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We want to describe the form a solution to a linear ODE can take. Before
doing this, we introduce two pieces of terminology.

• Suppose f1(t), f2(t), . . . , fn(t) are given functions. A linear combi-

nation of these functions is another fucntion of the form

c1f1(t) + c2f2(t) + . . . , +cnfn(t),

for some constants c1, ..., cn. For example, 3 cos(t)− 2 sin(t) is a linear
combination of cos(t), sin(t).

• A linear ODE of the form

y(n) + b1(t)y
(n−1) + ... + bn−1(t)y

′ + bn(t)y = f(t), (1)

is called homogeneous if f(t) = 0 (i.e., f is the 0 function) and
otherwise it is called non-homogeneous.

The following result describes the general solution to a linear ODE.

Theorem 1 Consider a linear ODE having of the form (1), for some given
continuous functions b1(t), . . . , bn(t), and f(t). Then the following hold.

• There are n functions y1(t), . . . , yn(t) (called fundamental solu-

tions), each satisfying the homogeneous ODE

y(n) + b1(t)y
(n−1) + ... + bn−1(t)y

′ + bn(t)y = 0, 1 ≤ i ≤ n, (2)

such that every solution to (2) is a linear combination of these functions
y1, . . . , yn.

1These notes (including the figures, which were drawn mostly with dia
and GIMP) are licensed under Attribution-ShareAlike Creative Commons license,
http://creativecommons.org/about/licenses/meet-the-licenses.
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• Suppose you know a solution yp(t) (a particular solution) to (1).
Then every solution y = y(t) (the general solution) to the DE (1)
has the form

y(t) = yh(t) + yp(t), (3)

where yh (the “homogeneous part” of the general solution) is a linear
combination

yh(t) = c1y1(t) + y2(t) + ... + cnyn(t),

for some constants ci, 1 ≤ i ≤ n.

• Conversely, every function of the form (3), for any constants ci for
1 ≤ i ≤ n, is a solution to (1).

Example 2 Recall the example in the introduction where we looked for func-
tions solving x′ +x = 1 by “guessing”. The function xp(t) = 1 is a particular
solution to x′ +x = 1. The function x1(t) = e−t is a fundamental solution to
x′ + x = 0. The general solution is therefore x(t) = 1 + c1e

−t, for a constant
c1.

Example 3 The charge on the capacitor of an RLC electrical circuit is mod-
eled by a 2-nd order linear DE [C].

Series RLC Circuit notations:

• E = E(t) - the voltage of the power source (a battery or other “electro-
motive force”, measured in volts, V)

• q = q(t) - the current in the circuit (measured in coulombs, C)

• i = i(t) - the current in the circuit (measured in amperes, A)

• L - the inductance of the inductor (measured in henrys, H)

• R - the resistance of the resistor (measured in ohms, Ω);

• C - the capacitance of the capacitor (measured in farads, F)
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Figure 1: RLC circuit.

The charge q on the capacitor satisfies the linear IPV:

Lq′′ + Rq′ +
1

C
q = E(t), q(0) = q0, q′(0) = i0.

Example 4 Recall the example in the introduction where we looked for func-
tions solving x′ +x = 1 by “guessing”. The function xp(t) = 1 is a particular
solution to x′ +x = 1. The function x1(t) = e−t is a fundamental solution to
x′ + x = 0. The general solution is therefore x(t) = 1 + c1e

−t, for a constant
c1.

Example 5 The displacement from equilibrium of a mass attached to a
spring is modeled by a 2-nd order linear DE [O].

SSpring-mass notations:

• f(t) - the external force acting on the spring (if any)

• x = x(t) - the displacement from equilibrium of a mass attached to a
spring

• m - the mass

• b - the damping constant (if, say, the spring is immersed in a fluid)

• k - the spring constant.
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Figure 2: spring-mass model.

The displacement x satisfies the linear IPV:

mx′′ + bx′ + kx = f(t), x(0) = x0, x′(0) = v0.

Notice that each general solution to an n-th order ODE has n “degrees
of freedom” (the arbitrary constants ci). According to this theorem, to find
the general solution of a linear ODE, we need only find a particular solution
yp and n fundamental solutions y1(t), . . . , yn(t).

Example 6 Let us try to solve

x′ + x = 1, x(0) = c,

where c = 1, c = 2, and c = 3. (Three different IVP’s, three different
solutions, find each one.)

The first problem, x′ + x = 1 and x(0) = 1, is easy. The solutions to
the DE x′ + x = 1 which we “guessed at” in the previous example, x(t) = 1,
satisfies this.

The second problem, x′ + x = 1 and x(0) = 2, is not so simple. To solve
this (and the third problem), we really need to know what the form is of the
“general solution”.

According to the theorem above, the general solution x has the form x =
xp + xh. In this case, xp(t) = 1 and xh(t) = c1x1(t) = c1e

−t, by an earlier
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example. Therefore, every solution to the DE above is of the form x(t) =
1 + c1e

−t, for some constant c1. We use the initial condition to solve for c1:

• x(0) = 1: 1 = x(0) = 1 + c1e
0 = 1 + c1 so c1 = 0 and x(t) = 1.

• x(0) = 2: 2 = x(0) = 1 + c1e
0 = 1 + c1 so c1 = 1 and x(t) = 1 + e−t.

• x(0) = 3: 3 = x(0) = 1 + c1e
0 = 1 + c1 so c1 = 2 and x(t) = 1 + 2e−t.

Here is one way to use SAGE to solve for c1. (Of course, you can do
this yourself, but this shows you the SAGE syntax for solving equations. Type
solve? in SAGE to get more details.) We use SAGE to solve the last IVP
discussed above and then to plot the solution.

SAGE

sage: t = var(’t’)
sage: c1 = var(’c1’)
sage: solnx = lambda t: 1+c1*exp(-t)
sage: solnx(0)
c1 + 1
sage: solve([solnx(0) == 3],c1)
[c1 == 2]
sage: c_1 = solve([solnx(0) == 3],c1)[0].rhs()
sage: c_1
2
sage: solnx1 = lambda t: 1+c*exp(-t)
sage: plot(solnx1(t),0,2)
Graphics object consisting of 1 graphics primitive
sage: P = plot(solnx1(t),0,2)
sage: show(P)
sage: P = plot(solnx1(t),0,5)
sage: show(P)

This plot is shown below.
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Figure 3: Solution to IVP x′ + x = 1, x(0) = 3.

Exercise: Use SAGE to solve and plot the solution to x′+x = 1 and x(0) = 2.

References

[BD] W. Boyce and R. DiPrima, Elementary Differential Equations and

Boundary Value Problems, 8th edition, John Wiley and Sons, 2005.

[C] General wikipedia introduction to RLC circuits:
http://en.wikipedia.org/wiki/RLC_circuit

[O] General wikipedia introduction to the Harmonic oscillator
http://en.wikipedia.org/wiki/Harmonic_oscillator

6

http://en.wikipedia.org/wiki/RLC_circuit
http://en.wikipedia.org/wiki/Harmonic_oscillator

