mx′′ + mx′ = f(t) + mg.

This is a differential equation in x = x(t). It may also be rewritten as a
differential equation in v = v(t) = x′(t) as

mv′ + kv = f(t) + mg.

This is an example of a “first order differential equation in v”, which means
that at most first order derivatives of the unknown function v = v(t) occur.

In fact, you have probably seen solutions to this in your calculus classes,
at least when f(t) = 0 and k = 0. In that case, v′(t) = g and so v(t) =∫

g dt = gt + C. Here the constant of integration C represents the initial
velocity.

2“Force equals mass times acceleration.” http://en.wikipedia.org/wiki/Newtons_law
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Differential equations occur in other areas as well: weather prediction
(more generally, fluid-flow dynamics), electrical circuits, the heat of a ho-
mogeneous wire, and many others (see the table below). They even arise in
problems on Wall Street: the Black-Scholes equation is a PDE which models
the pricing of derivatives [BS]. Learning to solve differential equations helps
understand the behaviour of phenomenon present in these problems.

phenomenon description of DE

weather Navier-Stokes equation [NS]
a non-linear vector-valued higher-order PDE

falling body 1st order linear ODE
motion of a mass attached Hooke’s spring equation

to a spring 2nd order linear ODE [H]
motion of a plucked guitar string Wave equation

2nd order linear PDE [W]
Battle of Trafalger Lanchester’s equations

system of 2 1st order DEs [L], [M], [N]
cooling cup of coffee Newton’s Law of Cooling

in a room 1st order linear ODE
population growth logistic equation

non-linear, separable, 1st order ODE

Undefined terms and notation will be defined below, except for the equations
themselves. For those, see the references or wait until later sections when
they will be introduced3.

Basic Concepts:

Here are some of the concepts to be introduced below:

• dependent variable(s),

• independent variable(s),

• ODEs,

• PDEs,

3Except for the Navier-Stokes equation, which is more complicated and might take us
too far afield.
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• order,

• linearity,

• solution.

It is really best to learn these concepts using examples. However, here
are the general definitions anyway, with examples to follow.

The term “differential equation” is sometimes abbreviated DE, for brevity.
Dependent/independent variables: Put simply, a differential equa-

tion is an equation involving derivatives of one of more unknown functions.
The variables you are differentiating with respect to are the independent
variables of the DE. The variables (the “unknown functions”) you are dif-
ferentiating are the dependent variables of the DE. Other variables which
might occur in the DE are sometimes called “parameters”.

ODE/PDE: If none of the derivatives which occur in the DE are partial
derivatives (for example, if the dependent variable/unknown function is a
function of a single variable) then the DE is called an ordinary differential
equation of PDE. If some of the derivatives which occur in the DE are
partial derivatives then the DE is a partial differential equation or PDE.

Order: The highest total number of derivatives you have to take in the
DE is it’s order.

Linearity: This can be described in a few different ways. First of all, a
DE is linear if the only operations you perform on its terms are combinations
of the following:

• differentiation with respect to independent variable(s),

• multiplication by a function of the independent variable(s).

Another way to define linearity is as follows. A linear ODE having inde-
pendent variable t and the dependent variable is y is an ODE of the form

a0(t)y
(n) + ... + an−1(t)y

′ + an(t)y = f(t),

for some given functions a0(t), . . . , an(t), and f(t). Here

y(n) = y(n)(t) =
dny(t)

dtn
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denotes the n-th derivative of y = y(t) with respect to t. The terms a0(t),
. . . , an(t) are called the coefficients of the DE and we will call the term
f(t) the non-homogeneous term or the forcing function. (In physical
applications, this term usually represents an external force acting on the
system. For instance, in the example above it represents the gravitational
force, mg.)

Solution: An explicit solution to a DE having independent variable t
and the dependent variable is x is simple a function x(t) for which the DE
is true for all values of t.

Here are some examples:

Example 2 Here is a table of examples. As an exercise, determine which
of the following are ODEs and which are PDEs.

DE indep vars dep vars order linear?

mx′′ + kx′ = mg t x 2 yes

falling body

mv′ + kv = mg t v 1 yes

falling body

k ∂
2
u

∂x2 = ∂u

∂t
t, x u 2 yes

heat equation

mx′′ + bx′ + kx = f(t) t x 2 yes

spring equation

P ′ = k(1 − P

K
)P t P 1 no

logistic population equation

k ∂
2
u

∂x2 = ∂
2
u

∂2t
t, x u 2 yes

wave equation

T ′ = k(T − Troom) t T 1 yes

Newton’s Law of Cooling

x′ = −Ay, y′ = −Bx, t x, y 1 yes

Lanchester’s equations

Remark: Note that in many of these examples, the symbol used for the
independent variable is not made explicit. For example, we are writing x′

when we really mean x′(t) = x(t)
dt

. This is very common shorthand notation
and, in this situation, we shall usually use t as the independent variable
whenever possible.
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Example 3 Recall a linear ODE having independent variable t and the de-
pendent variable is y is an ODE of the form

a0(t)y
(n) + ... + an−1(t)y

′ + an(t)y = f(t),

for some given functions a0(t), . . . , an(t), and f(t). The order of this DE is
n. In particular, a linear 1st order ODE having independent variable t and
the dependent variable is y is an ODE of the form

a0(t)y
′ + a1(t)y = f(t),

for some a0(t), a1(t), and f(t). We can divide both sides of this equation by
the leading coefficient a0(t) without changing the solution y to this DE. Let’s
do that and rename the terms:

y′ + p(t)y = q(t),

where p(t) = a1(t)/a0(t) and q(t) = f(t)/a0(t). Every linear 1st order ODE
can be put into this form, for some p and q. For example, the falling body
equation mv′+kv = f(t)+mg has this form after dividing by m and renaming
v as y.

