
Solving ODEs:
using Laplace transforms, I

Prof. Joyner1

The Laplace transform (LT) of a function f(t), defined on all non-negative2

numbers t ≥ 0, is the function F (s), defined by:

F (s) = L [f(t)] (s) =

∫

∞

0

e−stf(t) dt.

This is named for Pierre-Simon Laplace, one of the best French mathemati-
cians in the mid-to-late 18th century [L], [LT]. The LT sends “nice” func-
tions of t (we will be more precise later) to functions of another variable s. It
has the wonderful property that it transforms constant-coefficient differential
equations in t to algebraic questions in s.

The LT has two very familiar properties: Just as the integral of a sum
is the sum of the integrals, the Laplace transform of a sum is the sum of
Laplace transforms:

L [f(t) + g(t)] (s) = L [f(t)] (s) + L [g(t)] (s)

Just as constant factor can be taken outside of an integral, the LT of a
constant times a function is that constant times the LT of that function:

L [af(t)] (s) = aL [f(t)] (s)

In other words, the LT is linear.
For which functions f is the LT actually defined on? We want the in-

definite integral to converge, of course. A function f(t) is of exponential

1These notes licensed under Attribution-ShareAlike Creative Commons license,
http://creativecommons.org/about/licenses/meet-the-licenses. The graphs were
created using SAGE and and GIMP http://www.gimp.org/ by the author. Originally
written 9-25-2007. Last modified 2008-11-28. Some of the latex code is taken from the
excellent (public domain!) text by Sean Mauch [M].

2For all practical purposes, you may assume f(t) = 0 for all t < 0, if you want a
function defined on all of R.
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order α if there exist a constant M such that

|f(t)| < Meαt, for all t ≥ 0.

Abusing terminology, we say f(t) is of exponential order if there is a
(finite) constant α > 0 for which f is of exponential order α. If

∫

t0

0
f(t) dt

exists and f(t) is of exponential order α then the Laplace transform L [f ] (s)
exists for s > α. We shall say that f(t) is “nice”, in the sense used above,
if it is Riemann-integrable and of exponential order. You can see that the
image F (s) of such an f(t) under the Laplace transform is a function of s > α
which tends to 0 as s → ∞: for some (possibly huge) constant C, we have
F (s) ≤ C

∫

∞

0
eαte−st dt = C

s−α
→ 0 as s → ∞.

Example 1 Consider the Laplace transform of f(t) = 1. The LT integral
converges for s > 0.

L [f ] (s) =

∫

∞

0

e−st dt

=

[

−
1

s
e−st

]

∞

0

=
1

s
.

Example 2 Consider the Laplace transform of f(t) = eat. The LT integral
converges for s > a.

L [f ] (s) =

∫

∞

0

e(a−s)t dt

=

[

−
1

s − a
e(a−s)t

]

∞

0

=
1

s − a
.

Differentiate both side n times with respect to s to get

L [tneat] (s) =
∫

∞

0
tne(a−s)t dt

= (−1)nn!
(s−a)n+1 .

(1)

You can check the first several of these in SAGE as follows:

2



SAGE

sage: t,s,a = var(’t,s,a’)
sage: f = exp(a * t)
sage: f.laplace(t,s)
1/(s - a)
sage: (t * f).laplace(t,s)
1/(s - a)ˆ2
sage: (tˆ2 * f).laplace(t,s)
2/(s - a)ˆ3
sage: (tˆ3 * f).laplace(t,s)
6/(s - a)ˆ4

Define the unit step (Heaviside) function by

u(t − c) =

{

0 for t < c

1 for t > c,

where c > 0. This models a power source which turns “on” (1) and “off” (0).

Example 3 Compute the Laplace transform of the unit step function:

L[u(t − c)](s) =

∫

∞

0

e−stu(t − c) dt

=

∫

∞

c

e−st dt

=

[

e−st

−s

]

∞

c

=
e−cs

s
,

for s > 0.

Example 4 Consider

f(t) =

{

1, for t < 2,

0, on t ≥ 2.

The plot of this function is displayed below:
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Figure 1: The piecewise constant function 1 − u(t − 2).

We show how SAGE can be used to compute the LT of this. (Note this
function is “on” then turns “off”, whereas the unit step function is “off”
then turns “on”.

SAGE

sage: t = var(’t’)
sage: s = var(’s’)
sage: f = Piecewise([[(0,2),1],[(2,infinity),0]])
sage: f.laplace(t, s)
1/s - eˆ(-(2 * s))/s
sage: f1 = lambda t: 1
sage: f2 = lambda t: 0

According to SAGE ,
L [f ] (s) = 1/s − e−2s/s.

The inverse Laplace transform is denoted

f(t) = L−1[F (s)](t),

where F (s) = L [f(t)] (s). For instance,

L−1[1/(s + 1)](t) = e−t.

This can be computed in SAGE as follows.

SAGE

sage: t,s = var(’t,s’)
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sage: F = 1/(s+1)
sage: F.inverse_laplace(s,t)
eˆ(-t)

Next, some properties of the LT.

• Differentiate the definition of the LT with respect to s:

F ′(s) = −

∫

∞

0

e−sttf(t) dt.

Repeating this:

dn

dsn
F (s) = (−1)n

∫

∞

0

e−sttnf(t) dt. (2)

This is called a derivative theorem for the LT.

• In the definition of the LT, replace f(t) by it’s derivative f ′(t):

L [f ′(t)] (s) =

∫

∞

0

e−stf ′(t) dt.

Now integrate by parts (u = e−st, dv = f ′(t) dt):

∫

∞

0
e−stf ′(t) dt = f(t)e−st|∞0 −

∫

∞

0
f(t) · (−s) · e−st dt

= −f(0) + sL [f(t)] (s).

Therefore, if F (s) is the LT of f(t) then sF (s)−f(0) is the LT of f ′(t):

L [f ′(t)] (s) = sL [f(t)] (s) − f(0). (3)

• Replace f by f ′ in (3),

L [f ′′(t)] (s) = sL [f ′(t)] (s) − f ′(0), (4)

and apply (3) again:

L [f ′′(t)] (s) = s2L [f(t)] (s) − sf(0) − f ′(0). (5)
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This, and the previous item, is also called a derivative theorem for
the LT.

• Using (3) and (5), the LT of any constant coefficient ODE

ax′′(t) + bx′(t) + cx(t) = f(t)

is

a(s2L [x(t)] (s)−sx(0)−x′(0))+b(sL [x(t)] (s)−x(0))+cL [x(t)] (s) = F (s),

where F (s) = L [f(t)] (s). In particular, the LT of the solution, X(s) =
L [x(t)] (s), satisfies

X(s) =
F (s) + asx(0) + ax′(0) + bx(0)

as2 + bs + c
.

Note that the denominator is the characteristic polynomial of the DE.

Moral of the story: it is always very easy to compute the LT of the
solution to any constant coefficient non-homogeneous linear ODE.

Example 5 Let us solve the DE

x′ + x = t100e−t, x(0) = 0.

using LTs. Note this would be highly impractical to solve using undetermined
coefficients. (You would have 101 undetermined coefficients to solve for!)

First, we compute the LT of the solution to the DE. The LT of the LHS:
by (3),

L [x′ + x] = sX(s) + X(s),

where F (s) = L [f(t)] (s). For the LT of the RHS, let

F (s) = L
[

e−t
]

=
1

s + 1
.

By (2),

d100

ds100
F (s) = L

[

t100e−t
]

=
d100

ds100

1

s + 1
.
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The first several derivatives of 1
s+1

are as follows:

d

ds

1
s+1

= − 1
(s+1)2

,
d2

ds2

1
s+1

= 2 1
(s+1)3

,
d3

ds3

1
s+1

= −62 1
(s+1)4

,

and so on. Therefore, the LT of the RHS is:

d100

ds100

1

s + 1
= 100!

1

(s + 1)101
.

Consequently,

X(s) = 100!
1

(s + 1)102
.

Using (1), we can compute the ILT of this:

x(t) = L−1 [X(s)]

= L−1
[

100! 1
(s+1)102

]

= 1
101

L−1
[

101! 1
(s+1)102

]

= 1
101

t101e−t.

Example 6 Let us solve the DE

x′′ + 2x′ + 2x = e−2t, x(0) = x′(0) = 0,

using LTs.
The LT of the LHS: by (3) and (4),

L [x′′ + 2x′ + 2x] = (s2 + 2s + 2)X(s),

as in the previous example. The LT of the RHS is:

L
[

e−2t
]

=
1

s + 2
.

Solving for the LT of the solution algebraically:

X(s) =
1

(s + 2)((s + 1)2 + 1)
.
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The inverse LT of this can be obtained from LT tables after rewriting this
using partial fractions:

X(s) = 1
2
· 1

s+2
− 1

2
s

(s+1)2+1

= 1
2
· 1

s+2
− 1

2
s+1

(s+1)2+1
+ 1

2
1

(s+1)2+1
.

The inverse LT is:

x(t) = L−1 [X(s)] =
1

2
· e−2t −

1

2
· e−t cos(t) +

1

2
· e−t sin(t).

We show how SAGE can be used to do some of this.

SAGE

sage: t = var(’t’)
sage: s = var(’s’)
sage: f = 1/((s+2) * ((s+1)ˆ2+1))
sage: f.partial_fraction()

1/(2 * (s + 2)) - s/(2 * (sˆ2 + 2 * s + 2))
sage: f.inverse_laplace(s,t)

eˆ(-t) * (sin(t)/2 - cos(t)/2) + eˆ(-(2 * t))/2

Exercise: Use SAGE to solve the DE

x′′ + 2x′ + 5x = e−t, x(0) = x′(0) = 0.
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