What does a differential equation like mx′′+kx′ = mg or P ′ = k(1− P
K

)P

or k ∂2u
∂x2 = ∂2u

∂2t
really mean? In mx′′ + kx′ = mg, m and k and g are given

constants. The only things that can vary are t and the unknown function
x = x(t).

Example 4 To be specific, let’s consider x′ + x = 1. This means for all t,
x′(t) + x(t) = 1. In other words, a solution x(t) is a function which, when
added to its derivative you always get the constant 1. How many functions
are there with that property? Try guessing a few “random” functions:

• Guess x(t) = sin(t). Compute (sin(t))′ + sin(t) = cos(t) + sin(t) =√
2 sin(t + π

4
). x′(t) + x(t) = 1 is false.

• Guess x(t) = exp(t) = et. Compute (et)′ + et = 2et. x′(t) + x(t) = 1 is
false.

• Guess x(t) = exp(t) = t2. Compute (t2)′ + t2 = 2t+ t2. x′(t)+x(t) = 1
is false.
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• Guess x(t) = exp(−t) = e−t. Compute (e−t)′+e−t = 0. x′(t)+x(t) = 1
is false.

• Guess x(t) = exp(t) = 1. Compute (1)′+1 = 0+1 = 1. x′(t)+x(t) = 1
is true.

We finally found a solution by considering the constant function x(t) = 1.
Here a way of doing this kind of computation with the aid of the computer
algebra system SAGE :

SAGE

sage: t = var(’t’)
sage: de = lambda x: diff(x,t) + x - 1
sage: de(sin(t))
sin(t) + cos(t) - 1
sage: de(exp(t))
2* eˆt - 1
sage: de(tˆ2)
tˆ2 + 2 * t - 1
sage: de(exp(-t))
-1
sage: de(1)
0

Note we have rewritten x′ +x = 1 as x′ +x− 1 = 0 and then plugged various
functions for x to see if we get 0 or not.

Obviously, we want a more systematic method for solving such equations
than guessing all the types of functions we know one-by-one. We will get to
those methods in time. First, we need some more terminology.

IVP: A first order initial value problem (abbreviated IVP) is a prob-
lem of the form

x′ = f(t, x), x(a) = c,

where f(t, x) is a given function of two variables, and a, c are given constants.
The equation x(a) = c is the initial condition.
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Under mild conditions of f , an IVP has a solution x = x(t) which is
unique. This means that if f and a are fixed but c is a parameter then the
solution x = x(t) will depend on c. This is stated more precisely in the
following result.

Theorem 5 (Existence and uniqueness) Fix a point (t0, x0) in the plane. Let

f(t, x) be a function of t and x for which both f(t, x) and fx(t, x) = ∂f(t,x)
∂x

are continuous on some rectangle

a < t < b, c < x < d,

in the plane. Here a, b, c, d are any numbers for which a < t0 < b and
c < x0 < d. Then there is an h > 0 and a unique solution x = x(t) for which

x′ = f(t, x), for all t ∈ (t0 − h, t0 + h),

and x(t0) = x0.

This is proven in §2.8 of Boyce and DiPrima [BD], but we shall not prove
this here. In most cases we shall run across, it is easier to construct the
solution than to prove this general theorem.

Example 6 Let us try to solve

x′ + x = 1, x(0) = 1.

The solutions to the DE x′ + x = 1 which we “guessed at” in the previous
example, x(t) = 1, satisfies this IVP.

Here a way of finding this slution with the aid of the computer algebra
system SAGE :

SAGE

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: de = lambda y: diff(y,t) + y - 1
sage: desolve_laplace(de(x(t)),["t","x"],[0,1])
’1’
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(The command desolve_laplace is a DE solver in SAGE which uses a special
method involving Laplace transforms which we will learn later.) Just as an
illustration, let’s try another example. Let us try to solve

x′ + x = 1, x(0) = 2.

The SAGE commands are similar:
SAGE

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: de = lambda y: diff(y,t) + y - 1
sage: soln = desolve_laplace(de(x(t)),["t","x"],[0,2]) ; soln
’%eˆ-t+1’
sage: solnx = lambda s: RR(eval(soln.replace("ˆ"," ** ").

replace("%","").replace("t",str(s))))
sage: solnx(3)
1.04978706836786
sage: P = plot(solnx,0,5)
sage: show(P)

(The solnx line should all be typed on one line.) The plot is given below.

Figure 1: Solution to IVP x′ + x = 1, x(0) = 2.
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Exercise: Verify the, for any constant c, the function x(t) = 1 + ce−t solves
x′ + x = 1. Find the c for which this function solves the IVP x′ + x = 1,
x(0) = 3.. Solve this (a) by hand, (b) using SAGE .
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